
MATH 110: LINEAR ALGEBRA
HOMEWORK #3

FARMER SCHLUTZENBERG

§2.1: Linear Transformations, Null Spaces, and Ranges

Problem 1. Here V and W are vector spaces over a field F and T : V → W (but T may
not be linear).

(a) True. I can’t find it defined in the book, but ”T preserves sums and scalar products”
is just a short way of saying that T satisfies conditions (a) and (b) in the definition
of linear transformation.

(b) False. (Note firstly that the statement is to be read ”if ∀x, y [T(x + y) = T(x) + T(y)]
then T is linear”.) If the base field F = Zp then the statement is true. (To see T
preserves scalar multiplication, let c ∈ F. Then there is some n < p such that
c = 1 + . . . + 1, where there are n terms on the right side. Then use distribution and
preservation of addition to get T(cv) = cT(v).) One can argue similarly to show the
statement is also true if F = Q.
To get a counter-example, we need F to be less trivial. For some motivation, consider
Theorem 2.1. It tells us that if Rg(T) is not a subspace of W, then T is not linear.
So we can look for T like this. Let V = W = Q(

√
2) over F = Q(

√
2). (Here we use

the fact that any field is a vector space over itself.) Note that the only subspaces of
W (or V) are {0} and Q(

√
2) (why is Q not a subspace?). So T will be non-linear

if its range is between these two sets - i.e. 0 � Rg(T) � Q(
√

2). But we can get
Rg(T) = Q defining T by:

T(q + r
√

2) = q

where q, r ∈ Q. There are a few things to check.
Firstly we need to know that this really defines a function. That is, given v ∈ V,
there must be exactly one value that we’re telling T to send v to. If we had v =
q1 + r1

√
2 = q2 + r2

√
2 (where the q’s and r’s are in Q), but q1 �= q2, then we’d be

giving conflicting instructions to T: both T(v) = q1 and T(v) = q2. But considering
Q(

√
2) as a vector space over Q, the set {1,√2} is a basis (linear independence comes

down to the fact that
√

2 /∈ Q). So if v = q1 + r1

√
2 = q2 + r2

√
2, then by uniqueness

of representation of v as a linear combination of the basis, q1 = q2 and r1 = r2. So
there is no such problem. Also, we have defined T on all elements of V, as every
v ∈ V is of the form q + r

√
2 as above. Thus T is a function.

It’s easy to check T preserves addition.
It’s also easy to check that Rg(T) = Q. So T cannot be linear, as discussed above.
Thus T does not preserve scalar multiplication. However, we can check this directly.
T will preserve scalar multiplication for scalars in Q, so we should check

√
2. Note
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that T(1) = T(1 + 0
√

2) = 1, so
√

2T(1) =
√

2. But T(
√

2.1) = T(0 + 1.
√

2) = 0.
Thus T does not preserve scalar multiplication.
Note also that the nullspace of T is not a subspace of V.
Verifying that T is a function can also be done by appealing to Theorem 2.6 (the
argument above is similar to that proof). For we can let V′ = W′ = Q(

√
2) be vector

spaces over Q, so {1,√2} is a basis for V′. By Theorem 2.6, there is a unique linear
T′ : V′ → W′ such that T(1) = 1 and T(

√
2) = 0. Then by linearity, T′ satisfies the

equation given above for T. This is not a contradiction as T′ is only guaranteed to
be linear in terms of V′ and W′ - i.e., with field of scalars Q. When we extend the
field of scalars to Q(

√
2), scalar multiplication is no longer preserved.

(c) False. E.g. V = W = R, T(0) = 0, T(x) = 1 if x �= 0. (If T is linear it is true.)
(d) True. T(0V) = T(0F0V) = 0FT(0V) = 0W, using linearity for the second equality.
(e) False. If dim(V) �= dim(W), then by the dimension theorem, nullity(T) + rank(T) =

dim(V) �= dim(W).
(f) False. E.g. The 0-map, where dim(V) > 0.
(g) True. Corollary to Theorem 2.6.
(h) False. E.g. if x1, x2 are dependent but y1, y2 are independent.

For a few of the following problems, I’ll use the following simple fact, which sits naturally
with Theorems 2.4 and 2.5:

Fact 1. Suppose V and W are finite dimensional vector spaces over field a F and T : V → W
is linear. Then T is 1-1 iff nullity(T) = 0 and T is onto iff rank(T) = dim(W).

Proof. The first statement is simply a rephrasing of Theorem 2.4, as nullity(T) = 0 ⇐⇒
N(T) = {0}.
For the second, if T is onto then Rg(T) = W, so rank(T) = dim(Rg(T)) = dim(W). On
the other hand, Rg(T) is a subspace of W, so if dim(Rg(T)) = dim(W) then by Theorem
1.11, we must have Rg(T) = W, i.e., T is onto. �
Problem 3. Let V = R2 and W = R3.

T is linear.

T(a + b) = T(a1 + b1, a2 + b2) = ((a1 + b1) + (a2 + b2), 0, 2(a1 + b1) − (a2 + b2)) =

= ((a1 + a2) + (b1 + b2), 0, (2a1 − a2) + (2b1 − b2)) = T(a) + T(b).

T(ra) = T(ra1, ra2, ra3) = (ra1 + ra2, 0, 2ra1 − ra2) =

(r(a1 + a2), 0, r(2a1 − a2)) = rT(a).

Nullspace.
a ∈ N(T) ⇐⇒ (a1 + a2, 0, 2a1 − a2) = 0 ⇐⇒

⇐⇒ a1 = −a2 & a1 = a2/2 ⇐⇒ a1 = a2 = 0 ⇐⇒ a = 0.

So N(T) = {0}. Therefore ∅ is a (the) basis for N(T).

Range.
Rg(T) = {T(a)|a ∈ R2} = {(a1 + a2, 0, 2a1 − a2)|(a1, a2) ∈ R2} =
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= {a1(1, 0, 2) + a2(1, 0,−1)|a1, a2 ∈ R} = span((1, 0, 2), (1, 0,−1)).

The last equality is by definition of span: notice that the set on the left is the set of all
linear combinations of the vectors (1, 0, 2) and (1, 0,−1). The set B = {(1, 0, 2), (1, 0,−1)}
is independent (the computation is done in showing N(T) = ∅). Since B also spans Rg(T),
it is a basis. (If we didn’t have to verify the dimension theorem, we could actually apply
the dimension theorem here to conclude that it is independent without checking it, for the
dimension theorem tells us that there must be 2 vectors in a basis for Rg(T).)

Dimension Theorem.
From the above, nullity(T) = 0 and rank(T) = 2, and 0 + 2 = 2 = dim(R2), agreeing with
the dimension theorem.

1-1/onto.
As nullity(T) = 0 and rank(T) = 2 < dim(W) = 3, the fact following problem 1 tells us that
T is 1-1 but not onto.

Problem 4. Let V = M2∗3(F), W = M2∗2(F).

T is linear.
I will use the criterion specified in remark 2 following the definition of linearity in the text-
book. Let A, B ∈ V and c ∈ F. Then T(A + cB) =

= T

([
A11 A12 A13

A21 A22 A23

]
+

[
cB11 cB12 cB13

cB21 cB22 cB23

])

= T

([
A11 + cB11 A12 + cB12 A13 + cB13

A21 + cB21 A22 + cB22 A23 + cB23

])

=

[
2(A11 + cB11) − (A12 + cB12) A13 + cB13 + 2(A12 + cB12)

0 0

]

=

[
(2A11 − A12) + (2cB11 − cB12) (A13 + 2A12) + (cB13 + 2cB12)

0 0

]

=

[
(2A11 − A12) + c(2B11 − B12) (A13 + 2A12) + c(B13 + 2B12)

0 0

]

=

[
2A11 − A12 A13 + 2A12

0 0

]
+ c

[
(2B11 − B12) (B13 + 2B12)

0 0

]
= T(A) + cT(B).

Nullspace.

T(A) = 0 ⇐⇒
[

2A11 − A12 A13 + 2A12

0 0

]
= 0 ⇐⇒ A11 = A12/2 & A13 = −2A12,

where I’m assuming char(F) �= 2. So

N(T) = {A ∈ V|A11 = A12/2 & A13 = −2A12}

=

{[
a11 a12 a13

a21 a22 a23

]
|aij ∈ F, a11 = a12/2 & a13 = −2a12

}

=

{[
a/2 a −2a
b1 b2 b3

]
|a, bi ∈ F

}



4 FARMER SCHLUTZENBERG

(1) =
{
aF + b1E

(21) + b2E
(22) + b3E

(23) |a, bi ∈ F
}

,

where

F =

[
1/2 1 −2
0 0 0

]
,

and the E(kl) are the standard basis matrices for V (so E(kl) has a 1 in the kth row, lth

column, and 0 elsewhere).
So we have that N(T) = span(B), where B = {F, E(21), E(22), E(23)} (by the form of N(T)
in (1), similarly to the range in the previous problem). It’s also clear that B is linearly
independent, so it is a basis for N(T).

Range.
Let

B′ =

{[
1 0
0 0

]
,

[
0 1
0 0

]}
.

Then Rg(T) = span(B′). To see this, we check that each side is a subset of the other. From
the definition of T, we clearly have Rg(T) ⊆ span(B′). To see ⊇, note that

T

([
1
2

0 0
0 0 0

])
=

[
1 0
0 0

]
,

and similarly, we can get the second matrix in B′ to be hit by T (meaning in Rg(T)). So
B′ ⊆ Rg(T). But Rg(T) is a subspace of W, so by Theorem 1.5, span(B′) ⊆ Rg(T). As B
is also independent, it is a basis for Rg(T).

Dimensions.
Inspecting the bases we found, B and B′, for the nullspace and range respectively, we have
nullity(T) = 4 and rank(T) = 2. dim(V) = 6.

1-1/onto.
By Theorem 2.4, T is not 1-1 (it’s nullspace is non-trivial). rank(T) = 4 < dim(W), so by
the fact following problem 1, T is not onto.

Problem 5. Let V = P2(R) and W = P3(R).

T is linear.
Let f, g ∈ V and c ∈ R. Then

T(f +cg) = x(f +cg)+(f +cg)′ = xf +xcg+f ′+cg′ = (xf +f ′)+c(xg+g′) = T(f)+cT(g).

Note that the linearity of the derivative has been used to obtain the second equality.

Nullspace.
I will use the standard basis to represent functions in P2(R). That basis is {x2, x, 1}. Here
x /∈ R, but x ∈ V = P2(R), i.e. x is a quadratic function - the identity function, defined by
x(r) = r for r ∈ R. x2 denotes the square function - for r ∈ R, x2(r) = r2. 1 denotes the
constant function taking value 1. Also, x3 ∈ W = P3(R) will denote the cube function.
For f ∈ V, let f2, f1, f0 ∈ R be f ’s coefficients with respect to this basis, so f = f2x

2+f1x+f0

(it should read f01 but one can identify some a ∈ R with the constant function a1, which
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I’ll do).
A digression: note that in the definition of T, T(f) = xf + f ′, we are multiplying two
vectors, x and f , and producing a vector xf ∈ W. In some situations, such as this, we can
make sense of vector multiplication (but note that V isn’t closed under this multiplication).
Anyway, the nullspace:

T(f) = 0 ⇐⇒ xf + f ′ = 0 ⇐⇒ x(f2x
2 + f1x + f0) + 2f2x + f1 = 0 ⇐⇒

⇐⇒ f2x
3 + f1x

2 + (f0 + 2f2)x + f1 = 0 ⇐⇒ f2 = f1 = (f0 + 2f2) = 0 ⇐⇒
⇐⇒ f2 = f1 = f0 = 0 ⇐⇒ f = 0.

Note we have used the fact that {x3, x2, x, 1} is a linearly independent subset of W , to obtain
the equivalence of the 4th and 5th statements. Therefore N(T) = {0}, so ∅ is the basis for
the nullspace.

Range.
Using some of the calculations just done,

Rg(T) = {T(f)|f ∈ V} = {ax3 + bx2 + (c + 2a)x + b|a, b, c ∈ R} =

= {a(x3 + 2x) + b(x2 + 1) + cx|a, b, c ∈ R} =

= span(x3 + 2x, x2 + 1, x) = span(x3, x2 + 1, x).

Note that the second to last equality is by definition of span. For the last equality it is
enough to see that x3 is in span(x3 + 2x, x2 + 1, x) and that x3 + 2x is in span(x3, x2 + 1, x).
Finally, the set {x3, x2 + 1, x} is clearly linearly independent (remember the 0 polynomial
must have all coefficients 0). As this set also spans the range, it is a basis for the range.
(Again, we could use the dimension theorem here to conclude linear independence of the set.)

Dimension Theorem.
From the bases given, we have that rank(T) = 3 and nullity(T) = 0. Verifyingly, dim(P2(R)) =
3.

1-1/onto.
nullity(T) = 0 and dim(P3(R)) = 4 > rank(T), so by the fact following problem 1, T is 1-1,
but not onto.

Problem 6. Let V = Mn∗n(F) and W = F.
If you couldn’t figure this problem out, before reading the solution (if you’re about to), you
should try doing it in the n = 2 case, as it is simpler, then the n = 3 case, which has one
more idea. The general case is really no different to the latter. Also, it’s easy to see what
rank(tr) is, so using the dimension theorem, this can give you a hint about the nullspace.
So stop reading now.

Linearity.
Let A, B ∈ V and c ∈ F. Then

tr(A + cB) =

i=n∑
i=1

(A + cB)ii =

i=n∑
i=1

(Aii + cBii) =

i=n∑
i=1

Aii + c

i=n∑
i=1

Bii = tr(A) + c tr(B).
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Nullspace.
This is the most difficult part. The point is that the condition tr(A) = 0 is just one solv-
able linear equation in (some of) the entries in A, so we can allow all entries to vary freely
except one on the diagonal, and then set that one to satisfy the equation. Another way to
see something like this will happen, is to note first that rank(T) = 1 (see below), and as
dim(V) = n2, we must have nullity(T) = n2 − 1 by the dimension theorem. So there will be
n2 − 1 elements in the basis for the nullspace, which is why we can allow all but one (n2 − 1)
of the entries to vary freely. Other than that we just need good notation.

A ∈ N(tr) ⇐⇒ tr(A) = 0 ⇐⇒
i=n∑
i=1

Aii = 0 ⇐⇒ Ann = −
i=n−1∑

i=1

Aii

As we’ve reduced membership in N(tr) to Ann = −∑i=n−1
i=1 Aii (where the sum is 0 if n = 1),

we have

N(tr) =

{
A ∈ V

∣∣∣∣∣Ann = −
i=n−1∑

i=1

Aii

}

=

⎧⎨
⎩
⎡
⎣ a11 . . . a1n

...
. . .

...
an1 . . . ann

⎤
⎦
∣∣∣∣∣aij ∈ F, ann = −

i=n−1∑
i=1

aii

⎫⎬
⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

a11 . . . a1,n−1 a1n
...

. . .
...

...
an−1,1 . . . an−1,n−1 an−1,n

an1 . . . an,n−1 −∑i=n−1
i=1 aii

⎤
⎥⎥⎥⎦ |aij ∈ F

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Now let E(kl), for 1 ≤ k, l ≤ n, be the standard basis vectors for V. (So E(kl) has a 1
in the kth row, lth column, and 0 elsewhere.) For 1 ≤ k ≤ n−1, let D(k) = E(kk)−E(nn). Then⎡

⎢⎢⎢⎣
a11 . . . a1,n−1 a1n
...

. . .
...

...
an−1,1 . . . an−1,n−1 an−1,n

an1 . . . an,n−1 −∑i=n−1
i=1 aii

⎤
⎥⎥⎥⎦ =

∑
1≤i,j≤n

i�=j

aijE
(ij) +

i=n−1∑
i=1

aiiD
(i).

To see this equation holds, consider the n = 2 and n = 3 cases first. Write the matrix as a
sum of matrices, one for each aij (where i �= n or j �= n). Combining this equation and the
description of the nullspace above, we have N(tr) = span(B), where

B = {E(kl)|1 ≤ k, l ≤ n, k �= l} ∪ {D(k)|1 ≤ k ≤ n − 1}).
It’s easy to check directly that B is linearly independent. So we’ve constructed a basis for
N(tr).

Range.
tr is linear, so its range must be a subspace of F. F is 1-dimensional, so its only subspaces
are {0} and F. Clearly 1 ∈ Rg(tr), as tr(E(nn)) = 1, for example. So Rg(tr) = F and a
basis for it is {1}.
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Demented Theorem.
We had n2 −1 elements in our basis for N(tr), so nullity(tr) = n2 −1, and rank(tr) = 1, and
dim(V) = n2.
1-1/onto.
We already saw Rg(tr) = F, so tr is onto. Clearly it’s not 1-1?? Note quite - using that
nullity(tr) = n2 − 1 from above, and the fact following problem 1, if n > 1, then tr is not
one-one, but if n = 1, then tr is one-one. (This makes sense as in the n = 1 case tr(A) = A11,
the single entry of A.)

Problem 7. Let T : V → W where V and W are vector spaces over the field F. (T is not
assumed to be linear.)

1. This is done in problem 1(d).

2. This property easily holds if T is linear. So let us assume the property holds, and
show that T is linear. We know that

(2) ∀x, y ∈ V ∀c ∈ F [T(cx + y) = cT(x) + T(y)]

So let x, y ∈ V. We have T(x + y) = T(1x + y) = 1T(x) + T(y) = T(x) +T(y) where
the middle equality holds by (2). So T preserves sums. To see T preserves scalar
multiplication, first note that T(0) = T(0 + 0) = T(0) + T(0), so (by cancellation)
T(0) = 0. Now let x ∈ V and c ∈ F. Then

T(cx) = T(cx + 0) = cT(x) + T(0) = cT(x),

where we have again used (2) for the second equality, and the fact that T(0) = 0 for
the third.

3. Suppose T is linear. Then T(x−y) = T(x+(−1)y) = T(x)+(−1)T(y) = T(x)−T(y),
where condition (2) has been used for the second equality.

4. For n ≥ 1 an integer, let us denote by Ln (linearity-n) the property

Ln ⇐⇒ ∀xi ∈ V ∀ai ∈ F

[
T

(
i=n∑
i=1

aixi

)
=

i=n∑
i=1

aiT(xi)

]
.

Translating a little, L2 says

∀x1, x2 ∈ V ∀a1, a2 ∈ F [T(a1x1 + a2x2) = a1T(x1) + a2T(x2)] .

First, setting a2 = 1, we get that L2 implies condition (2), and therefore implies T is
linear.
So suppose T is linear. We want to prove that Ln is true for every n. Given some
particular n, it’s easy to prove - you just keep applying T’s linearity to separate all
the terms in the sum and pull all the coefficients through. But since we have to prove
it for infinitely many cases, we’ll use induction.
Firstly notice that L1 is just the statement that T preserves multiplication, which is
true by linearity.
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Now assume Lm for some positive m. We want to prove Lm+1. Let xi ∈ V and ai ∈ F
for 1 ≤ i ≤ m + 1. Then

T

(
i=m+1∑

i=1

aixi

)
= T

(
i=m∑
i=1

aixi + am+1xm+1

)
=

= T

(
i=m∑
i=1

aixi

)
+ T(am+1xm+1) = T

(
i=m∑
i=1

aixi

)
+ am+1T(xm+1).

Here we have used the linearity of T for the last two equalities. Now by inductive
hypothesis, Lm, so the T(

∑
ax) term is equal to a

∑
aT(x) term, i.e. the above is

=

i=m∑
i=1

aiT(xi) + am+1T(xm+1) =

i=m+1∑
i=1

aiT(xi).

Thus we have shown Lm+1 is true. So by induction, ∀nLn.

Problem 13. Suppose c1v1 + . . . + ckvk = 0. Then

0 = T(0) = T(
∑

civi) =
∑

ciT(vi) =
∑

ciwi.

(Here we have used property 4 from problem 7.) The wi’s form an independent set, so (as the
above equation begins with 0), ci = 0 for each i, and therefore the vi’s form an independent
set.

Problem 14.

(a) Suppose T is 1-1 and S is an independent subset of V. We need to show T(S) is
independent.
Let wi ∈ T(S), 1 ≤ i ≤ n, where the wi’s are distinct, and suppose

∑
ciwi = 0 for

some ci ∈ F.
Let vi be such that T(vi) = wi (the vi’s exist by definition of T(S)). Notice that
the vi’s are distinct: if not, we have some k < j such that vk = vj . But then
T(vk) = T(vj) so wk = wj. But the wi’s were chosen distinct, which means k = j, a
contradiction. Now using property 4 of problem 7,

T(
∑

civi) =
∑

ciT(vi) =
∑

ciwi = 0.

But T is 1-1, so N(T) = {0}, so we must have
∑

civi = 0. As the vi’s are distinct
elements of S, an independent set, we get ci = 0 (for each i). Thus we have shown
that T(S) is an independent set.
Now suppose T is not 1-1. Then N(T) � {0}. Let v ∈ N(T), v �= 0. Then {v} is
an independent set, but T({v}) = {0}, which is a dependent set. Therefore it is not
true that T carries all independent sets onto independent sets.

(b) Suppose T is 1-1. If S ⊆ V is independent, then by (a), T(S) is independent. So
suppose S is dependent. Let v1, . . . , vk ∈ S be distinct, mutually dependent vectors,
and c1, . . . , ck ∈ F be such that c1v1 + . . . + ckvk = 0 non-trivially. Let wi = T(vi).
Then the wi’s are distinct as T is 1-1 (if wk = wj then T(vk) = T(vj) but T is 1-1, so
vk = vj, but the vi’s are distinct, so k = j). Applying T to the linear combination,

0 = T(0) = T(c1v1 + . . . + ckvk) = c1w1 + . . . + ckwk.
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The ci’s were chosen to be non-trivial (not all 0), so they provide a non-trivial so-
lution for the wi’s. wi ∈ T(S), and as noted above, they are distinct, so T(S) is a
dependent set.
Note that it really is important to show the distinctness of the vectors above. Con-
sider the example of T : R2 → R2, T projecting onto the x-axis. T is not 1-1, and
there are dependent sets S such that T(S) is independent. Take S to be the line
parallel to the y=axis, through (1, 0). S is dependent as it has more than 2 elements.
But T(S) = {(1, 0)}, an independent set. Ignoring the issue of distinctness, the above
proof (that S is dependent implies T(S) is dependent) goes through. So make sure
you don’t ignore it.

(c) As T is 1-1 and β is independent, by part (b), T(β) is independent. We need
span(β) = W. But T is onto, so

W = T(V) = T(span(β)) = T
(
{
∑

civi|ci ∈ F}
)

=

= {T(
∑

civi)|ci ∈ F} = {
∑

ciT(vi)|ci ∈ F} = span(T(β)).

Again we’ve used property 4 from problem 7.

Problem 15. Let V = P(R). First I’ll find a representation of T that it easier to deal with.
Let f ∈ V. We can express f in terms of the standard basis (as in problem 5), i.e.

f = anxn + an−1x
n−1 + . . . + a1x + a0

where ai ∈ R. Note that the xi’s are basis elements. Now

T(f)(r) =

∫ r

0

f(t)dt =

∫ t=r

t=0

(antn + . . . + a1t + a0)dt =

=
an

n + 1
tn+1 + . . . + a0t + c|t=r

t=0 =
an

n + 1
rn+1 + . . . + a0r.

Thus we have

(3) T(anxn + an−1x
n−1 + . . . + a1x + a0) =

an

n + 1
xn+1 + . . . + a0x.

From now on we can use this as our definition of T. Using this, linearity of T is then easy
to show.

Let us consider 1-1ness. It suffices to prove that N(T) = {0}, by Theorem 2.4. Suppose
T(f) = 0, where f is as above. So the polynomial on the right side of (3) is the 0 function.
Hence the coefficients ai

i+1
= 0 (as the xi’s are independent, or in calculus language, the only

polynomial that is constantly 0 is the polynomial with all coefficients 0), and so ai = 0 for
all i. Therefore f = 0. So we have shown N(T) is trivial, as required.

Now to see T is not onto. Inspecting (3), we can see that the constant term (the coefficient
of 1) is 0. As this is true for all elements of Rg(T), we know 1 /∈ Rg(T), so T is not onto.

Problem 16. Good-o, here we can assume T is linear. It’s easy to see T is not 1-1, as the
derivative of any constant function is 0. So we just need ontoness. Here we can use that
correspondence between integral and derivative. Let T′ be the transformation from problem
15 (the integral). Then for any f ∈ P(R), T(T′(f)) = f . This is easily seen using the form
of T′(f) in (3), and differentiating that function. All the ai

i+1
terms return to ai’s when we
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”bring down the power”, and we get f back. Thus f ∈ Rg(T), and as f was arbitrary,
Rg(T) = P(R).

Problem 17.

(a) We have

rank(T) ≤ rank(T) + nullity(T) = dim(V) < dim(W),

where the first inequality is because dimension is non-negative, the equality is the
Dimension Theorem, and the last inequality is by hypothesis. Putting it together,
rank(T) < dim(W), so by the fact following problem 1, T is not onto.

(b) If T were 1-1, nullity(T) = 0 (by the fact again), so dim(V) = rank(T) by the
Dimension Theorem. But rank(T) ≤ dim(W) as Rg(T) is a subspace of W, which
contradicts dim(V) > dim(W).

Problem 18. To invent an example satisfying some particular property, one can often be
motivated by experimenting with transformations in Rn, particularly in R2 and R3. This
problem actually requires us to have T : R2 → R2 anyway. Linear transformations in
R2 can be constructed from projections onto lines, reflections about lines, rotations and
scaling. Any combination of these can be made (one following the other), and the resulting
transformation will still be linear (how does one prove that?) In this case, also notice that
N(T) = Rg(T) =⇒ nullity(T) = rank(T), and combining this with the Dimension Theorem
and V = R2, we’re forced to have nullity(T) = rank(T) = 1. The 1-dimensional subspaces of
R2 are lines through the origin. So we need some line which is both the nullspace and range
of T. As all such lines are just a rotation away from one another, it won’t matter what line
we work with, so let’s aim for the x-axis.

Projection onto the y-axis has nullspace the x-axis. But its range is the y-axis, so it doesn’t
work. But as I mentioned, we can compose it with another map. There are a maps which
swap the x-axis and y-axis, such as reflection about the line x = y, or rotation by 90◦. If we
first project onto the y-axis, and then rotate (say clockwise, 90◦), the resulting range will be
the x-axis. Also, rotation is 1-1, so it won’t change the nullspace. So we have an example.

Let Projy : R2 → R2 be projection onto the y-axis (so Projy(a, b) = (0, b)) and Rot : R2 →
R2 be clockwise rotation by 90◦ (so Rot(a, b) = (b,−a)). Let T = Rot ◦Projy (this notation
means T(a, b) = Rot(Projy(a, b))). So T(a, b) = (b, 0). Then N(T) = Rg(T), the x-axis.

Problem 19. Considering the previous example, we also could have rotated counter-
clockwise. This would have resulted in U(a, b) = (−b, 0). The T above and this U suffice.
Notice that we just have U = −T (i.e. U(x) = −T(x) for all x). We can get more examples
by taking any linear transformation T, letting a �= 0, a �= 1 (this needs char(F) �= 2), and
letting U = aT (defined similarly to −T).

There are ways where T and U seem less similar though. For instance, say T : R3 → R3,
and Rg(T) is a plane P . Suppose U′ : P → P is linear, and is 1-1 and onto (say reflection
about some line in the plane, or rotation about the origin). Then letting U = U′ ◦ T, we
have a more interesting example.

Problem 20. First we show T(V1) is a subspace of W. As T : V → W, T(V1) ⊆ W. As
0 ∈ V1 and T(0) = 0 by linearity, we have 0 ∈ T(V1).

Let w1, w2 ∈ T(V1) and c ∈ F. We need to show cw1 + w2 ∈ T(V1). Let v1, v2 ∈ V1 be
such that T(v1) = w1 and T(v2) = w2 (these exist by definition of T(V1). By linearity, we
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have

(4) T(cv1 + v2) = cT(v1) + T(v2) = cw1 + w2.

But V1 is a subspace, so cv1 +v2 ∈ V1, so T(cv1 +v2) ∈ T(V1). So by (4), cw1 +w2 ∈ T(V1),
as desired.

Now we show T−1(W1) = {v ∈ V|T(v) ∈ W1} is a subspace of V. Firstly, T(0) = 0 ∈ W1,
so 0 ∈ T−1(W1).

Now let x, y ∈ T−1(W1) and c ∈ F. We need cx + y ∈ T−1(W1), which is equivalent to
T(cx + y) ∈ W1. But T(cx + y) = cT(x) + T(y) and we know T(x), T(y) ∈ W1 because
x, y ∈ T−1(W1). As W1 is a subspace, we have cT(x) + T(y) ∈ W1, so T(cx + y) ∈ W1, as
required.

Problem 21.

(a) Let y, z ∈ V and b ∈ F. T(y + bz) =

T(y1 + bz1, y2 + bz2, . . .) = (y2 + bz2, y3 + bz3, . . .) = (y2, y3, . . .) + b(z2, z3, . . .)

Showing U is linear is almost the same.
(b) Clearly T is not 1-1 as two sequences y, z may differ only on their first entry. T is

onto because given y ∈ V, right-shifting then left-shifting the result gives y back, i.e.
T(U(y)) = y. Thus y ∈ Rg(T).

(c) U is not onto because it doesn’t produce the sequence (1, 0, 0, . . .). It is 1-1 because
if U(y) = U(z) then T(U(y)) = T(U(z)), and as mentioned above, T(U(y)) = y and
likewise for z, so y = z.

Problem 22. Given v = (x, y, z) ∈ R3, we have v = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).
Therefore

T(v) = T(x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)) = xT(1, 0, 0) + yT(0, 1, 0) + zT(0, 0, 1),

using linearity for the second equality. So we have to set a = T(1, 0, 0), b = T(0, 1, 0), c =
T(0, 0, 1), and then we get T(x, y, z) = ax + by + cz as required.

Notice we had no choice about what a, b, c were - they were chosen by T. Also notice we
can also write the action of T as matrix multiplication:

T(x, y, z) =
[

a b c
] ⎡⎣ x

y
z

⎤
⎦ .

For the linear T : Fn → F case, we do the same thing, and get some ai ∈ F, such that
T(x1, . . . , xn) = a1x1 + . . . + anxn.

Now suppose T : Fn → Fm. Let {e(1), . . . , e(n)} be the standard basis for Fn (so e(2) =
(0, 1, 0, 0, . . . , 0), etc). We can do exactly the same thing as the R3 → R case, and express
any input vector as a linear combination of the e(i)’s. So we’ll need to know the value T
takes on these vectors. T(e(i)) ∈ Fm for each i, so it is some m-tuple. Let’s denote it a(i), so
a(i) = T(e(i)). (This could be a little deceptive though - remember the a(i)’s are not scalars
in this case, but m-tuples of scalars. Now by linearity, we get

T(x1, . . . , xn) = T(x1e
(1) + . . . + xne(n)) = x1a

(1) + . . . + xna(n).

So we’ve found a generalization of the above - instead of scalars, we just have vectors. Again,
T forced the choice of the a(i)’s on us. But let’s try writing out all the vectors explicitly. Say
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a(i) = (a1i, . . . , ami) (remember they were m-tuples). Then, writing the vectors as columns,

T

⎛
⎝
⎡
⎣ x1

...
xn

⎤
⎦
⎞
⎠ = x1

⎡
⎣ a11

...
am1

⎤
⎦+ . . . + xn

⎡
⎣ a1n

...
amn

⎤
⎦

=

⎡
⎣ a11 . . . a1n

...
. . .

...
am1 . . . amn

⎤
⎦
⎡
⎣ x1

...
xn

⎤
⎦

where at the bottom we have the multiplication of a matrix and vector. So any linear
transformation T : Fn → Fm can be represented in the form T(x) = Ax, where A is the
matrix determined as above. As the choice of the a(i)’s was determined by T, and the matrix
is composed of the components of the a(i)’s, the matrix is completely determined by T.

Problem 25. To do this problem, make sure you read the definition on the previous page,
before problem 24. When a vector space V = W1 ⊕ W2, every vector in V has a unique
representation as v = w1 + w2, where wi ∈ Wi. Then the projection onto W1 along W2 just
sends v to w1. You might think of the vectors in V being represented with two components
(though those components are vectors, not scalars), and we’re projecting onto one of the
components. This definition is abstract, though, and you can also think about it as follows.
Consider the xy−plane in R3 and a line L through the origin, not lying in the xy−plane. We
can define projection Pr onto the xy−plane along L by sending any point p to the xy−plane
along the line through p, parallel to L. This line intersects the xy−plane at some unique
point, and we define Pr(p) to be that point of intersection. This is a case of the general
definition.

(a) First we need to check that this makes sense, i.e. that V = R3 = xy−plane⊕z−axis.
But by definition, this is just that R3 = xy−plane+z−axis and xy−plane∩z−axis =
{0}. The first of these comes from noting that (x, y, z) = (x, y, 0) + (0, 0, z) ∈
xy−plane + z−axis. The second is easy too.

Now, given v = (x, y, z) ∈ R3, v = (x, y, 0)+ (0, 0, z), and (x, y, 0) ∈ xy−plane and
(0, 0, z) ∈ z−axis. By definition, T(x, y, z) = (x, y, 0), so T is the projection on the
xy−plane along the z−axis.

(b) We already know R3 = z−axis ⊕ xy−plane from part (a) (by commutativity of
+ and ∩, the definition is symmetric, so V = W1 ⊕ W2 ⇐⇒ V = W2 ⊕ W1).
Given v = (x, y, z) ∈ R3, we have v = (0, 0, z) + (x, y, 0) is the z−axis + xy−plane
representation of v, so we need T(x, y, z) = (0, 0, z).

(c) As the line L does not lie in the xy−plane, it’s easy to show xy−plane ⊕ L = R3.
Given (a, b, c) ∈ R3, T(a, b, c) = (a − c, b, 0), which is certainly in the xy−plane, so
that’s fine. Now consider (a, b, c) −T(a, b, c) = (a, b, c) − (a − c, b, 0) = (c, 0, c). This
is in L. So (a, b, c) = v + w where v = T(a, b, c) ∈ xy−plane and w = (c, 0, c) ∈ L, as
required.

Problem 35.

(a) We just need to verify Rg(T) ∩N(T) = {0}. By exercise 29 of 1.6,

dim(V) = dim(Rg(T)) + dim(N(T)) − dim(Rg(T) ∩ N(T))

= rank(T) + nullity(T) − dim(Rg(T) ∩ N(T)).
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So by the Dimension Theorem, dim(Rg(T) ∩ N(T)) = 0, so Rg(T) ∩ N(T) = {0}.
Finite-dimensionality is required by both the Dimension Theorem and exercise 29.

(b) By the same result,

dim(Rg(T) + N(T)) = dim(Rg(T)) + dim(N(T)) − dim(Rg(T) ∩ N(T)),

but the last term is 0 by hypothesis. Combining this with the Dimension Theorem,

dim(Rg(T) + N(T)) = dim(V).

But Rg(T) + N(T) is a subspace of V, so by Theorem 1.11, V = Rg(T) + N(T),
which is all we needed. Finite-dimensionality was used in the same way here.

Problem 38. Let r + si, x + yi ∈ C. Then

Conj((r + si) + (x + yi)) = Conj((r + x) + (s + y)i) = (r + x) − (s + y)i =

= (r − si) + (x − yi) = Conj(r + si) + Conj(x + yi).

However, i Conj(1) = i.1 = i, but Conj(i.1) = Conj(i) = −i. So Conj does not preserve
multiplication by complex scalars.


