
MATH 110: LINEAR ALGEBRA
HOMEWORK #4

DAVID ZYWINA

§2.2: The Matrix Representation of a Linear Transformation

Problem 1.

(a) True. This is a consequence of L(V,W ) being a vector space.
(b) True. Suppose β = {v1, · · · , vn} and γ = {w1, · · · , wm}. Let A = [T ]γβ = [U ]γβ . Then

for each vj ,

T (vj) =

m∑
i=1

Ai,jwi = U(vj).

Since T and U agree on β they must be equal.
(c) False. By definition it will be a n×m matrix.
(d) True. This is Theorem 2.8(a)
(e) True. This is proved in Theorem 2.7.
(f) False. If V �= W then we can’t have equality (since the functions in both sets have

different domains, and hence are different).

Problem 3. We have a linear map T : R2 → R3 defined by T (a1, a2) = (a1 − a2, a1, 2a1 +
a2). We have bases β = {(1, 0), (0, 1)} and α = {(1, 2), (2, 3)} of R2, and basis γ =
{(1, 1, 0), (0, 1, 1), (2, 2, 3)} of R

3.

After computing T (1, 0) and T (0, 1) in terms of the basis γ we find

T (1, 0) = (1, 1, 2) =
−1
3
(1, 1, 0) + 0(0, 1, 1) +

2

3
(2, 2, 3)

T (0, 1) = (−1, 0, 1) = −(1, 1, 0) + (0, 1, 1) + 0(2, 2, 3).

Therefore

[T ]γβ =


 1

3
−1

0 1
2
3

0


 .

We now compute T (1, 2) and T (2, 3) in terms of the basis γ (using our earlier calculations).

T (1, 2) = T (1, 0) + 2T (0, 1)

=

(−1
3
(1, 1, 0) + 0(0, 1, 1) +

2

3
(2, 2, 3)

)
+ 2 (−(1, 1, 0) + (0, 1, 1) + 0(2, 2, 3))

=
−7
3
(1, 1, 0) + 2(0, 1, 1) +

2

3
(2, 2, 3)
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T (2, 3) = 2T (1, 0) + 3T (0, 1)

= 2

(−1
3
(1, 1, 0) + 0(0, 1, 1) +

2

3
(2, 2, 3)

)
+ 3 (−(1, 1, 0) + (0, 1, 1) + 0(2, 2, 3))

=
−11
3
(1, 1, 0) + 3(0, 1, 1) +

4

3
(2, 2, 3)

Therefore

[T ]γα =


 −7

3
−11
3

2 3
2
3

4
3


 .

Problem 4. Evaluating the basis elements of β = {
(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
}

by T we get:

T

(
1 0
0 0

)
= 1

T

(
0 1
0 0

)
= 1 + x2

T

(
1 0
0 0

)
= 0

T

(
0 0
0 1

)
= 2x

Therefore we have

[T ]γβ =


 1 1 0 0

0 0 0 2
0 1 0 0


 ,

where γ = {1, x, x2} is the standard basis of P2(R).

Problem 6. Given vector spaces V and W over a field F , let L(V,W ) be the set of linear
transformations from V into W . We define addition and scalar mulitplication in L(V,W ) as
described on page 82. We must proof Theorem 2.7(b), which says that under these operations
L(V,W ) is itself a vector space.
The set L(V,W ) contains the zero transformation T0. In Theorem 2.7(a) it is show that

L(V,W ) is closed under addition and scalar multiplication. What is left to check is the vector
space axioms. All of the axioms are easy to check, and they come down to the equivalent
axiom of the vector space V which we will implicitly use.
Take arbitrary S, T, U ∈ L(V,W ) and scalars a, b. To check that the following functions

are equal it suffices to show that they agree on an arbitrary element v ∈ V . (see page 7 for
the axioms)

(VS 1) :

(S + T )(v) = S(v) + T (v) = T (v) + S(v) = (T + S)(v)
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(VS 2) :

((S + T ) + U)(v) = (S + T )(v) + U(v)

= (S(v) + T (v)) + U(v)

= S(v) + (T (v) + U(v))

= S(v) + (T + U)(v)

= (S + (T + U))(v)

(VS 3) :

(T + T0)(v) = T (v) + T0(v) = T (v) + 0 = T (v)

(VS 4) : The map B := −T is in L(V,W ), since we know L(V,W ) is closed under
scalar multiplication.

(T +B)(v) = T (v) +B(v) = T (v)− T (v) = 0 = T0(v)

(VS 5) :

(1 · T )(v) = 1 · T (v) = T (v)

(VS 6) :

((ab)T )(v) = (ab)T (v) = a(bT (v)) = a(bT )(v) = (a(bT ))(v)

(VS 7) :

(a(S+T ))(v) = a(S+T )(v) = a(S(v)+T (v)) = aS(v)+aT (v) = (aS)(v)+(aT )(v) = (aS+aT )(v)

(VS 8) :

((a+ b)T )(v) = (a+ b)T (v) = aT (v) + bT (v) = (aT )(v) + (bT )(v) = (aT + bT )(v)

Problem 9. In this exercise V = C, a real vector space. Define T : V → V by T (z) = z.
Given any complex numbers z1 = x1+ iy1, z2 = x2+ iy2 ∈ V (where x1, x2, y1, y2 ∈ R) and

scalar c ∈ R, we have

T (cz1+z2) = T ((cx1+x2)+i(cy1+y2)) = (cx1+x2)−i(cy1+y2) = c(x1−iy1)+(x2−iy2) = cT (z1)+T (z2).

Since z1, z2 and c were arbitrary, we have that T is a linear map (of real vector spaces).

Since T (1) = 1 and T (i) = −i, we have [T ]β =
(
1 0
0 −1

)
, where β = {1, i}.

Problem 10. We have a basis β = {v1, · · · , vn} of V , and a linear map T : V → V such
that T (vj) = vj + vj−1 for j = 1, 2, · · · , n (where we have v0 = 0 by convention). The n× n
matrix A = [T ]β is defined to be the unique matrix such that

T (vj) =
n∑

i=1

Ai,jvi for 1 ≤ j ≤ n.

Hence for 1 ≤ i, j ≤ n,

([T ]β)i,j =

{
1 if i = j or i = j − 1 ,

0 otherwise.
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This is a matrix with 1’s on the main diagonal, 1’s on the diagonal above that, and 0’s

everywhere else:




1 1
1 1

1
. . .
. . . 1

1




Problem 11. Choose a basis {v1, · · · , vk} for the vector space W . We can extend this to a
basis β = {v1, · · · , vk, vk+1, · · · , vn} of V .

When 1 ≤ j ≤ k, by construction vj ∈ W and hence T (vj) ∈ W (this is where we use that
W is T -invariant). Since T (vj) ∈ W , we can write

(1) T (vj) =
k∑

i=1

Mi,jvi,

for some scalars Mi,j.

However we know that the ([T ]β)i,j are the unique scalars such that

T (vj) =

n∑
i=1

([T ]β)i,jvi.

So by comparison wtih (1) we see that

([T ]β)i,j = 0,

when 1 ≤ j ≤ k and k + 1 ≤ i ≤ n.
This is the same as saying that [T ]β is of the form(

A B
O C

)
,

where A is a k × k matrix and O is the (n− k)× k zero matrix.

Problem 14. Suppose that there we have a linear combination

a1T1 + · · ·anTn = 0,

with a1, · · · , an ∈ R.
Fix a j ∈ {1, · · · , n}. Define the polynomial g(x) = (a1T1 + · · ·anTn)(x

j), which has
constant term j!aj . Thus g(0) = j!aj . However, by assumption a1T1 + · · ·anTn = 0 so
g(x) = 0. This implies that j!aj = 0, which shows that aj = 0.
Since j was arbitrary we have shown that a1 = · · · = an = 0. Therefore T1, · · · , Tn are

linearly independent.

Problem 16. Let n = dim V = dimW . Let T : V → W be a linear map.

Choose a basis u1, · · · , uk of N(T ). We can then extend this to some basis

β = {v1, · · · , vn−k, u1, · · · , uk}
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of V .

Claim: T (v1), · · · , T (vn−k) are linearly independent

Proof. Suppose we have a linear combination

a1T (v1) + · · ·+ an−kT (vn−k) = 0.

This implies that T (a1v1+· · ·+an−kvn−k) = 0, since T is linear. Thus a1v1+· · ·+an−kvn−k ∈
N(T ), so we can write it as

(2) a1v1 + · · ·+ an−kvn−k = b1u1 + · · ·+ bkuk

for some scalars bj . Since β is a basis of V (and in particular linearly independent), we find
that all of coefficients of (2) are zero. Therefore a1 = · · · = an−k = 0, which show the desired
independence. �

Define w1 = T (v1), · · · , wn−k = T (vn−k). These vectors are linearly independent by our
claim, and we can extend to a basis of γ = {w1, · · · , wn−k, wn−k+1, · · · , wn}.

By construction, T (vi) = wi and T (ui) = 0. Therefore we have

[T ]γβ =




1
1

. . .
1

0
. . .

0



,

where the first n− k diagonal elements are 1’s and all the other entries are zeros. In partic-
ular, the matrix [T ]γβ is diagonal.

We now prove the dimension theorem in the case n = dimV = dimW .
Let T : V → W be a linear map. From above we know that we can choose a bases β of V
and γ of W such that the matrix A := [T ]γβ is diagonal as above. After choosing these bases
we see that the map T : V → W can be viewed as the linear map LA : F

n → F n (this is the
content of the next section). In particularly, it is apparent that

nullity(T ) = nullity(LA) = nullity(A) and rank(T ) = rank(LA) = rank(A)

. Thus it suffices to prove that for an n× n diagonal matrix A,

nullity(A) + rank(A) = n.

For a diagonal matrix A, let r be the number of zeros on the main diagonal of A. It is
then easy to see that nullity(A) = r and rank(A) = n − r. Thus nullity(A) + rank(A) =
k + (n− k) = n.
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§2.3: Composition of linear transformations and matrix multiplication

Problem 1.

(a) False. This is an incorrect statement of Theorem 2.11. If dimW �= dimZ then the
expression [T ]βα[U ]

γ
β doesn’t make sense [you cannot multiply matrices unless their

dimensions match up]. Note that even if dimW = dimZ then the statement is still
false, since in general matrices don’t commute.

(b) True. This is Theorem 2.14.
(c) False. We have bases α and β of V and W respectively. Since U is a map from W

to Z, the symbol [U ]βα will not always make sense (since α (resp. β) need not be a
basis of W (resp. Z) ).

(d) True. If α = {v1, · · · , vn} then, Iv(vi) = vi. This shows that [IV ]α = I.
(e) False. If V �= W then T 2 is not defined. However, even if V = W the statement may

fail.
Consider the easiest counter example: define T : R → R by T (x) = x. We have bases
α = {2} and β = {1} fo R. Then [T 2]βα = [T ]βα = [2], but ([T ]βα)

2 = [2]2 = [4].

(f) False. Let A =

(
1 0
0 −1

)
. A2 = I

(g) False. If T is a map of the form F n → Fm then Theorem 2.15 shows that T = LA

for some matrix A. Otherwise, it is unclear what LA means (for example, what does
LA : P2(R)→ P2(R) mean?).

(h) False. Let A =

(
0 1
0 0

)
. A2 = 0

(i) True. This is Theorem 2.15(c). (assuming A and B have the same dimensions!)
(j) True. This is the definition of I (see page 89).

Problem 3. We have linear maps T : P2(R) → P2(R) and U : P2(R) → R
3 defined by

T (f(x)) = f ′(x)(3 + x) + 2f(x) and U(a + bx + cx2) = (a + b, c, a− b). We also have bases
β = {1, x, x2} and γ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of P2(R) and R3 respectively.

(a)

U(1) = (1, 0, 1) = (1, 0, 0) + 0 · (0, 1, 0) + (0, 0, 1)

U(x) = (1, 0,−1) = (1, 0, 0) + 0 · (0, 1, 0)− (0, 0, 1)

U(x2) = (0, 1, 0) = 0 · (1, 0, 0) + (0, 1, 0) + 0 · (0, 0, 1)
Thus

[U ]γβ =


 1 1 0

0 0 1
1 −1 0


 .

T (1) = 2 = 2 · 1 + 0x+ 0x2

T (x) = 3 + 3x = 3 · 1 + 3x+ 0x2

T (x2) = 6x+ 4x2 = 0 · 1 + 6x+ 4x2
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Thus

[T ]β =


 2 3 0

0 3 6
0 0 4


 .

UT (1) = U(2) = (2, 0, 2) = 2(1, 0, 0) + 0(0, 1, 0) + 2(0, 0, 1)

UT (x) = U(3 + 3x) = (6, 0, 0) = 6(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1)

U(x2) = U(6x+ 4x2) = (6, 4,−6) = 6(1, 0, 0) + 4(0, 1, 0)− 6(0, 0, 1)

Thus

[UT ]γβ =


 2 6 6

0 0 4
2 0 −6


 .

We now verify Theorem 2.11, which says that [UT ]γβ = [U ]γβ [T ]β.

[U ]γβ [T ]β =


 1 1 0

0 0 1
1 −1 0





 2 3 0

0 3 6
0 0 4


 =


 2 6 6

0 0 4
2 0 −6


 = [UT ]γβ .

(a) Since h = 3 − 2x + x2, we have [h(x)]β =


 3

−2
1


. Since U(h(x)) = (4,−2, 2) we

have [U(h(x))]γ =


 1

1
5


.

We now verify Theorem 2.14, which says that [U(h(x))]γ = [U ]γβ [h(x)]β .

[U ]γβ [h(x)]β =


 1 1 0

0 0 1
1 −1 0





 3

−2
1


 =


 1

1
5


 = [U(h(x))]γ .

Problem 8. We now prove Theorem 2.10 (see page 87 for the statements). To show that
two functions are the same it suffices to show that they agree on their domains.

(a) Take any v ∈ V . Then

(T (U1 + U2))(v) = T ((U1 + U2)(v)) = T (U1(v) + U2(v)) = T (U1(v)) + T (U2(v))

= (TU1)(v) + (TU2)(v) = (TU1 + TU2)(v).

Since this holds for all v ∈ V , we have T (U1 + U2) = TU1 + TU2.

Take any v ∈ V . Then

((U1+U2)T )(v) = (U1+U2)(T (v)) = U1(T (v))+U2(T (v)) = (U1T )(v)+(U2T )(v) = (U1T+U2T )(v).

Since this holds for all v ∈ V , we have (U1 + U2)T = U1T + U2T .

(b) This part does not use linear algebra. It is a consequence of the general fact that the
composition of functions is associative.

(c) For any v ∈ V ,
(TI)(v) = T (I(v)) = T (v).
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Since TI and T agree on their domains, they must be equal. Similarily we can prove that
IT = T .

(d) Take any v ∈ V .

(a(U1U2))(v) = a((U1U2)(v)) = a(U1(U2(v)))

((aU1)U2)(v) = (aU1)(U2(v)) = a(U1(U2(v)))

(U1(aU2))(v) = U1((aU2)(v)) = U1(aU2(v)) = a(U1(U2(v)))

This shows that the functions a(U1U2), (aU1)U2 and U1(aU2) agree on all elements of V ,
therefore these functions are equal.

Theorem. (Generalization of Theorem 2.10) Let V,W,Z,X be vector spaces.

(a) Let U1, U2 ∈ L(V,W ) and T ∈ L(W,Z),

T (U1 + U2) = TU1 + TU2.

Let U1, U2 ∈ L(W,Z) and T ∈ L(V,W ),

(U1 + U2)T = U1T + U2T.

(b) For U2 ∈ L(V,W ), U1 ∈ L(W,Z) and T ∈ L(Z,X),
T (U1U2) = (TU1)U2.

(c) For T ∈ L(V,W ),
TIV = IWT = T.

(Where IV and IW are the identity maps on V and W respectively.)
(d) For U2 ∈ L(V,W ), U1 ∈ L(W,Z) and a scalar a,

a(U1U2) = (aU1)U2 = U1(aU2).

The proofs given before carry over verbatim in this more general situation.

Problem 12. We are give linear maps T : V → W and U : W → Z.
(a) Suppose that UT is one-to-one, we will now show that T is one to one.
Take any v ∈ N(T ). Then (UT )(v) = U(T (v)) = U(0) = 0, and since UT is one-to-one

this implies that v = 0. Therefore we must have N(T ) = 0, and hence T is one-to-one.

Note that U need not be one-to-one. Consider the following example: Define T : R → R2

and U : R2 → R by T (x) = (x, 0) and U(x, y) = x. The composition UT is the identity
function on R and is in particular one-to-one. However, the function U is not one-to-one
since U(0, 1) = 0.

(b) Suppose that UT is onto, we will now show that U is onto.
Take any z ∈ Z. Since UT is onto we know there is a v ∈ V such that (UT )(v) = z.

This shows that z = U(T (v)) is in the range of U . Since z ∈ Z was arbitary we find that
R(U) = Z; therefore U is onto.
Note that T need not be onto. Consider the example from part (a): Define T : R → R2 and

U : R2 → R by T (x) = (x, 0) and U(x, y) = x. The composition UT is the identity function
on R and is in particular onto. However, the function T is not onto since (0, 1) �∈ R(T ).

(c) Suppose that U and T are one-to-one. We show that UT is one-to-one also.
Take any v ∈ N(UT ). Since U(T (v)) = (UT )(v) = 0, we find that T (v) = 0 [here we used

that U is one-to-one]. But this then implies that v = 0 since T is also one-to-one. Therefore
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N(UT ) = 0, and hence UT is one-to-one.

Now suppose that U and T are onto. We show that UT is onto also.
Take any z ∈ Z. Since U is onto, there is a w ∈ W such that U(w) = z. Since T is onto,

there is a v ∈ V such that T (v) = w. Combining everything we find that

(UT )(v) = U(T (v)) = U(w) = z.

Since z ∈ Z was arbitrary we find that R(UT ) = Z. Therefore UT is onto as desired.

Problem 13. Let A and B be n× n matrices.

tr(AB) =
n∑

i=1

(AB)i,i

=

n∑
i=1

n∑
k=1

Ai,kBk,i

=

n∑
k=1

n∑
i=1

Bk,iAi,k

=

n∑
k=1

(BA)k,k

= tr(BA)

Recall that At is the n× n matrix such that (At)i,j = Aj,i.

tr(At) =
n∑

i=1

(At)i,i =
n∑

i=1

Ai,i = tr(A)


