
MATH 110: LINEAR ALGEBRA
HOMEWORK #8

DAVID ZYWINA

§First set of problems

Problem 6. If P is a permutation matrix, and Y = XP , show that Y has the same columns
as X but in a permuted order.

For each j ∈ {1, · · · , n}, let σ(j) be the unique element of {1, · · · , n} such that Pσ(j),j = 1
(i.e. the unique 1 in the jth column of X occurs in the σ(j)th row). Since P is a permutation
matrix, the numbers σ(1), · · · , σ(n) are a permutation of the numbers 1, · · · , n.

Fix a j ∈ {1, · · · , n}. For each i,

(XP )i,j =

n∑
k=1

Xi,kPk,j = Xi,σ(j)Pσ(j),j = Xi,σ(j).

This shows that the jth column of XP is the σ(j)th column of X. Therefore Y has the
same columns as X but in a permuted order.

Problem 7. Show that if P1 and P2 are permutation matrices, then so is P1P2.

The previous problem (with X = P1 and P = P2) shows that P1P2 has the same columns
as P1 but in a permuted order. Since P1 has the same columns as the identity matrix I
(possibly permuted), this shows that the columns of P1P2 are just a permutation of those of
I. Thus P1P2 is a permutation matrix.

Problem 8. Show that if P is a permutation matrix, so is P t, and P t = P−1.

A permutation matrix, by definition, is an n × n matrix with exactly one 1 in each row,
one 1 in each column, and the other entries equal to 0. Since P t is the matrix where the
rows are swapped with columns, and columns are swapped with rows it is immediate that
P t must also be a permutation matrix.

We can write P =
[

c1 c2 · · · cn

]
, where {c1, · · · , cn} = {e1, · · · , en} (ei is the ith

column of I). The transpose of P can be expressed as

P t =




ct
1

ct
2
...
ct
n


 .
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For 1 ≤ i, j ≤ n,

(P tP )i,j = ct
icj = δi,j

(the last equality follows from the observation that for 1 ≤ i, j ≤ n, et
iej = δi,j). So P tP = I

and hence P is invertible with inverse P t.

Problem 9. Use LU decomposition to compute an LU decomposition of

A =


 0 2 4

0 1 2
3 2 1




and use it to describe the complete solution set of Ax =


 8

4
−4


 and Ax =


 0

1
0


.

We need to have a non-zero element in the top left corner of our matrix to start, so we

multiply A by the permutation matrix P =


 0 0 1

0 1 0
1 0 0


 which interchanges the first and

third row; we get

PA =


 3 2 1

0 1 2
0 2 4


 .

The first column of PA is already done, so we now work on the second column. Subtracting
2 times the second row from the third row, gives us the matrix:

U ′ =


 3 2 1

0 1 2
0 0 0


 .

We let

L′ =


 1 0 0

0 1 0
0 2 1




(where the 2 is there because we multiplied the 2nd row by 2 before subtracting it from the
3rd row).

You can now check that we indeed have PA = L′U ′ as desired. So multiplying both sides
by P−1 (= P t = P ), we have

A = PL′U ′ =


 0 0 1

0 1 0
1 0 0





 1 0 0

0 1 0
0 2 1





 3 2 1

0 1 2
0 0 0


 .

You might argue (rightly) that this is not the LU decomposition defined in class. Since A
has rank 2, L should be a 3×2 matrix and U should be a 2×3 matrix. This can be achieved
by simply removing the last column of L′ and the last row of U ′ (This might seem slightly
tricky but it can always be done in this situation. Convince yourself that when multiplying
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the matrices the removed column and row contribute nothing.).

A =


 0 0 1

0 1 0
1 0 0





 1 0

0 1
0 2


 (

3 2 1
0 1 2

)
= PLU.

Now that we have computed the LU decomposition we can solve Ax = PLUx =


 8

4
−4


.

We first solve the equation (where y = Ux)

Ly = P−1


 8

4
−4


 = P


 8

4
−4


 =


 −4

4
8


 .

This is the same as the equations:

y1 = −4

y2 = 4

2y2 = 8.

These equations are consistent and have solution y =

[ −4
4

]
. It remains to solve the

equation Ux = y =

[ −4
4

]
. This is the same as the equations:

3x1 + 2x2 + x3 = −4

x2 + 2x3 = 4.

The second equation shows that x2 = 4 − 2x3. Substituting into the first equation we get
3x1 = −4 − 2(4 − 2x3) − x3 = −12 + 3x3, thus x1 = −4 + x3. Therefore the solutions to

Ax =


 8

4
−4


 are





 −4

4
0


 + t


 1

−2
1


 : t ∈ R


 .

We finally solve Ax = PLUx =


 0

1
0


. We first solve the equation (where y = Ux)

Ly = P−1


 0

1
0


 = P


 0

1
0


 =


 0

1
0


 .
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This is the same as the equations:

y1 = 0

y2 = 1

2y2 = 0.

However, these equations are not consistent (they imply that y2 = 0 and 1). Thus the

original equation Ax =


 0

1
0


 has no solutions.

§Second set of problems

Problem 1. Use “substitution” to solve Lx = b where

L =


 1 0 0

2 1 0
4 3 1


 b =


 3

−4
0


 .

Writing x = [x1, x2, x3]
t the equation Lx = b becomes:

x1 = 3

x2 + 2x1 = −4

x3 + 3x2 + 4x1 = 0.

Solving these equations is easy. We have immediately that x1 = 3. Substituting this into
the second equation and solving for x2 gives us, x2 = −10. Substituting the values of x1 and
x2 into the third equation gives us, x3 = 18. Therefore the solution is

x =


 3

−10
18


 .

Problem 2. Use “substitution” to compute L−1, where L is given above.

We can write L−1 = [x y z], where x, y and z are column vectors. We then have

[e1 e2 e3] = I = LL−1 = L[x y z] = [Lx Ly Lz].

Therefore we need only solve the equations Lx = e1, Ly = e2 and Lz = e3.
We now solve the first equation, Lx = e1, which can be rewritten as:

x1 = 1

x2 + 2x1 = 0

x3 + 3x2 + 4x1 = 0.

We have immediately that x1 = 1. Substituting this into the second equation and solving for
x2 gives us, x2 = −2. Substituting the values of x1 and x2 into the third equation gives us,
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x3 = 2. Therefore x =


 1

−2
2


 . Similarily, we also compute y =


 0

1
−3


 and z =


 0

0
1


.

Putting everything together we get:

L−1 =


 1 0 0

−2 1 0
2 −3 1


 .

Problem 3. In lecture we showed that the number of arithmetic operations needed to com-
pute an LU decomposition of an n × n matrix with rank n was 2

3
n3 + lower order terms.

(3a) How many more arithmetic operations does it take, given the LU decomposition of
A, to compute A−1? The method to use is for each column ej of the identity matrix, solve
Ax = ej for x = column j of A−1. Use substitution with the L and U factors to solve this
equation. Recall that the PL and PR factors only involve reordering, no arithmetic opera-
tions. Your answer should be of the form ”c1n

c2 + lower order terms”, where c1 and c2 are
constants you need to determine. Add 2

3
n3 to your answer to determine the total number of

arithmetic operations to compute the inverse of an invertible n × n matrix.

To compute A−1 we need to find column vectors c1, · · · , cn such that

A
[

c1 c2 · · · cn

]
=

[
e1 e2 · · · en

]
= I.

So computing A−1 =
[

c1 c2 · · · cn

]
is equivalent to solving the equations

Ac1 = e1, · · · , Acn = en.

The next Lemma analyzes the cost of solving Ax = b for a general b. We can multiply
this cost by n to get the cost of solving the n linear systems Aci = ei for i = 1 to n. Then
we show that by exploiting all the zeros in ei, we can actually solve Aci = ei more cheaply.

Lemma 1. Suppose we have an LU-decomposition, A = PLLUPR, where A is an n × n
invertible matrix.
Then it takes 2n2 − n arithmetic operations to solve an equation

Ax = b.

Proof. The equation is the same as LU(PRx) = P t
Lb. Since multiplying by a permuation

matrix takes no operations (it involves only swapping entries), we may assume our equation
is of the form

LUx = b.



6 DAVID ZYWINA

We first solve the equation Ly = b for y = [y1, · · · , yn]t. Since L is a lower triangular
matrix with 1’s on the diagonals, the equation can be rewritten as:

y1 = b1

y2 + L2,1y1 = b2

y3 + L3,2y2 + L3,1y1 = b3

y4 + L4,3y3 + L4,2y2 + L4,1y1 = b4

...

yn + Ln,n−1yn−1 + · · · + Ln,2y2 + Ln,1y1 = bn

The first equation requires 0 operations to solve for y1.
The second equation requires 2 operations to solve for y2 (1 mult. and 1 subtractions).
The third equation requires 4 operations to solve for y3 (2 mult. and 2 subtractions).
The fourth equation requires 6 operations to solve for y4 (3 mult. and 3 subtractions).

...

The final equation requires 2(n − 1) operations to solve for yn (n − 1 mult. and n − 1 sub-
tractions).

Thus the number of arithmetic operations require to solve the equation Ly = b is

0 + 2 + 4 + 6 + · · · + 2(n − 1) = 2(1 + 2 + 3 + · · · + (n − 1)) = 2
(n − 1)n

2
= n2 − n.

Now that we have solved for y, it remains to solve for x in the equation Ux = y. A similar
process shows that solving Ux = y takes n2 operations. (The proof is the same except that U
does not necessarily have 1’s on the diagonal, so n extra divisions will be needed in general).

Putting everything together, it will take (n2 − n) + n2 = 2n2 − n arithmetic operations to
solve Ax = b. �

Using the approach, the cost of inverting A is the cost of LU decomposition (2
3
n3 + lower

order terms) plus the cost of solving Ac1 = e1 through Acn = en (n · (2n2−n) = 2n3 + lower
order terms), or altogether 8

3
n3 + lower order terms.

However, we can do better by taking advantage of the zeros in ei. Since the first i − 1
entries of ei are zero, it is easy to see that the first i− 1 entries of y = L−1ei are zero (this is
the same as saying that L−1 is also lower triangular). Therefore, we do not need to compute
them. Thus when solving Ly = ei we can start with yi = 1, then solve Li+1,iyi + yi+1 = 0 for
yi+1 = −Li+1,i, then solve Li+2,iyi + Li+2,i+1yi+1 + yi+2 = 0 for yi+2, and so on. This is the
same as solving a triangular system of dimension n−i+1, for a cost of (n−i+1)2+(n−i+1)
by the same analysis as above. Summing this from i = 1 to n yields the cost of solving all
the Ly = ei:

1.
n∑

i=1

[(n−i+1)2+(n−i+1)] =
n∑

i=1

[i2+i] =
n(n + 1)(2n + 1)

6
+

n(n + 1)

2
=

n3

3
+ lower order terms

1Recall: 1 + 2 + · · · + n = n(n+1)
2 and 12 + 22 + · · · + n2 = n(n+1)(2n+1)

6
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The cost of the subsequent solves with U does not change (n3) for a total inversion cost of
2
3
n3 + 1

3
n3 + n3 = 2n3 (plus lower order terms).

(3b) Now suppose A is m× n with rank r (the general case). How many arithmetic opera-
tions are needed to compute the LU decomposition?

Let C(m, n, r) be the number of arithmetic operations required to compute the LU de-
composition of an m × n matrix with rank r.

The following argument will be done using the inductive algorithm done in lecture. First
of all, multiplying by permutation matrices requires no arithmetic operations (this just swaps
rows and columns); so we can ignore the contributions from the permutation matrices since
they do not affect the value of C(m, n, r).

Let A be an m × n matrix of rank r. After a possible permuation, we may assume that

A =

(
A1,1 A1,2

A2,1 A2,2

)
,

where A1,1 is a non-zero scalar. We then define X = A2,1/A1,1 and S = A2,2 − XA1,2. (For
future reference: A1,2 is 1 × (n − 1), A2,1 is (m − 1) × 1, and A2,2 is (m − 1) × (n − 1))

It takes m − 1 divisions to calculate X.
It takes (m − 1)(n − 1) arithmetic operations (all multiplications) to compute XA1,2, then
(m − 1)(n − 1) subtractions to compute S.
Note: So far we have done (m − 1) + 2(m − 1)(n − 1) arithmetic operations.

We then have

A =

(
1 0
X Im−1

)(
A1,1 A1,2

0 S

)
.

The matrix S is (m − 1) × (n − 1). Since A has rank r and A1,1 	= 0 we see that S has
rank r − 1. Thus it takes C(m − 1, n − 1, r − 1) arithmetic operations to compute an LU
decomposition

S = PLSLSUSPRS.

In the lecture notes, it is then derived that

A =

(
1 0
0 PLS

) (
1 0

P t
LSX LS

) (
A1,1 A1,2P

t
RS

0 US

) (
1 0
0 PRS

)
.

This is the desired LU decomposition of A. Note that all of the multiplications in these
matrices are by permutation matrices and, as explained earlier, take no arithmetic operations
to perform.

Thus we have proven the recursive equation,

C(m, n, r) = (m − 1) + 2(m − 1)(n − 1) + C(m − 1, n − 1, r − 1).

The base case for our recursion is C(m, n, 0) = 0 (the zero matrix is the only m×n matrix
with rank 0).
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By repeated using the recursive relation until we get to our base case, we get the explicit
formula:

C(m, n, r) = (m − 1) + (m − 2) + ... + (m − r)

+ 2(m − 1)(n − 1) + 2(m − 2)(n − 2) + ... + 2(m − r)(n − r)

We now write this in a more explicit form

C(m, n, r) =
r∑

i=1

(m − i) + 2
r∑

i=1

(m − i)(n − i)

= rm −
r∑

i=1

i + 2rmn − 2(m + n)

r∑
i=1

i + 2

r∑
i=1

i2

= rm − r(r + 1)

2
+ 2rmn − 2(m + n)

r(r + 1)

2
+ 2

r(r + 1)(2r + 1)

6

To get a better idea on the growth of this value we collect all the higher order terms (the
terms of degree 3).

C(m, n, r) = 2rmn − (m + n)r2 +
2

3
r3 + lower order terms .

For the special case where m = r = n, we get

C(n) := C(n, n, n) =
2

3
n3 + lower order terms

as in lecture.


