MATH 110: LINEAR ALGEBRA HOMEWORK \#9

CHU-WEE LIM

(1) We have already proven in the lecture that

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(C)
$$

if A, B and C are $n_{1} \times n_{1}, n_{1} \times n_{2}$ and $n_{2} \times n_{2}$ matrices respectively. Now we can use this to prove problem 1. Indeed, suppose X, Y and Z are $n_{1} \times n_{1}, n_{2} \times n_{1}$ and $n_{2} \times n_{2}$ matrices respectively. Then we have:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
X & 0 \\
Y & Z
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
X & 0 \\
Y & Z
\end{array}\right)^{t}=\operatorname{det}\left(\begin{array}{cc}
X^{t} & Y^{t} \\
0 & Z^{t}
\end{array}\right) \\
& =\operatorname{det}\left(X^{t}\right) \operatorname{det}\left(Z^{t}\right)=\operatorname{det}(X) \operatorname{det}(Z)
\end{aligned}
$$

(2) The proof is by induction on the size of A. When $n=1$, there is nothing to prove. Now we assume: if B is an $(n-1) \times(n-1)$ upper-triangular matrix, then $\operatorname{det}(B)$ is the product of the diagonal entries of B.

Let A be an $n \times n$ upper-triangular matrix. The last row of A consists of all zeros except the entry $A_{n n}$. Hence, expanding along the last row gives:

$$
\operatorname{det}(A)=(-1)^{n+n} A_{n n} \operatorname{det}\left(\tilde{A}_{n n}\right)=A_{n n} \operatorname{det}\left(\tilde{A}_{n n}\right)
$$

where $\tilde{A}_{n n}$ is the submatrix obtained by deleting the last row and last column of A. Since $\tilde{A}_{n n}$ is an upper-triangular $(n-1) \times(n-1)$ matrix, its determinant is the product of the diagonal entries $A_{11} A_{22} \ldots A_{n-1, n-1}$. Thus,

$$
\operatorname{det}(A)=A_{11} A_{22} \ldots A_{n n}
$$

as desired.
For the case of lower-triangular matrix A, we note that A^{t} is upper-triangular, so we can apply the above result:

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{t}\right)=A_{11} A_{22} \ldots A_{n n}
$$

§4.2: Determinants of Order n

Problem 1.

(a) False, e.g. for the 2×2 identity matrix I, we have $\operatorname{det}(2 I)=4 \neq 2=\operatorname{det}(I)+\operatorname{det}(I)$.
(b) True, see theorem 4.4 (pg 215).
(c) True, for we can subtract one row from the other to get a row of zeros.
(d) True, see rule (a) on page 217.
(e) False, if we multiply the row by 0 , then $\operatorname{det}(B)=0$ regardless of what A is.
(f) False, suppose $k=0, A=I$. Then adding $0 \cdot R_{2}$ to R_{1} has no effect, and so $\operatorname{det}(B)=\operatorname{det}(A)=1 \neq 0 \cdot \operatorname{det}(A)$.
(g) False. Quite the opposite: A has rank n if and only if A is invertible if and only if $\operatorname{det}(A) \neq 0$.
(h) True: we just proved it above.

Problem 26. Using Q25, we get $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$. Hence $\operatorname{det}(A)=\operatorname{det}(-A)$ iff $\operatorname{det}(A)=(-1)^{n} \operatorname{det}(A)$.

Now, if n is even then $(-1)^{n}=+1$ so equality clearly holds. Also, if $\operatorname{char}(F)=2$, then $1_{F}+1_{F}=0_{F}$ and so $(-1)^{n}= \pm 1=1$ regardless of the parity of n. Hence equality still holds.

Finally, suppose n is odd and $\operatorname{char}(F) \neq 2$. Then we get $\operatorname{det}(A)=-\operatorname{det}(A)$, which gives $2 \operatorname{det}(A)=0$. Since $\operatorname{char}(F) \neq 2$, we get $\operatorname{det}(A)=0$. Hence $\operatorname{det}(A)=\operatorname{det}(-A)$ if and only if at least one of the following is true:
(i) $\operatorname{char}(F)=2$;
(ii) n is even;
(iii) $\operatorname{det}(A)=0$.

Problem 30. If we exchange two rows of A, then we flip the sign of $\operatorname{det}(A)$. Also, B is obtained from A by exchanging the i-th row and the $(n+1-i)$-th row, for $i=1,2, \ldots,\left[\frac{n}{2}\right]$. Here, $[x]$ is the greatest integer $\leq x$. Hence, we see that $\operatorname{det}(B)=(-1)^{\left[\frac{n}{2}\right]} \operatorname{det}(A)$.

As an alternative, you can also write $(-1)^{\frac{n(n-1)}{2}} \operatorname{det}(A)$. This can be seen by performing $(n-1)$ row-exchanges to move the bottom row to the top; folowed by $(n-2)$ row-exchanges to move the bottom row to the second, and so on. This gives us $1+2+\cdots+(n-1)=\frac{n(n-1)}{2}$ row-exchanges.

§4.3: Properties of Determinants

Problem 1.
(a) False, an elementary matrix of type (b) is not of determinant 1 in general.
(b) True, by theorem 4.7, page 223.
(c) False. In fact M is invertible if and only if $\operatorname{det}(M) \neq 0$. See corollary on page 223 .
(d) True, since M has rank n if and only if it is invertible.
(e) False. In fact, $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$ by theorem 4.8, page 224.
(f) True, using the fact that we can perform cofactor expansion, and that $\operatorname{det}\left(A^{t}\right)=$ $\operatorname{det}(A)$.
(g) False. E.g. $0 x=0$ cannot be solved by Cramer's rule.
(h) False. E.g. try solving $x_{1}=2, x_{1}+2 x_{2}=0$ by this new Cramer's rule. We get $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$ and $M_{k}=\left(\begin{array}{cc}1 & 0 \\ 2 & 0\end{array}\right)$, and so $\operatorname{det}\left(M_{k}\right) / \operatorname{det}(A)=0 \neq x_{2}$.

Problem 10. If M is nilpotent, then $M^{k}=0$ for some k. So $\operatorname{det}(M)^{k}=\operatorname{det}\left(M^{k}\right)=0$, and hence $\operatorname{det}(M)=0$.

Problem 11. If $M^{t}=-M$, then taking the determinant gives $\operatorname{det}(M)=\operatorname{det}\left(M^{t}\right)=$ $\operatorname{det}(-M)=(-1)^{n} \operatorname{det}(M)$. If n is odd, then $\operatorname{det}(M)=-\operatorname{det}(M)$ and so $\operatorname{det}(M)=0$ (recall that we are working over the complex field \mathbb{C}, so char $\neq 2$). Hence M is not invertible.

On the other hand $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ is an example of a skew-symmetric invertible 2×2 matrix.

Problem 12. We have $1=\operatorname{det}(I)=\operatorname{det}\left(Q Q^{t}\right)=\operatorname{det}(Q) \operatorname{det}\left(Q^{t}\right)=\operatorname{det}(Q) \operatorname{det}(Q)$. Hence $\operatorname{det}(Q)^{2}=1$ and so $\operatorname{det}(Q)= \pm 1$.

Problem 13. (a) Suppose M has the $L U$-decomposition: $M=P_{1} L U P_{2}$, where P_{1} and P_{2} are permutation matrices. Also, L is a unit lower-triangular matrix, while U is an uppertriangular matrix. Then

$$
\operatorname{det}(M)=\operatorname{det}\left(P_{1}\right) \operatorname{det}(L) \operatorname{det}(U) \operatorname{det}\left(P_{2}\right)=\operatorname{det}\left(P_{1}\right) U_{11} U_{22} \ldots U_{n n} \operatorname{det}\left(P_{2}\right)
$$

Then taking the conjugate gives $\bar{M}=\bar{P}_{1} \overline{L U P_{2}}=P_{1} \overline{L U} P_{2}$. Hence

$$
\operatorname{det}(M)=\operatorname{det}\left(P_{1}\right) \operatorname{det}(\bar{U}) \operatorname{det}\left(P_{2}\right)=\operatorname{det}\left(P_{1}\right) \bar{U}_{11} \bar{U}_{22} \ldots \bar{U}_{n n} \operatorname{det}\left(P_{2}\right)=\overline{\operatorname{det}(M)},
$$

since $\operatorname{det}\left(P_{1}\right)$ and $\operatorname{det}\left(P_{2}\right)$ are ± 1.
Alternative solution: use induction on the size of M.
(b) We have $1=\operatorname{det}(I)=\operatorname{det}\left(Q Q^{*}\right)=\operatorname{det}(Q) \operatorname{det}\left(\bar{Q}^{t}\right)=\operatorname{det}(Q) \overline{\operatorname{det}(Q)}=|\operatorname{det}(Q)|^{2}$. Hence, $|\operatorname{det}(Q)|=1$.
Problem 15. If A and B are similar, then $B=Q^{-1} A Q$ for some invertible Q. Hence

$$
\operatorname{det}(B)=\operatorname{det}\left(Q^{-1} A Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(A) \operatorname{det}(Q)=\frac{1}{\operatorname{det}(Q)} \operatorname{det}(A) \operatorname{det}(Q)=\operatorname{det}(A)
$$

Problem 17. Since $A B=-B A$, taking the determinant gives

$$
\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A B)=\operatorname{det}(-B A)=(-1)^{n} \operatorname{det}(B A)=-\operatorname{det}(B) \operatorname{det}(A),
$$

since n is odd. Thus, $2 \operatorname{det}(A) \operatorname{det}(B)=0$. Since $\operatorname{char}(F) \neq 2$, we have $\operatorname{det}(A) \operatorname{det}(B)=0$. So $\operatorname{det}(A)=0$ or $\operatorname{det}(B)=0$, i.e. either A or B is not invertible.

Problem 22(c). The proof I have in mind uses the polynomial factorizations. For variables $x_{0}, x_{1}, \ldots, x_{n}$, define

$$
M\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right)
$$

and let $P\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be the determinant of $M\left(x_{0}, \ldots, x_{n}\right)$. Note that $M\left(x_{0}, \ldots, x_{n}\right)$ is a matrix whose entries are polynomials! Similarly, $P\left(x_{0}, \ldots, x_{n}\right)$ is a polynomial in the x_{i} 's. By expansion along the rightmost column, we see that

$$
\begin{aligned}
P\left(x_{0}, \ldots, x_{n}\right)= & (-1)^{n+1} x_{0}^{n} P\left(x_{1}, \ldots, x_{n}\right)+(-1)^{n+2} x_{1}^{n} P\left(x_{0}, x_{2}, x_{3}, \ldots, x_{n}\right) \\
& +\cdots+(-1)^{2 n} x_{n}^{n} P\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

Hence, by induction, we can prove that $P\left(x_{0}, \ldots, x_{n}\right)$ is a homogeneous polynomial of degree $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Now, suppose $0 \leq i<j \leq n$ and $x_{i}=x_{j}$. Then the matrix $M\left(x_{0}, \ldots, x_{n}\right)$ would have two identical rows, and so its determinant $P\left(x_{0}, \ldots, x_{n}\right)=0$. In short, whenever $x_{j}-x_{i}=0$, we have $P\left(x_{0}, \ldots, x_{n}\right)=0$. By the factor theorem for polynomials, $x_{j}-x_{i}$ is a factor of $P\left(x_{0}, \ldots, x_{n}\right)$. Thus we can write

$$
P\left(x_{0}, \ldots, x_{n}\right)=Q\left(x_{0}, \ldots, x_{n}\right) \prod_{0 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

The left-hand side has degree $\frac{n(n+1)}{2}$ as we noted, and the right hand side has degree $\operatorname{deg}(Q)$ + number of pairs $(i, j), 0 \leq i<j \leq n$. This latter number is $1+2+\cdots+n=\frac{n(n+1)}{2}$, and so we get $\operatorname{deg}(Q)=0$, i.e. Q is constant.

To compute this constant, we note that the coefficient of $x_{1}^{1} x_{2}^{2} \ldots x_{n}^{n}$ in $P\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is 1 . On the other hand, the corresponding coefficient in $\prod_{i<j}\left(x_{j}-x_{i}\right)$ is also 1 (since the only way to get $x_{1}^{1} x_{2}^{2} \ldots x_{n}^{n}$ in the product is to take x_{n} from $x_{n}-x_{0}, x_{n}-x_{1}, \ldots, x_{n}-x_{n-1}$; and x_{n-1} from $x_{n-1}-x_{0}, x_{n-1}-x_{1}, \ldots, x_{n-1}-x_{n-2}$ etc).

Problem 24. We wish to compute the determinant of:

$$
B=A+t I=\left(\begin{array}{cccccc}
t & 0 & 0 & \ldots & 0 & a_{0} \\
-1 & t & 0 & \ldots & 0 & a_{1} \\
0 & -1 & t & \ldots & 0 & a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -1 & a_{n-1}+t
\end{array}\right)
$$

Let $D\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=\operatorname{det}(B)$. Expanding the first row, we get

$$
\operatorname{det}(B)=(-1)^{n+1} a_{0} \operatorname{det}\left(\begin{array}{ccccc}
-1 & t & 0 & \ldots & 0 \\
0 & -1 & t & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & -1
\end{array}\right)+t \cdot \operatorname{det}\left(\begin{array}{ccccc}
t & 0 & 0 & \ldots & a_{1} \\
-1 & t & 0 & \ldots & a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n-1}+t
\end{array}\right)
$$

The first matrix has determinant $(-1)^{n-1}$, while the second has determinant $D\left(a_{1}, \ldots, a_{n-1}\right)$. Hence, $D\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=a_{0}+t \cdot D\left(a_{1}, \ldots, a_{n-1}\right)$. Together with $D\left(a_{n-1}\right)=a_{n-1}+t$, we get

$$
D\left(a_{0}, \ldots, a_{n-1}\right)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n-1} t^{n-1}+t^{n}
$$

