MATH 110: LINEAR ALGEBRA HOMEWORK #9

CHU-WEE LIM

(1) We have already proven in the lecture that

$$\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det(A) \det(C)$$

if A, B and C are $n_1 \times n_1$, $n_1 \times n_2$ and $n_2 \times n_2$ matrices respectively. Now we can use this to prove problem 1. Indeed, suppose X, Y and Z are $n_1 \times n_1$, $n_2 \times n_1$ and $n_2 \times n_2$ matrices respectively. Then we have:

$$\det \begin{pmatrix} X & 0 \\ Y & Z \end{pmatrix} = \det \begin{pmatrix} X & 0 \\ Y & Z \end{pmatrix}^{t} = \det \begin{pmatrix} X^{t} & Y^{t} \\ 0 & Z^{t} \end{pmatrix}$$
$$= \det(X^{t}) \det(Z^{t}) = \det(X) \det(Z).$$

(2) The proof is by induction on the size of A. When n = 1, there is nothing to prove. Now we assume: if B is an $(n-1) \times (n-1)$ upper-triangular matrix, then det(B) is the product of the diagonal entries of B.

Let A be an $n \times n$ upper-triangular matrix. The last row of A consists of all zeros except the entry A_{nn} . Hence, expanding along the last row gives:

$$\det(A) = (-1)^{n+n} A_{nn} \det(\tilde{A}_{nn}) = A_{nn} \det(\tilde{A}_{nn}),$$

where A_{nn} is the submatrix obtained by deleting the last row and last column of A. Since \tilde{A}_{nn} is an upper-triangular $(n-1) \times (n-1)$ matrix, its determinant is the product of the diagonal entries $A_{11}A_{22}\ldots A_{n-1,n-1}$. Thus,

$$\det(A) = A_{11}A_{22}\dots A_{nn},$$

as desired.

For the case of lower-triangular matrix A, we note that A^t is upper-triangular, so we can apply the above result:

$$\det(A) = \det(A^t) = A_{11}A_{22}\dots A_{nn}.$$

§4.2: Determinants of Order n

Problem 1.

(a) False, e.g. for the 2×2 identity matrix I, we have $\det(2I) = 4 \neq 2 = \det(I) + \det(I)$.

- (b) **True**, see theorem 4.4 (pg 215).
- (c) **True**, for we can subtract one row from the other to get a row of zeros.
- (d) **True**, see rule (a) on page 217.
- (e) **False**, if we multiply the row by 0, then det(B) = 0 regardless of what A is.

Date: November 1.

- (f) **False**, suppose k = 0, A = I. Then adding $0 \cdot R_2$ to R_1 has no effect, and so $\det(B) = \det(A) = 1 \neq 0 \cdot \det(A)$.
- (g) **False**. Quite the opposite: A has rank n if and only if A is invertible if and only if $det(A) \neq 0$.
- (h) **True**: we just proved it above.

Problem 26. Using Q25, we get $det(-A) = (-1)^n det(A)$. Hence det(A) = det(-A) iff $det(A) = (-1)^n det(A)$.

Now, if n is even then $(-1)^n = +1$ so equality clearly holds. Also, if char(F) = 2, then $1_F + 1_F = 0_F$ and so $(-1)^n = \pm 1 = 1$ regardless of the parity of n. Hence equality still holds.

Finally, suppose n is odd and $\operatorname{char}(F) \neq 2$. Then we get $\det(A) = -\det(A)$, which gives $2 \det(A) = 0$. Since $\operatorname{char}(F) \neq 2$, we get $\det(A) = 0$. Hence $\det(A) = \det(-A)$ if and only if at least one of the following is true:

- (i) $\operatorname{char}(F) = 2;$
- (ii) n is even;
- (iii) $\det(A) = 0.$

Problem 30. If we exchange two rows of A, then we flip the sign of det(A). Also, B is obtained from A by exchanging the *i*-th row and the (n + 1 - i)-th row, for $i = 1, 2, ..., [\frac{n}{2}]$. Here, [x] is the greatest integer $\leq x$. Hence, we see that det $(B) = (-1)^{[\frac{n}{2}]} \det(A)$.

As an alternative, you can also write $(-1)^{\frac{n(n-1)}{2}} \det(A)$. This can be seen by performing (n-1) row-exchanges to move the bottom row to the top; followed by (n-2) row-exchanges to move the bottom row to the second, and so on. This gives us $1+2+\cdots+(n-1)=\frac{n(n-1)}{2}$ row-exchanges.

$\S4.3$: Properties of Determinants

Problem 1.

- (a) **False**, an elementary matrix of type (b) is not of determinant 1 in general.
- (b) **True**, by theorem 4.7, page 223.
- (c) False. In fact M is invertible if and only if $det(M) \neq 0$. See corollary on page 223.
- (d) **True**, since M has rank n if and only if it is invertible.
- (e) **False**. In fact, $det(A^t) = det(A)$ by theorem 4.8, page 224.
- (f) **True**, using the fact that we can perform cofactor expansion, and that $det(A^t) = det(A)$.
- (g) **False**. E.g. 0x = 0 cannot be solved by Cramer's rule.
- (h) False. E.g. try solving $x_1 = 2, x_1 + 2x_2 = 0$ by this new Cramer's rule. We get $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$ and $M_k = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$, and so $\det(M_k) / \det(A) = 0 \neq x_2$.

Problem 10. If M is nilpotent, then $M^k = 0$ for some k. So $det(M)^k = det(M^k) = 0$, and hence det(M) = 0.

Problem 11. If $M^t = -M$, then taking the determinant gives $\det(M) = \det(M^t) = \det(-M) = (-1)^n \det(M)$. If n is odd, then $\det(M) = -\det(M)$ and so $\det(M) = 0$ (recall that we are working over the complex field \mathbb{C} , so char $\neq 2$). Hence M is not invertible.

On the other hand $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is an example of a skew-symmetric invertible 2×2 matrix.

Problem 12. We have $1 = \det(I) = \det(QQ^t) = \det(Q) \det(Q^t) = \det(Q) \det(Q)$. Hence $\det(Q)^2 = 1$ and so $\det(Q) = \pm 1$.

Problem 13. (a) Suppose M has the LU-decomposition: $M = P_1LUP_2$, where P_1 and P_2 are permutation matrices. Also, L is a unit lower-triangular matrix, while U is an upper-triangular matrix. Then

$$\det(M) = \det(P_1) \det(L) \det(U) \det(P_2) = \det(P_1) U_{11} U_{22} \dots U_{nn} \det(P_2).$$

Then taking the conjugate gives $\overline{M} = \overline{P}_1 \overline{LUP}_2 = P_1 \overline{LUP}_2$. Hence

$$\det(M) = \det(P_1) \det(\overline{U}) \det(P_2) = \det(P_1) \overline{U}_{11} \overline{U}_{22} \dots \overline{U}_{nn} \det(P_2) = \overline{\det(M)},$$

since $det(P_1)$ and $det(P_2)$ are ± 1 .

Alternative solution: use induction on the size of M.

(b) We have $1 = \det(I) = \det(QQ^*) = \det(Q)\det(\overline{Q}^t) = \det(Q)\overline{\det(Q)} = |\det(Q)|^2$. Hence, $|\det(Q)| = 1$.

Problem 15. If A and B are similar, then $B = Q^{-1}AQ$ for some invertible Q. Hence

$$\det(B) = \det(Q^{-1}AQ) = \det(Q^{-1})\det(A)\det(Q) = \frac{1}{\det(Q)}\det(A)\det(Q) = \det(A).$$

Problem 17. Since AB = -BA, taking the determinant gives

 $\det(A)\det(B) = \det(AB) = \det(-BA) = (-1)^n \det(BA) = -\det(B)\det(A),$

since n is odd. Thus, $2 \det(A) \det(B) = 0$. Since $\operatorname{char}(F) \neq 2$, we have $\det(A) \det(B) = 0$. So $\det(A) = 0$ or $\det(B) = 0$, i.e. either A or B is not invertible.

Problem 22(c). The proof I have in mind uses the polynomial factorizations. For variables x_0, x_1, \ldots, x_n , define

$$M(x_0, x_1, \dots, x_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}$$

,

and let $P(x_0, x_1, \ldots, x_n)$ be the determinant of $M(x_0, \ldots, x_n)$. Note that $M(x_0, \ldots, x_n)$ is a matrix whose entries are polynomials! Similarly, $P(x_0, \ldots, x_n)$ is a polynomial in the x_i 's. By expansion along the rightmost column, we see that

$$P(x_0, \dots, x_n) = (-1)^{n+1} x_0^n P(x_1, \dots, x_n) + (-1)^{n+2} x_1^n P(x_0, x_2, x_3, \dots, x_n)$$

+ \dots + (-1)^{2n} x_n^n P(x_0, x_1, x_2, \dots, x_{n-1}).

Hence, by induction, we can prove that $P(x_0, \ldots, x_n)$ is a homogeneous polynomial of degree $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

Now, suppose $0 \le i < j \le n$ and $x_i = x_j$. Then the matrix $M(x_0, \ldots, x_n)$ would have two identical rows, and so its determinant $P(x_0, \ldots, x_n) = 0$. In short, whenever $x_j - x_i = 0$, we have $P(x_0, \ldots, x_n) = 0$. By the factor theorem for polynomials, $x_j - x_i$ is a factor of $P(x_0, \ldots, x_n)$. Thus we can write

$$P(x_0,\ldots,x_n) = Q(x_0,\ldots,x_n) \prod_{0 \le i < j \le n} (x_j - x_i)$$

The left-hand side has degree $\frac{n(n+1)}{2}$ as we noted, and the right hand side has degree deg(Q) + number of pairs $(i, j), 0 \le i < j \le n$. This latter number is $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$, and so we get deg(Q) = 0, i.e. Q is constant.

To compute this constant, we note that the coefficient of $x_1^1 x_2^2 \dots x_n^n$ in $P(x_0, x_1, \dots, x_n)$ is 1. On the other hand, the corresponding coefficient in $\prod_{i < j} (x_j - x_i)$ is also 1 (since the only way to get $x_1^1 x_2^2 \dots x_n^n$ in the product is to take x_n from $x_n - x_0, x_n - x_1, \dots, x_n - x_{n-1}$; and x_{n-1} from $x_{n-1} - x_0, x_{n-1} - x_1, \dots, x_{n-1} - x_{n-2}$ etc).

Problem 24. We wish to compute the determinant of:

$$B = A + tI = \begin{pmatrix} t & 0 & 0 & \dots & 0 & a_0 \\ -1 & t & 0 & \dots & 0 & a_1 \\ 0 & -1 & t & \dots & 0 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & a_{n-1} + t \end{pmatrix}.$$

Let $D(a_0, a_1, \ldots, a_{n-1}) = \det(B)$. Expanding the first row, we get

$$\det(B) = (-1)^{n+1} a_0 \det \begin{pmatrix} -1 & t & 0 & \dots & 0 \\ 0 & -1 & t & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -1 \end{pmatrix} + t \cdot \det \begin{pmatrix} t & 0 & 0 & \dots & a_1 \\ -1 & t & 0 & \dots & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{n-1} + t \end{pmatrix}.$$

The first matrix has determinant $(-1)^{n-1}$, while the second has determinant $D(a_1, \ldots, a_{n-1})$. Hence, $D(a_0, a_1, \ldots, a_{n-1}) = a_0 + t \cdot D(a_1, \ldots, a_{n-1})$. Together with $D(a_{n-1}) = a_{n-1} + t$, we get

$$D(a_0, \dots, a_{n-1}) = a_0 + a_1 t + a_2 t^2 + \dots + a_{n-1} t^{n-1} + t^n.$$