(1)

MATH 110: LINEAR ALGEBRA
HOMEWORK #9

CHU-WEE LIM

We have already proven in the lecture that
A B

det (O o

if A, B and C are n; X ni, n1 X ny and ny X ny matrices respectively. Now we can

use this to prove problem 1. Indeed, suppose X, Y and Z are n; X ny, no X n; and
ng X ny matrices respectively. Then we have:

X 0 X 0) Xt y?
(X 9) e (X 8) —an (¥ 1)
= det(X") det(Z") = det(X) det(Z).
The proof is by induction on the size of A. When n = 1, there is nothing to prove.
Now we assume: if B is an (n — 1) x (n — 1) upper-triangular matrix, then det(B) is
the product of the diagonal entries of B.

Let A be an n x n upper-triangular matrix. The last row of A consists of all zeros
except the entry A,,. Hence, expanding along the last row gives:

det(A) = (=1)"*"A,,, det(A,,) = A, det(A,,),
where {lm is the submatrix obtained by deleting the last row and last column of A.

Since A,, is an upper-triangular (n — 1) x (n — 1) matrix, its determinant is the
product of the diagonal entries A;1Ag ... Ay—1,—1. Thus,

det(A) = A11A22 s ATLTM

) = det(A) det(C)

as desired.
For the case of lower-triangular matrix A, we note that A is upper-triangular, so

we can apply the above result:
det(A) = det(At) = A11A22 c. Ann

§4.2: DETERMINANTS OF ORDER n

Problem 1.
(a) False, e.g. for the 2 x 2 identity matrix I, we have det(21) =4 # 2 = det(I) +det([).
(b) True, see theorem 4.4 (pg 215).
(c¢) True, for we can subtract one row from the other to get a row of zeros.
(d) True, see rule (a) on page 217.
(e) False, if we multiply the row by 0, then det(B) = 0 regardless of what A is.
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(f) False, suppose k = 0, A = I. Then adding 0 - Ry to Ry has no effect, and so
det(B) = det(A) =1 # 0 - det(A).

(g) False. Quite the opposite: A has rank n if and only if A is invertible if and only if
det(A) # 0.

(h) True: we just proved it above.

Problem 26. Using Q25, we get det(—A) = (—1)"det(A). Hence det(A) = det(—A) iff
det(A) = (—1)"det(A).

Now, if n is even then (—1)" = +1 so equality clearly holds. Also, if char(F) = 2, then
lp +1p = 0p and so (—1)" = £1 = 1 regardless of the parity of n. Hence equality still
holds.

Finally, suppose n is odd and char(F') # 2. Then we get det(A) = — det(A), which gives
2det(A) = 0. Since char(F') # 2, we get det(A) = 0. Hence det(A) = det(—A) if and only
if at least one of the following is true:

(i) char(F) = 2;

(ii) m is even;

(iii) det(A) = 0.

Problem 30. If we exchange two rows of A, then we flip the sign of det(A). Also, B is
obtained from A by exchanging the i-th row and the (n 41 —4)-th row, for i = 1,2,...,[5].
Here, [z] is the greatest integer < . Hence, we see that det(B) = (—1)[z] det(A).

As an alternative, you can also write (—1)71(”271) det(A). This can be seen by performing
(n — 1) row-exchanges to move the bottom row to the top; folowed by (n — 2) row-exchanges
to move the bottom row to the second, and so on. This gives us 1+2+---4+(n—1) = %

row-exchanges.

§4.3: PROPERTIES OF DETERMINANTS

Problem 1.

(a) False, an elementary matrix of type (b) is not of determinant 1 in general.

(b) True, by theorem 4.7, page 223.

(c) False. In fact M is invertible if and only if det(M) # 0. See corollary on page 223.

(d) True, since M has rank n if and only if it is invertible.

(e) False. In fact, det(A") = det(A) by theorem 4.8, page 224.

(f) True, using the fact that we can perform cofactor expansion, and that det(A") =
det(A).

(g) False. E.g. 0z = 0 cannot be solved by Cramer’s rule.

(h) False. E.g. try solving ;1 = 2,21 + 225 = 0 by this new Cramer’s rule. We get
A=(19) and M, = (13), and so det(My)/ det(A) = 0 # .

Problem 10. If M is nilpotent, then M* = 0 for some k. So det(M)* = det(M*) = 0, and
hence det(M) = 0.
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Problem 11. If M' = —M, then taking the determinant gives det(M) = det(M') =
det(—=M) = (—1)"det(M). If n is odd, then det(M) = — det(M) and so det(M) = 0 (recall
that we are working over the complex field C, so char # 2). Hence M is not invertible.

On the other hand (% }) is an example of a skew-symmetric invertible 2 x 2 matrix.

Problem 12. We have 1 = det(/) = det(QQ") = det(Q) det(Q") = det(Q) det(Q). Hence
det(Q)? =1 and so det(Q) = +1.

Problem 13. (a) Suppose M has the LU-decomposition: M = P,LU P,, where P, and P,
are permutation matrices. Also, L is a unit lower-triangular matrix, while U is an upper-
triangular matrix. Then

det(M) = det(Pl) det(L) det(U) det(Pg) = det(Pl)UHUgg Ce Unn det(Pg)
Then taking the conjugate gives M = P,LUPy = P,LUP,. Hence
det(M) = det(Pl) det(U) det(Pg) = det(P1>U11U22 .. Unn det(Pg) = det(]\/[),

since det(P;) and det(P,) are +1.
Alternative solution: use induction on the size of M.

—t —

(b) We have 1 = det(l) = det(QQ*) = det(Q)det(Q) = det(Q)det(Q) = |det(Q)|>.
Hence, | det(Q)| = 1.

Problem 15. If A and B are similar, then B = Q' AQ for some invertible (). Hence

det(B) = det(Q "AQ) = det(Q ") det(A) det(Q) det(A) det(Q) = det(A).

1
 det(Q)
Problem 17. Since AB = —BA, taking the determinant gives

det(A) det(B) = det(AB) = det(—BA) = (—1)" det(BA) = —det(B) det(A),

since n is odd. Thus, 2det(A)det(B) = 0. Since char(F') # 2, we have det(A) det(B) = 0.
So det(A) = 0 or det(B) = 0, i.e. either A or B is not invertible.

Problem 22(c). The proof I have in mind uses the polynomial factorizations. For variables

T, X1, ..., Ty, define

2 n

1 =z xg N i

n

1z xf ... a2f

M(xg,x1,...,x0)=| . . . . .
2 n
1 @z, x7 ... x

and let P(xg,x1,...,2,) be the determinant of M(xy,...,z,). Note that M(zo,...,x,) is
a matrix whose entries are polynomials! Similarly, P(zo,...,x,) is a polynomial in the x;’s.
By expansion along the rightmost column, we see that

P(xg,...,7,) =(=1)" 2 P(zy, ..., z,) + (—=1)" 22! P(xg, 9, 23, . . ., Tp)

R (—1)2”1'ZP(:L'0, X1, T2,y Tpy1)-
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Hence, by induction, we can prove that P(zy, ..., x,) is a homogeneous polynomial of degree
_ n(n+1)

Now, suppose 0 < i < j < n and z; = ;. Then the matrix M(zo, ..., z,) would have two
identical rows, and so its determinant P(z,...,x,) = 0. In short, whenever z; — z; = 0,
we have P(zg,...,x,) = 0. By the factor theorem for polynomials, z; — z; is a factor of
P(zg,...,x,). Thus we can write

P(zg,...,x,) = Q(xg,...,T,) H (x; — ;).
0<i<j<n

The left-hand side has degree @ as we noted, and the right hand side has degree deg(Q)

+ number of pairs (i,7), 0 < i < j < n. This latter number is 1 +2+4 - +n = @, and
so we get deg(Q)) =0, i.e. ) is constant.

To compute this constant, we note that the coefficient of zlz3...2" in P(xg,21,...,7,)
is 1. On the other hand, the corresponding coefficient in [];_;(z; — ;) is also 1 (since the
only way to get xizZ... 2" in the product is to take xz, from x, — xg, T, — 1, ..., Tp — Tp_1;
and Tp—1 from Tn—1 — Loy, Tp—1 — L1y...,Tpn_1 — Tp_9 etc).

Problem 24. We wish to compute the determinant of:

t 0O 0 ... 0 ag
-1 ¢ 0 ... O aq
B=A+t]=| 0 -1 ¢ ... 0 as
0 0 0 ... =1 ap_1+t
Let D(ag,a1,...,a,—1) = det(B). Expanding the first row, we get
-1 ¢t 0 ... O t 00 aq
1 0 -1 ¢t ... 0 ~1 ¢ 0 as
det(B) = (—1)""'ag det R +t - det
0 o 0 ... -1 0O 0 0 ... ap_1+t
The first matrix has determinant (—1)"~!, while the second has determinant D(ay, ..., a,_1).

Hence, D(ag, a1, ...,ap_1) =ag+t-D(ay,...,a,_1). Together with D(a,_1) = a,—1 +t, we
get
D(&O, e 7&7171) = ag + @1t + G2t2 4+ .4 anfltnil 4 .



