
MATH 110: LINEAR ALGEBRA
HOMEWORK #11

DAVID ZYWINA

§5.2
Problem 3. In each of these questions we choose a standard basis γ, and the use [T ]γ to
compute the eigenvalues of T . We then find a basis β of eigenvectors of T (if possible); this
is the required basis.

(a) Let γ = {1, x, x2, x3} be the standard basis. Then

[T ]γ =




0 1 2 0
0 0 2 6
0 0 0 3
0 0 0 0


 .

The eigenvalues of [T ]γ are 0 (with multiplicity 4), but dimE0([T ]γ) = 1. Therefore [T ]γ
(and hence T ) is not diagonalizable.
(b) Let γ = {1, x, x2}

[T ]γ =


 0 0 1

0 1 0
1 0 0


 .

The eigenvalues of T are the roots of the polynomial

det([T ]γ − λI) = det


 −λ 0 1

0 1− λ 0
1 0 −λ


 = (1− λ) det

( −λ 1
1 −λ

)
= −(λ− 1)2(λ+ 1).

A vector ax2+ bx+ c is in E1(T ) if cx
2+ bx+a = ax2+ bx+a. Thus E1(T ) has dimension

2 and is spanned by x, x2 + 1.
A vector ax2 + bx + c is in E−1(T ) if cx

2 + bx + a = −ax2 − bx − a. Thus E−1(T ) has
dimension 1 and is spanned by x2 − 1.
Therefore the basis β = {x, x2 + 1, x2 − 1} will diagonalize T .

(c) Let γ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

[T ]γ =


 0 1 0

−1 0 0
0 0 2
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The eigenvalues of T are the roots of the polynomial

det([T ]γ − λI) = det


 −λ 1 0

−1 −λ 0
0 0 2− λ


 = (λ− 2)(λ2 + 1).

Therefore the only (real) eigenvalues are 2 with multiplicity 1. Thus we don’t have enough
eigenvectors to construct a basis that diagonalizes T . Therefore T is not diagonalizable.
(d) Let γ = {1, x, x2}.

[T ]γ =


 1 0 0

1 1 1
1 1 1




A computation shows that det([T ]γ−λI) = −t3+3t2−2t = −t(t2−3t+2) = −t(t−1)(t−2).
Thus the eigenvalues of T are 0, 1, 2.
In general, T (a+ bx+ cx2) = a+ (a+ b+ c)x+ (a + b+ c)x2.
A vector a + bx + cx2 is in E0(T ) if a + (a + b + c)x + (a + b + c)x2 = 0. Thus E0(T ) is

spanned by x− x2.
A vector a+ bx+ cx2 is in E1(T ) if a+ (a+ b+ c)x+ (a+ b+ c)x2 = a+ bx+ cx2. Thus

E1(T ) is spanned by 1− x− x2.
A vector a + bx + cx2 is in E2(T ) if a + (a + b + c)x + (a + b + c)x2 = 2a + 2bx + 2cx2.

Thus E2(T ) is spanned by x+ x2.
Therefore the basis β = {x− x2, 1− x− x2, x+ x2} diagonalizes T .

(e) Let γ = {(1, 0), (0, 1)}, then
[T ]γ =

(
1 i
i 1

)
.

The eigenvalues of T are the roots of the polynomial

det([T ]− γI) = λ2 − 2λ+ 2,

which are 1± i. Now we to find corresponding eigenvectors.
An eigenvector for 1 + i, would satisfy (z + iw, iz + w) = T (z, w) = (1 + i)(z, w) =

(z + iz, w + iw). Thus we must have w = z, which shows that (1, 1) is an eigenvector.
An eigenvector for 1 − i, would satisfy (z + iw, iz + w) = T (z, w) = (1 − i)(z, w) =

(z − iz, w − iw). Thus we must have w = −z, which shows that (1,−1) is an eigenvector.
Therefore the basis β = {(1, 1), (1,−1)} will diagonalize T .

(f) Let γ =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
then

[T ]γ =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

The eigenvalues of T are roots of the polynomial

det([T ]γ − λI) = (λ− 1)3(λ+ 1),
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that is 1, 1, 1,−1. The space E1(T ) is easily seen to be spanned by the vectors





1
0
0
0


 ,




0
1
1
0


 ,




0
0
0
1




 ,

and the vector




0
1
−1
0


 spans E−1(T ). Therefore the basis

β =







1
0
0
0


 ,




0
1
1
0


 ,




0
0
0
1


 ,




0
1
−1
0






diagonalizes T .

Problem 11. Since similar matrices have the same eigenvalues, and the eigenvalues of an
upper triangular matrix are exactly those on the diagonal; we know from our assumption
that there is an invertible Q such that

A = Q




λ1Im1 ∗ ∗ ∗
0 λ2Im2 ∗ ∗
0 0

. . . ∗
0 0 0 λkImk


Q−1.

(a)

tr(A) = tr




λ1Im1 ∗ ∗ ∗
0 λ2Im2 ∗ ∗
0 0

. . . ∗
0 0 0 λkImk


 =

k∑
i=1

tr(λiImi
) =

k∑
i=1

miλi

(b)

det(A) = det




λ1Im1 ∗ ∗ ∗
0 λ2Im2 ∗ ∗
0 0

. . . ∗
0 0 0 λkImk


 =

k∏
i=1

det(λiImi
) =

k∏
i=1

λmi
i

Problem 14.

(a) The equations x′ = x+ y and y′ = 3x− y can be re-written as:(
x
y

)′
= A

(
x
y

)
, where A =

(
1 1
3 −1

)
.
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Diagonalizing the matrixA, we find thatA = Q

( −2 0
0 2

)
Q−1, whereQ =

( −1/3 1
1 1

)
.

Let

(
w
z

)
= Q−1

(
x
y

)
, then

(
w
z

)′
= Q−1

(
x
y

)′
= Q−1A

(
x
y

)
= Q−1AQ

(
w
z

)
=

( −2 0
0 2

)(
w
z

)
=

( −2w
2z

)
.

Thus we get the much simpler equations: w′ = −2w and z′ = 2z. Therefore we
have w = c1e

−2t and z = c2e
2t, where c1, c2 are constants.

(
x
y

)
= Q

(
c1e

−2t

c2e
2t

)
=

( −1
3
c1e

−2t + c2e
2t

c1e
−2t + c2e

2t

)

Thus the solution is x = −1
3
c1e

−2t + c2e
2t and y = c1e

−2t + c2e
2t.

(b) The equations x′1 = 8x1 + 10x2 and x
′
2 = −5x1 − 7x2 can be re-written as:(

x1

x2

)′
= A

(
x1

x2

)
, where A =

(
8 10
−5 −7

)
.

Diagonalizing the matrixA, we find thatA = Q

( −2 0
0 3

)
Q−1, whereQ =

( −1 −2
1 1

)
.

Let

(
y1

y2

)
= Q−1

(
x1

x2

)
, then

(
y1

y2

)′
= Q−1

(
x1

x2

)′
= Q−1A

(
x1

x2

)
= Q−1AQ

(
y1

y2

)
=

( −2 0
0 3

)(
y1

y2

)
=

( −2y1

3y2

)
.

Thus we get the much simpler equations: y′1 = −2y1 and y′2 = 3y2. Therefore we
have y1 = c1e

−2t and y2 = c2e
3t, where c1, c2 are constants.where c1, c2 are constants.

(
x1

x2

)
= Q

(
c1e

−2t

c2e
3t

)
= Q

(
c1e

−2t

c2e
3t

)
=

( −c1e−2t − 2c2e
3t

c1e
−2t + c2e

3t

)

Thus the solution is x1 = −c1e−2t − 2c2e
3t and x2 = c1e

−2t + c2e
3t.

(c) 
 x1

x2

x3




′

= A


 x1

x2

x3


 , where A =


 1 0 1

0 1 1
0 0 2


 .

Diagonalizing the matrix A, we find that

A = Q


 1 0 0

0 1 0
0 0 2


Q−1, where Q =


 1 0 1

0 1 1
0 0 1


 .
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As in the earlier parts the functions


 y1

y2

y3


 := Q−1


 x1

x2

x3


 satisfy the easier

differential equations: y′1 = y1, y
′
2 = y2 and y

′
3 = 2y3. So there are constants c1, c2, c3

such that y1 = c1e
t, y2 = c2e

t and y3 = c3e
2t.


 x1

x2

x3


 = Q


 y1

y2

y3


 = Q


 c1e

t

c2e
t

c3e
2t


 =


 c1e

t + c3e
2t

c2e
t + c3e

2t

c3e
2t


 .

Therefore the solutions are x1 = c1e
t + c3e

2t, x2 = c2e
t + c3e

2t and x3 = c3e
2t.

§5.3
Problem 1.

(a) T; this is the corollary to Theorem 5.12
(b) T; this is a consequence of Theorem 5.13
(c) F; the coordinates also need to be non-negative
(d) F; it is true for columns, but not rows. See the examples in the book.
(e) T; this is a corollary to Theorem 5.15
(f) T; The Gerschgorin disks for the matrix are described as:

• center 1 with radius |z|+ | − 1| < 2
• center 1 with radius |z|+ |1| < 2
• center z with radius | − 1|+ |1| = 2.

It is easy to show that 3 is not in any of these disk, and hence Gerschgorin’s disk
Theorem implies that 3 is not an eigenvalue.

(g) T; this is Theorem 5.17

(h) F; a counter example is

(
0 1
1 0

)

(i) F; again a counter example is A =

(
0 1
1 0

)
. limm→∞Am does not converge since A

has an eigenvalue -1
(j) T; The convergence follows from Theorem 5.20(b), the rank one property follows

from Theorem 5.20(e)

Problem 2. e)

The eigenvalues of the matrix A =

( −2 −1
4 3

)
are the roots of the polynomial det(A −

λI) = λ2 − λ− 2 = (λ− 2)(λ+ 1).
If limm→∞Am exists, then Theorem 5.13 (the part of the theorem we need is proved in the
remarks afterwards in the text) implies that its eigenvalues λ of A are all in the set

{λ ∈ C : |λ| < 1 or λ = 1}.
Since λ = 2 is not in this set, we find that limm→∞Am does not exist.
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(f) The eigenvalues of the matrix A =

(
2 −0.5
3 −0.5

)
are the roots of the polynomial det(A−

λI) = (2− λ)(−0.5− λ) + 1.5 = λ2 − 1.5λ+ 0.5 = (λ− 1)(λ− 0.5).

A quick calculation shows that

(
1
2

)
is an eigenvector for λ = 1, and

(
1
3

)
is an

eigenvector for λ = 0.5.

Therefore we let Q =

(
1 1
2 3

)
and get

A = Q

(
1 0
0 0.5

)
Q−1.

lim
m→∞

Am = lim
m→∞

Q

(
1n 0
0 0.5n

)
Q−1

= Q

(
lim

m→∞

(
1n 0
0 0.5n

))
Q−1

= Q

(
1 0
0 0

)
Q−1

=

(
1 1
2 3

)(
1 0
0 0

)(
3 −1
−2 1

)

=

(
1 0
2 0

)(
3 −1
−2 1

)

=

(
3 −1
6 −2

)

Problem 5. Let A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
. Since A2 = B2 = 0 we find that

limm→∞Am = limm→∞Bm = 0.

However, the matrix AB =

(
1 0
0 0

)
satisfies (AB)m = AB, for all m ≥ 1. Therefore

lim
m→∞

(AB)m =

(
1 0
0 0

)
�=
(
0 0
0 0

)
= lim

m→∞
Am · lim

m→∞
Bm.

Problem 6. This will be a four-state Markov chain with the following states:

(1) recovered
(2) ambulatory
(3) bedridden
(4) dead.

The initial probability vector is

P =




0
0.3
0.7
0


 .
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The transition matrix is

A =




1 0.6 0.1 0
0 0.2 0.2 0
0 0.2 0.5 0
0 0 0.2 1




(we have made the reasonable assumptions that those people who recovered stay recovered,
and those people who died stay dead!).
Since

AP =




0.25
0.2
0.41
0.14


 ,

we see that after one month, 25% of the patients recover, 20% are ambulatory, 41% are
bedridden and 14% have died.

We now find the eigenvalues of A.

det(A− λI) =




1− λ 0.6 0.1 0
0 0.2− λ 0.2 0
0 0.2 0.5− λ 0
0 0 0.2 1− λ




= (1− λ) det


 0.2− λ 0.2 0

0.2 0.5− λ 0
0 0.2 1− λ




= (1− λ)2 det

(
0.2− λ 0.2
0.2 0.5− λ

)
= (λ− 1)2(λ2 − 0.7λ+ 0.06)

= (λ− 1)2(λ− 0.1)(λ− 0.6)

Therefore the eigenvalues of A are 1, 1, 0.1, 0.6.

The standard computations show that the eigenspace of λ = 1 has basis







1
0
0
0






0
0
0
1




;

that




−11
18
−9
2


 is an eigenvector for λ = 0.1; and that




2
−1
−2
1


 is an eigenvector of λ = 0.6.

Thus

A = Q




1 0 0 0
0 1 0 0
0 0 0.1 0
0 0 0 0.6


Q−1,
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where Q =




1 0 −11 2
0 0 18 −1
0 0 −9 −2
0 1 2 1


.

We need to compute v := limm→∞AmP .

v = lim
m→∞

AmP

= lim
m→∞

Q




1m 0 0 0
0 1m 0 0
0 0 0.1m 0
0 0 0 0.6m


Q−1P

= Q




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


Q−1P

=




1 0 −11 2
0 0 18 −1
0 0 −9 −2
0 1 2 1






1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


Q−1P

=




1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0


Q−1P

To compute z := Q−1P , is the same as solving the equation


1 0 −11 2
0 0 18 −1
0 0 −9 −2
0 1 2 1


 z =




0
0.3
0.7
0


 .

This can see to have solution z =




59/90
31/90
−1/450
−17/50


. (Note that we didn’t need to compute Q−1

in order to compute Q−1P .)
Thus

v =




1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0


Q−1P =




1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0






59/90
31/90
−1/450
−17/50


 =




59/90
0
0

31/90


 .

Therefore eventually all of the patients either recover or die. In particular, 59% of the
patients will recover and 31% will die.
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Problem 10(a). The initial probability vector is P =


 0.3

0.3
0.4


, and the transition matrix

is A =


 0.6 0.1 0.1

0.1 0.9 0.2
0.3 0 0.7


.

AP =


 0.25

0.38
0.37


 A2P =


 0.225

0.441
0.334




The eigenvectors w of A with eigenvalue 1 are solutions of the equation


 −0.4 0.1 0.1

0.1 −0.1 0.2
0.3 0 −0.3


w = (A− I)w = 0.

Solving this we see that E1(A) = span




 1

3
1




. The unique probability vector in E1(A)

is v =


 1/5

3/5
1/5


 . By Theorem 5.20 we have limm→∞(AmP ) = v =


 1/5

3/5
1/5


 .

Problem 23. Let A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
. Since A2 = B2 = 0 we find that

eA = I + A/1! + 0 + 0 + · · · = 1 + A =

(
1 1
0 1

)

and

eB = I +B/1! + 0 + 0 + · · · = 1 + A =

(
1 0
1 1

)
.

Thus we have

eAeB =

(
2 1
1 1

)
.

Now consider the matrix A + B =

(
0 1
1 0

)
. It has eigenvalues 1 and −1, so there is an

invertible matrix Q such that

A+B = Q

(
1 0
0 −1

)
Q−1.
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We now compute eA+B.

eA+B = I + (A+B) +
(A+B)2

2!
+
(A+B)3

3!
+ · · ·

= I +Q

(
1 0
0 −1

)
Q−1 +

(
Q

(
1 0
0 −1

)
Q−1

)2

2!
+

(
Q

(
1 0
0 −1

)
Q−1

)3

3!
+ · · ·

= I +Q

(
1 0
0 −1

)
Q−1 +

Q

(
1 0
0 −1

)2

Q−1

2!
+

Q

(
1 0
0 −1

)3

Q−1

3!
+ · · ·

= Q


I +

(
1 0
0 −1

)
+

(
1 0
0 −1

)2

2!
+

(
1 0
0 −1

)3

3!
+ · · ·


Q−1

= Q

(
I +

(
1 0
0 −1

)
+

(
12

2!
0

0 (−1)2

2!

)
+

(
13

3!
0

0 (−1)3

3!

)
+ · · ·

)
Q−1

= Q

( ∑∞
n=0

1n

n!
0

0
∑∞

n=0
(−1)n

n!

)
Q−1 = Q

(
e 0
0 e−1

)
Q−1

So to show eAeB �= eA+B, it suffices to check that(
2 1
1 1

)
�= Q

(
e 0
0 e−1

)
Q−1.

However this is a consequence of the fact that these two matrices have different traces, and
hence are different.

tr(eAeB) = 2 + 1 = 3 and tr(eA+B) = e+ e−1 ≈ 3.086...

(Of course we could have also shown the two are different by explicitly computing Q and
then eA+B, but this would be significantly more work.)

§non-book questions

Problem (3).

(1) Take any w ∈ E1(P ), so we have Pw = w. We find that w ∈ E1(P
k) since

P kw = P k−1w = · · · = P 2w = Pw = w.

Thus E1(P ) is a subspace of E1(P
k). Since P is a probability matrix, we know that

E1(P ) �= 0. So E1(P ) is a nonzero subspace of the 1-dimensional space E1(P
k).

Therefore E1(P ) = E1(P
k), which is equivalent to what we needed to show.

(2) If B is a square matrix then rankB = rankBt (This is Corollary 2 on page 158, and
should be familiar from Math 54. It could be derived from the LU decomposition,
since transposing B essentially just transposes its LU decomposition). The dimension
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theorem then implies that nullityB = nullityBt.
Now apply these general remarks to the matrix B := A− λI:

dimEλ(A
t) = dimN(At − λI)

= nullity(At − λI)

= nullity(A− λI)t

= nullity(A− λI)

= dimN(A− λI)

= dimEλ(A) = 1

(3) Following the hint, if A = (P k)t then A has all positive entries and unit row sums.
So Av = v has as one solution, v = u, where u is the vector of all ones. We want to
show there are no other independent solution. Take any 0 �= v ∈ dimE1(A). Divide
v by vk (where vk is a component of v with maximal absolute value) to get w = v/vk.
Then wk = 1 and all other entries of w are have absolute value less than or equal to
1. Now Aw = w implies 1 = wk =

∑n
i=1Ak,iwi.

1 = |
n∑

i=1

Ak,iwi|

≤
n∑

i=1

|Ak,i||wi| (triangle inequality)

≤
n∑

i=1

Ak,i (since Ak,j > 0 and |wi| ≤ 1

= 1

Thus all these inequalities are in fact equalities, since everything is sandwiched be-
tween 1 and 1. In particular each Ak,iwi equals either Ak,i or −Ak,i. Since wk = 1 we
must have Ak,iwi = Ak,i for each wi (otherwise we couldn’t have all equalities above).
Since each Ak,i is nonzero, each wi = 1 as desired.
(The hint about Gershgorin seems to be a red herring).

(4) Part 3 tells us that dimE1((P
k)t) = 1. Part 2 then tells us that dimE1(P

k) = 1.
Finally part 1 applies to give us that dimE1(P ) = 1 as desired.

(5) Everything is laid out in the question until we get to (*):

(*) utB11w1 + utB12w2 = utw1,

where
• u is the vector of all 1’s,
• B11 and B12 have positive entries and column sums are < 1
• w1 has positive entries
• w2 has nonpositive entries
Thus utB11w1 = (utB11)w1 = xtw1, where x := utB11 and each 0 < xi < 1, so

utB11w1 <
∑

i

(w1)i.
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Also utB12w2 ≤ 0 by a similar argument. So

utB11w1 + utB12w2 <
∑

i

(w1)i = utw1

contradicting (*). Thus there cannot be any nonpostive entries w2 in w, and by
scaling we can make all the entries of w not just positive but sum to 1.

(6) The identity matrix In is a probability matrix with dimE1(In) = n.

Problem 4.

(1) If you draw a Gershgorin Circle for A = P k, it has a center at 0 < Ai,i < 1 and radius
1 − Ai,i. So the Circle is tangent to the unit circle at 1 and otherwise lies entirely
inside the unit circle. So an eigenvalue must either lie inside the unit circle or equal
1.

(2) The question is how to guarantee that P does not have any eigenvalues on the unit
circle other than at 1.

If P had an eigenvalue on the unit circle somewhere else than 1, say at eit �= 1,
then Pm would have an eigenvalue at eimt, for all m ≥ 1. We can pick arbitrarily
large m such that mt is not a multiple of 2π. Thus we have infinitely many m ≥ 1
such that Pm has positive entries and has an eigenvalue of absolute value 1 which is
not 1. This however contradicts part 1.
Therefore, P has no eigenvalues on the unit circle besides 1.

§5.4
Problem 18. (a) By definition f(t) = det(A− tI), thus a0 = f(0) = det(A− 0) = det(A).
The matrix A is then invertible, if and only if, a0 = det(A) is non-zero.
(b) The Cayley-Hamilton theorem says that f(A) = 0. More explicitly this can be written
as

(−1)nAn + an−1A
n−1 + · · ·+ a1A+ a0 = 0.

Multiplying both sides by A−1 we get:

(−1)nAn−1 + an−1A
n−2 + · · ·+ a1I + a0A

−1 = 0.

Solving for A−1 we find (recall that a0 �= 0 by part (a))

A−1 =
−1
a0

(
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1I
)
.

(c) Now consider the specific matrix A =


 1 2 1

0 2 3
0 0 −1


.

f(t) = det(A−tI) = det


 1− t 2 1

0 2− t 3
0 0 −1− t


 = −(t−1)(t−2)(t+1) = −t3+2t2+t−2.
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Part (b) then shows that

A−1 =
1

2

(−A2 + 2A+ I
)

=
1

2


−


 1 2 1

0 2 3
0 0 −1




2

+ 2


 1 2 1

0 2 3
0 0 −1


+


 1 0 0

0 1 0
0 0 1






=
1

2


−


 1 6 6

0 4 3
0 0 1


+


 3 4 2

0 5 6
0 0 −1






=


 1 −1 −2

0 1/2 3/2
0 0 −1




§6.1
Problem 1.

(a) T; an inner product is a function from V × V → F , for a vector space over the field
F

(b) T; In the comments at the beginning of this section, we restrict to the case F = R

or C

(c) F; If F = C, then an inner product is not linear in the second component since scalars
come out as their conjugate, i.e 〈x, cy〉 = c〈x, y〉

(d) F; there are lots of inner products on Rn, for example if 〈·, ·〉 is an inner product then
α〈·, ·〉 is an inner product for all real α > 0.

(e) F; the proof given makes no use of dimension.
(f) F; directly from definition on p.331
(g) F; Consider x = (1, 0), y = (0, 1), z = (0, 2) ∈ R2 and 〈·, ·〉 is the usual dot product.

Then 〈x, y〉 = 0 = 〈x, z〉, but y �= z.
(h) T; If 〈x, y〉 = 0 for all x, then in particular if x = y we have 〈y, y〉 = 0. From the

fourth axiom of an inner product space we then find that y = 0.

Problem 6. The remaining proofs from Theorem 6.1. We will use the four inner product
axioms without comment.

(b) 〈x, cy〉 = 〈cy, x〉 = c〈y, x〉 = c〈y, x〉 = c〈x, y〉
(c) 〈0, x〉 = 〈0 · 0, x〉 = 0〈0, x,=〉0. 〈x, 0〉 = 〈0, x〉 = 0 = 0.
(d) If x = 0, then 〈x, x〉 = 0 follows from part (c).
Conversely suppose that 〈x, x〉 = 0. If x �= 0, then this would contradict the last inner
product axiom. Therefore x = 0.
(e) Suppose that 〈x, y〉 = 〈x, z〉 for all x ∈ V . Then for all x ∈ V (using part (a) and (b)),

〈x, y − z〉 = 〈x, y〉 − 〈x, z〉 = 0.

In particular, if x = y − z then we have 〈y − z, y − z〉 = 0. Part (d) then implies that
y − z = 0, i.e. y = z.
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Problem 7. The remaining proofs from Theorem 6.2.

(a)

||cx|| =
√
〈cx, cx〉 =

√
c〈x, cx〉 =

√
cc〈x, x〉 =

√
|c|2〈x, x〉 =

√
|c|2
√
〈x, x〉 = |c| ||x||

(b) That ||x|| ≥ 0 for all x ∈ V is clear from the definition since 〈x, x〉 ≥ 0.

We see that 〈x, x〉 = 0, if and only if, ||x|| :=√〈x, x〉 = 0. The result then follows directly
from Theorem 6.1(d).

Problem 11. Take any x, y ∈ V .

||x+ y||2 + ||x− y||2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= (〈x, x〉 + 〈x, y〉+ 〈y, x〉+ 〈y, y〉) + (〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉)
= 2〈x, x〉+ 2〈y, y〉
= 2 ||x||2 + ||y||2

In R2 it says that for any parallelogram, the sum of the squares of the length of the four
sides is equal to the sum of the squares of the lengths of the two diagonals.

Problem 12. That the set {v1, · · · , vk} is orthogonal means, 〈vi, vj〉 = 0 if i �= j.∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

aivi

∣∣∣∣∣
∣∣∣∣∣
2

= 〈
k∑

i=1

aivi,

k∑
j=1

ajvj〉

=

k∑
i=1

ai〈vi,

k∑
j=1

ajvj〉

=

k∑
i=1

ai

k∑
j=1

aj〈vi, vj〉

=
k∑

i=1

aiai〈vi, vi〉

=
k∑

i=1

|ai|2 ||vi||2

Problem 13. We check the axioms of an inner product. We will use the corresponding
axioms for 〈·, ·〉1 and 〈·, ·〉2 without comment. Take any x, y, z ∈ V and c ∈ F .

(a)

〈x+ z, y〉 = 〈x+ z, y〉1 + 〈x+ z, y〉2
= 〈x, y〉1 + 〈z, y〉1 + 〈x, y〉2 + 〈z, y〉2
= (〈x, y〉1 + 〈x, y〉2) + (〈z, y〉1 + 〈z, y〉2)
= 〈x, y〉+ 〈z, y〉
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(b)

〈cx, y〉 = 〈cx, y〉1 + 〈cx, y〉2
= c〈x, y〉1 + c〈x, y〉2
= c(〈x, y〉1 + 〈x, y〉2)
= c〈x, y〉

(c)

〈x, y〉 = 〈x, y〉1 + 〈x, y〉2
= 〈x, y〉1 + 〈x, y〉2
= 〈y, x〉1 + 〈y, x〉2
= 〈y, x〉

(d) Suppose x �= 0.

〈x, x〉 = 〈x, x〉1 + 〈x, x〉2
> 〈x, x〉2
> 0.

Problem 15. (a) If x is a multiple of y, say x = cy, then

|〈x, y〉| = |〈cy, y〉| = |c〈y, y〉| = |c| ||y||2 = ||cy|| ||y|| = ||x|| ||y|| .
The same idea works if y is a multiple of x.

Conversely suppose that |〈x, y〉| = ||x|| ||y||. We will show that one of the vectors x or y is
a multiple of the other. We may assume that y �= 0 because the result is trivial in the other
case.
As the hint suggests define

a =
〈x, y〉
||y||2 and z = x− ay.

(This is not a completely random definition, it is the Gram-Schmidt process from the next
section)
First we note, using our hypothesis, that

|a| = |〈x, y〉|
||y||2 =

||x|| ||y||
||y||2 =

||x||
||y|| .

Now note that z and y are orthogonal:

〈z, y〉 = 〈x− ay, y〉 = 〈x, y〉 − a〈y, y〉 = 〈x, y〉 − 〈x, y〉
||y||2 〈y, y〉 = 0.

Then since z and ay are orthogonal, Exercise 10 show that ||ay + z||2 = ||ay||2+ ||z||2 . Thus
we have

||x||2 = ||ay + z||2 = ||ay||2+||z||2 = |a|2 ||y||2+||z||2 =
( ||x||
||y||

)2

||y||2+||z||2 = ||x||2+||z||2 ,
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and cancelling ||x||2 from both sides we get ||z||2 = 0. This the implies that z = 0, and that
x = ay as desired.

(b) We are going to show that ||x+ y|| = ||x|| + ||y||, if and only if, the vectors x and y
“point in the same direction” or more precisely there exists a real number c ≥ 0 such that
x = cy or y = cx.

First suppose that x = cy for c ≥ 0 (the y = cx case is similar).

||x+ y|| = ||cy + y|| = ||(1 + c)y|| = |1+c| ||y|| = ||y||+c ||y|| = ||y||+|c| ||y|| = ||y||+||cy|| = ||y||+||x||
Conversely suppose that ||x+ y|| = ||x|| + ||y||. We may assume that y �= 0. The proof

of the triangle inequality has the following string of inequalities, with the last line coming
from our assumption.

||x+ y||2 = ||x||2 + 2�〈x, y〉+ ||y||2
≤ ||x||2 + 2|〈x, y〉|+ ||y||2
≤ ||x||2 + 2 ||x|| ||y||+ ||y||2
= (||x||+ ||y||)2
= ||x+ y||2

Since the first and last terms are the same, all of the inequalities are in fact equalities. In
particular we find that

|〈x, y〉| = ||x|| ||y|| and |〈x, y〉| = �〈x, y〉.
From part (a) the equality |〈x, y〉| = ||x|| ||y|| implies that there is a scalar c such that

x = cy. It remains to show that c is real and c ≥ 0.
We have 〈x, y〉 = 〈cy, y〉 = c ||y||2, thus c = 〈x, y〉/ ||y||2. So it suffices to show that 〈x, y〉

is real and 〈x, y〉 ≥ 0.

Let 〈x, y〉 = α + iβ for α, β ∈ R. Then

α2 + β2 = |〈x, y〉|2 = (�〈x, y〉)2 = α2.

Canceling α2 from both sides we see that β2 = 0, hence 〈x, y〉 = α ∈ R.

〈x, y〉 = �〈x, y〉 = |〈x, y〉| ≥ 0

Problem 20). (a) x, y ∈ V a real inner product space.

1

4
||x+ y||2 − 1

4
||x− y||2 =

1

4
〈x+ y, x+ y〉 − 1

4
〈x− y, x− y〉

=
1

4
(〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉)− 1

4
(〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉)

=
1

4
(〈x, x〉+ 2〈x, y〉+ 〈y, y〉)− 1

4
(〈x, x〉 − 2〈x, y〉+ 〈y, y〉)

= 〈x, y〉
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(b) x, y ∈ V a complex inner product space.

4∑
k=1

ik
∣∣∣∣x+ iky

∣∣∣∣2 =

4∑
k=1

ik〈x+ iky, x+ iky〉

=

4∑
k=1

ik(〈x, x+ iky〉+ ik〈y, x+ iky〉)

=
4∑

k=1

ik(〈x, x〉 + ik〈x, y〉+ ik〈y, x〉+ ikik〈y, y〉)

=
4∑

k=1

(ik〈x, x〉+ ikik〈x, y〉+ i2k〈y, x〉+ i2kik〈y, y〉)

=
4∑

k=1

(ik〈x, x〉+ 〈x, y〉+ (−1)k〈y, x〉+ ik〈y, y〉)

= (

4∑
k=1

ik)〈x, x〉 + (

4∑
k=1

1)〈x, y〉+ (

4∑
k=1

(−1)k)〈y, x〉+ (

4∑
k=1

ik)〈y, y〉

= 0 · 〈x, x〉+ 4〈x, y〉+ 0 · 〈y, x〉+ 0 · 〈y, y〉
= 4〈x, y〉

Problem 24. (a) V =Mm×n(F ), ||A|| = maxi,j |Ai,j| for all A ∈ V .
Take A,B ∈ V and a ∈ F .

(1) ||A|| ≥ 0 is clear.

||A|| = 0 ⇔ max
i,j

|Ai,j| = 0⇔ |Ai,j| = 0 for all i, j ⇔ Ai,j = 0 for all i, j ⇔ A = 0

(2) ||aA|| = maxi,j |aAi,j| = maxi,j |a||Ai,j| = |a|maxi,j |Ai,j| = |a| ||A||
(3)

||A+B|| = max
i,j

|Ai,j +Bi,j |
≤ max

i,j
(|Ai,j|+ |Bi,j|) ≤ max

i,j
|Ai,j|+max

i,j
|Bi,j| = ||A||+ ||B||

(d) V = R2, ||(a, b)|| = max(|a|, |b|).
Take (a, b), (x, y) ∈ V and c ∈ R.

(1) ||(a, b)|| ≥ 0 is clear.

||(a, b)|| = 0 ⇔ max(|a|, |b|) = 0⇔ |a| = |b| = 0 ⇔ a = b = 0⇔ (a, b) = 0

(2) ||c(a, b)|| = max(|ca|, |cb|) = max(|c||a|, |c||b|) = |c|max(|a|, |b|) = |c| ||(a, b)||
(3)

||(a, b) + (x, y)|| = ||(a+ x, b+ y)|| = max(|a+ x|, |b+ y|)
≤ max(|a|+ |x|, |b|+ |y|) ≤ max(|a|, |b|) + max(|x|, |y|) = ||(a, b)||+ ||(x, y)||
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Problem 25. Suppose that the norm from Exercise 24(d) did come from an inner product
〈·, ·〉. Then using Exercise 20 we can recover the inner product. That is for x = (x1, x2), y =
(y1, y2) ∈ R2 we would have

〈x, y〉 := 1

4
||x+ y||2 − 1

4
||x− y||2 .

However, this “inner product” does not satisfy all of the required axioms. For example:

〈2(1, 0), (1, 1)〉 =
1

4
||2(1, 0) + (1, 1)||2 − 1

4
||2(1, 0)− (1, 1)||2

=
1

4
||(3, 1)||2 − 1

4
||(1,−1)||2

=
1

4
32 − 1

4
12 =

8

4
= 2

2〈(1, 0), (1, 1)〉 =
1

2
||(1, 0) + (1, 1)||2 − 1

2
||(1, 0)− (1, 1)||2

=
1

2
||(2, 1)||2 − 1

2
||(0,−1)||2

=
1

2
22 − 1

2
12 =

3

2

Thus 〈2(1, 0), (1, 1)〉 �= 2〈(1, 0), (1, 1)〉, and in particular 〈·, ·〉 is not an inner product.

§non-book question

Problem (7). Prove that 〈x, y〉 = ∑n
i=1 2xiyi +

∑n−1
i=1 xiyi+1 +

∑n−1
i=1 yixi+1 is an inner

product on Rn.

The first three of the inner product axioms are easy. Take any x, y, z ∈ R
n and c ∈ R.

〈x+ z, y〉 =

n∑
i=1

2(xi + zi)yi +

n−1∑
i=1

(xi + zi)yi+1 +

n−1∑
i=1

yi(xi+1 + zi+1)

= (

n∑
i=1

2xiyi +

n−1∑
i=1

xiyi+1 +

n−1∑
i=1

yixi+1)

+(

n∑
i=1

2ziyi +

n−1∑
i=1

ziyi+1 +

n−1∑
i=1

yizi+1)

= 〈x, y〉+ 〈z, y〉
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〈cx, y〉 =
n∑

i=1

2(cxi)yi +
n−1∑
i=1

(cxi)yi+1 +
n−1∑
i=1

yi(cxi+1)

= c(
n∑

i=1

2xiyi +
n−1∑
i=1

xiyi+1 +
n−1∑
i=1

yixi+1)

= c〈x, y〉

〈y, x〉 =

n∑
i=1

2yixi +

n−1∑
i=1

yixi+1 +

n−1∑
i=1

xiyi+1

=

n∑
i=1

2xiyi +

n−1∑
i=1

xiyi+1 +

n−1∑
i=1

yixi+1

= 〈x, y〉
It remains to verify the final axiom. As the hint suggests, we express 〈x, x〉 as a sum of

squares.

〈x, x〉 =

n∑
i=1

2x2
i +

n−1∑
i=1

2xixi+1

=

n∑
i=1

2x2
i +

n−1∑
i=1

(
(xi + xi+1)

2 − x2
i − x2

i+1

)

= 2

n∑
i=1

x2
i +−

n−1∑
i=1

x2
i −

n−1∑
i=1

x2
i+1 +

n−1∑
i=1

(xi + xi+1)
2

= x2
n + x2

1 +

n−1∑
i=1

(xi + xi+1)
2

From this expression it is clear that 〈x, x〉 ≥ 0 for all x ∈ Rn.

Finally suppose that 〈x, x〉 = 0.
Our explicit expression gives us that x1 = xn = 0, and xi = −xi+1 for i = 1, . . . , n− 1. It is
then clear that x1 = x2 = · · · = xn−1 = xn = 0. That is, x = 0, and this concludes the proof
of the last axiom.


