
MATH 110: LINEAR ALGEBRA
HOMEWORK #12

CHU-WEE LIM

Problem 1.1. Since Ty = λy, y ∈ N(T − λI). T is an upper-triangular matrix whose
(i, i)-th entry is λ. So T − λI is upper-triangular; its (i, i)-th entry is zero, and all the other
diagonal entries are non-zero (the last result follows from the fact that all eigenvalues of T
are distinct). Write T − λI in the form:⎛

⎝T1 A B
0 0 C
0 0 T2

⎞
⎠ ,

where T1, A, B, C, T2 are (i − 1) × (i − 1), (i − 1) × 1, (i − 1) × (n − i), 1 × (n − i) and
(n − i) × (n − i) matrices respectively. Also, T1 and T2 are invertible and upper-triangular.

Suppose (y1, . . . , yn)
t is in the null space of this matrix. Then we get yi+1 = yi+2 = · · · =

yn = 0. To get a non-trivial eigenvector, let yi = 1. This gives: T1(y1, . . . , yi−1)
t + A = 0.

Hence (y1, . . . , yi−1)
t = −T−1

1 A.

Problem 1.2. Since Q is unitary, we have QQ∗ = I. Hence Q is invertible, with inverse
Q∗. Thus we have

A = QTQ∗ = QTQ−1.

Since Ty = λy, we get

A(Qy) = QTQ−1(Qy) = QTy = Q(λy) = λ(Qy),

and Qy is an eigenvector of A with eigenvalue λ. Furthermore, Qy �= 0 since Q is unitary
(and hence invertible) and y �= 0.

Problem 2.1. The condition ||u|| = 1 gives 1 = ||u||2 = 〈u, u〉 = u∗u. Hence, if P =
I − 2uu∗, then we get

PP ∗ = (I − 2uu∗)(I − 2uu∗)∗ = (I − 2uu∗)(I∗ − 2(u∗)∗u∗)

= (I − 2uu∗)(I − 2uu∗) = I − 4uu∗ + 4(uu∗)(uu∗).

Since u∗u = 1, we have (uu∗)(uu∗) = u(u∗u)u∗ = uu∗, and the above identity simplifies to
PP ∗ = I.

Problem 2.2. Write q = (q1, . . . , qn)t. We may assume n ≥ 2, otherwise q itself gives the
desired 1 × 1 matrix.
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We first suppose q1 is real and positive. Since ||q|| = 1, we have 0 ≤ q1 ≤ 1. We claim
that there is a u of norm 1 such that P = I − 2uu∗ has q as its first column. Note that the
first column of P equals (1 − 2u1u1,−2u2u1, . . . ,−2unu1)

t. Now, we consider two cases.
Case 1 : q1 = 1, in which case q2 = · · · = qn = 0. Let u be any vector of norm 1 with first

component u1 = 0, e.g. u = (0, . . . , 0, 1)t. Such a vector exists since n ≥ 2. Then the first
column of P would be (1, 0, . . . , 0)t = q.

Case 2 : q1 < 1. Equating the first component of q gives

q1 = 1 − 2|u1|2 =⇒ |u1| =

√
1 − q1

2
.

Let u1 =
√

1−q1

2
which is real and positive. Also, let ui = qi

−2u1
= qi

−2u1
. We see that if

u = (u1, u2, . . . , un)
t, then the first column of P = I − 2uu∗ is precisely q.

Finally, we have to consider the general case when q1 is possibly not real and positive.
Let c ∈ C, |c| = 1, such that cq1 is real and positive. We have just proven that there is a
unitary matrix P whose first column equals cq. Then the first column of c−1P equals q, and
furthermore

(c−1P )(c−1P )∗ = (c−1P )(c−1P ∗) = |c−1|2PP ∗ = 1,

since |c| = 1 and P is unitary.

Problem 3.1. Write A = SJS−1, where J is a block-Jordan matrix:

J =

⎛
⎜⎜⎝

Jλ1 0 . . . 0
0 Jλ2 . . . 0
...

...
. . .

...
0 0 . . . Jλm

⎞
⎟⎟⎠ .

Suppose each Jλi
is an ri×ri matrix. Now Ak = SJkS−1 and Jk consists of ri×ri block ma-

trices of the form Jk
λi

. Thus limk→∞ Ak exists iff limk→∞ Jk exists, which holds iff limk→∞ Jk
λi

exists for each i.
(1) First we prove: if Jk

λi
is bounded, then |λi| < 1, or λi = 1 and ri = 1. Now, Jk

λi
is an

upper-triangular matrix whose diagonal entries are λk
i . Also, limk→∞ λk

i exists iff |λi| < 1 or
λi = 1. In the case where λi = 1, we get:

⎛
⎜⎜⎜⎜⎝

1 1 0 . . . 0
0 1 1 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎠

k

=

⎛
⎜⎜⎜⎜⎝

1 k ∗ . . . ∗
0 1 k . . . ∗
0 0 1 . . . ∗
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎠ ,

as proven in the lecture. For the limit to exist when k → ∞, the matrix must be 1 × 1.
Thus, we have proved the forward direction ( =⇒ ) of the assertion.
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(2) Now we prove the converse. Note: if λi = 1 and ri = 1, then Jλi
is a 1× 1 matrix and

Jk
1 = J1 for each k. If |λi| < 1, then

Jk
λi

=

⎛
⎜⎜⎜⎜⎜⎝

λk
i m1λ

k−1
i m2λ

k−2
i . . . mri−1λ

k−ri+1
i

0 λk
i m1λ

k−1
i . . . mri−2λ

k−ri+2
i

0 0 λk
i . . . mri−3λ

k−ri+3
i

...
...

...
. . .

...
0 0 0 . . . λk

i

⎞
⎟⎟⎟⎟⎟⎠

,

where mj =
(

k
j

)
. Now consider |mjλ

k−j
i | =

(
k
j

)|λi|k−j. We claim that limk→∞
(

k
j

)|λi|k−j = 0.
This follows by treating k as a real variable and applying L’Hospital’s rule. Hence as k → ∞,
Jk

λi
→ 0. This proves the first part of (3.1).

Finally, the limit of Ak is non-zero iff the limit of Jk is non-zero, which holds iff the limit
of Jk

λi
is non-zero for some i. From our above result, it follows that the last statement holds

iff there is at least one Jordan block with eigenvalue 1.

Problem 3.2, 3.3. Clearly, these two are equivalent so we shall prove them together. As
in the solution to (3.1), write A = SJS−1, where J is in block Jordan form. Now Ak is
bounded iff Jk

λi
is bounded for each i.

(1) Suppose Jk
λi

is bounded. Since its diagonal entries are bounded, we must have |λi| ≤ 1.
Consider the case |λi| = 1. Then we have:

⎛
⎜⎜⎜⎜⎝

λi 1 0 . . . 0
0 λi 1 . . . 0
0 0 λi . . . 0
...

...
...

. . .
...

0 0 0 . . . λi

⎞
⎟⎟⎟⎟⎠

k

=

⎛
⎜⎜⎜⎜⎜⎝

λk
i kλk−1

i ∗ . . . ∗
0 λk

i kλk−1
i . . . ∗

0 0 λk
i . . . ∗

...
...

...
. . .

...
0 0 0 . . . λk

i

⎞
⎟⎟⎟⎟⎟⎠

.

Now |kλk−1
i | = k. So if the matrix remains bounded as k gets large, it must be 1 × 1, i.e.,

ri = 1.
(2) Conversely, suppose |λi| < 1, or |λi| = 1 and ri = 1. In the second case, there is

nothing to prove, since (1)k = (1) for each k. For the first case, by (3.1) we know that
limk→∞ Jk

λi
= 0, and hence Jk

λi
is bounded as k gets large.

Problem 4. Write A = SJS−1 yet again, and let Jλi
, ri be as in the solution to (3.1). Then

the characteristic polynomial of A is the same as that of J , which is p(t) =
∏m

i=1(t − λi)
ri.

Thus,

p(A) = (A − λ1I)r1(A − λ2I)r2 . . . (A − λmI)rm.
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Let us examine a typical term (A − λiI)ri. We have:

A − λiI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Jλ1−λi
0 . . . 0 . . . 0

0 Jλ2−λi
. . . 0 . . . 0

...
...

. . .
...

. . .
...

0 0 . . . J0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 . . . Jλm−λi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now J0 is an ri×ri matrix. It acts on the elements of the standard basis as follows: e1 �→ e2,
e2 �→ e3, . . . , eri−1 �→ eri

, and eri
�→ 0. Hence Jri

0 takes each ej to 0, and so Jri
0 = 0. Hence,

p(A) is equal to:⎛
⎜⎜⎜⎜⎝

0 0 0 . . . 0
0 ∗ 0 . . . 0
0 0 ∗ . . . 0
...

...
...

. . .
...

0 0 0 . . . ∗

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∗ 0 0 . . . 0
0 0 0 . . . 0
0 0 ∗ . . . 0
...

...
...

. . .
...

0 0 0 . . . ∗

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∗ 0 0 . . . 0
0 ∗ 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ∗

⎞
⎟⎟⎟⎟⎠ · · ·

⎛
⎜⎜⎜⎜⎝

∗ 0 0 . . . 0
0 ∗ 0 . . . 0
0 0 ∗ . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠ ,

where each entry above really refers to an ri × rj block matrix! This product is clearly equal
to zero.

Problem 5. Here’re the proofs:

(1) (QZ)(QZ)∗ = (QZ)(Z∗Q∗) = Q(ZZ∗)Q∗ = QIQ∗ = QQ∗ = I. Hence, (QZ)∗ is the
inverse of QZ, so QZ is unitary.

(2) Since Q is unitary, QQ∗ = I. Taking the conjugate, we get: QQ∗ = I = I. But
Q∗ = Qt = (Q)∗. Hence, we have Q(Q)∗ = I, and so Q is unitary.

(3) Take the transpose of QQ∗ = I to obtain (Q∗)tQt = I t = I. Now, (Q∗)t = Q = (Qt)∗.
Hence, (Qt)∗Qt = I and so Qt is unitary.

(4) This follows from (2) and (3).
(5) This follows from (4) since Q−1 = Q∗.
(6) Since 〈−,−〉 is the standard inner product, we have 〈x, y〉 = y∗x. This gives:

〈Qx, Qy〉 = (Qy)∗(Qx) = (y∗Q∗)(Qx) = y∗(Q∗Q)x = y∗x = 〈x, y〉 .

(7) This follows from (6).


