
1

Spr 2016 Math 221

Multigrid

James Demmel

www.cs.berkeley.edu/~demmel/ma221_Spr16

Spr 2016 Math 221

Poisson’s equation in 1D: ∂2u/∂x2 = f(x)

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

T =
 2 -1 -1

Graph and “stencil”

2

Spr 2016 Math 221

2D Poisson’s equation

° Similar to the 1D case, but the matrix T is now

° 3D is analogous

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

T =

4

-1

-1

-1

-1

Graph and “stencil”

Spr 2016 Math 221

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)
Algorithm Serial PRAM Memory #Procs
°  Dense LU N3 N N2 N2
°  Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3)
°  Jacobi N2 (N5/3) N (N2/3) N N
°  Explicit Inv. N2 log N N2 N2

°  Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N
°  Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N
°  Sparse LU N3/2 (N2) N1/2 N*log N (N4/3) N
°  FFT N*log N log N N N
°  Multigrid N log2 N N N
°  Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

3

Fall 2009
CS267 Lecture 16

Multigrid Motivation

Spr 2016 Math 221

Multigrid Motivation

° Recall that Jacobi, SOR, CG, or any other sparse-
matrix-vector-multiply-based algorithm can only
move information one grid cell at a time

•  Take at least n steps to move information across n x n grid

° Can show that decreasing error by fixed factor c<1
takes Ω(log n) steps

•  Convergence to fixed error < 1 takes Ω(log n) steps

° Therefore, converging in O(1) steps requires moving
information across grid faster than to one
neighboring grid cell per step

•  One step can’t just do sparse-matrix-vector-multiply

4

Spr 2016 Math 221

Big Idea used in multigrid and elsewhere

°  If you are far away, problem looks simpler
•  For gravity: approximate earth, distant galaxies, … by point masses

° Can solve such a coarse approximation to get an
approximate solution, iterating if necessary

•  Solve coarse approximation problem by using an even coarser
approximation of it, and so on recursively

° Ex: Multigrid for solving PDE in O(n) time
•  Use coarser mesh to get approximate solution of Poisson’s Eq.

° Ex: Fast Multipole Method, Barnes-Hut for computing
gravitational forces on n particles in O(n log n) time:

•  Approximate particles in box by total mass, center of gravity
•  Good enough for distant particles; for close ones, divide box

recursively

° Ex: Graph Partitioning (used to parallelize SpMV)
•  Replace graph to be partitioned by a coarser graph (CS267 for details)

Spr 2016 Math 221

Fine and Coarse Approximations

Fine Coarse

5

Spr 2016 Math 221

Multigrid Overview

° Basic Algorithm:
•  Replace problem on fine grid by an approximation on a coarser

grid
•  Solve the coarse grid problem approximately, and use the

solution as a starting guess for the fine-grid problem, which is
then iteratively updated

•  Solve the coarse grid problem recursively, i.e. by using a still
coarser grid approximation, etc.

° Success depends on coarse grid solution being a
good approximation to the fine grid

Fine Coarse

Spr 2016 Math 221

Multigrid uses Divide-and-Conquer in 2 Ways

° First way:
•  Solve problem on a given grid by calling Multigrid on a coarse

approximation to get a good guess to refine

° Second way:
•  Think of error as a sum of sine curves of different frequencies
•  Same idea as FFT solution, but not explicit in algorithm
•  Each call to Multigrid responsible for suppressing coefficients of sine

curves of the lower half of the frequencies in the error (pictures later)

6

Spr 2016 Math 221

Multigrid Sketch in 1D

°  Consider a 2m+1 grid in 1D for simplicity
°  Let P(i) be the problem of solving the discrete Poisson equation

on a 2i+1 grid in 1D. Write linear system as T(i) * x(i) = b(i)
°  P(m) , P(m-1) , … , P(1) is sequence of problems from finest to

coarsest

Spr 2016 Math 221

Multigrid Sketch (1D and 2D)

°  Consider a 2m+1 grid in 1D (2m+1 by 2m+1 grid in 2D) for simplicity
°  Let P(i) be the problem of solving the discrete Poisson equation

on a 2i+1 grid in 1D (2i+1 by 2i+1 grid in 2D)
•  Write linear system as T(i) * x(i) = b(i)

°  P(m) , P(m-1) , … , P(1) is sequence of problems from finest to
coarsest

7

Spr 2016 Math 221

Multigrid Operators (write on board)
°  For problem P(i) :

•  b(i) is the RHS and
•  x(i) is the current estimated solution

°  All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

°  The restriction operator R(i) maps P(i) to P(i-1)
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)
•  Uses sampling or averaging
•  b(i-1)= R(i) (b(i))

°  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i)
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i)
•  x(i) = In(i-1)(x(i-1))

°  The solution operator S(i) takes P(i) and improves solution x(i)
•  Uses “weighted” Jacobi or SOR on single level of grid
•  x improved (i) = S(i) (b(i), x(i))

°  Overall algorithm, then details of operators

both live on grids of size 2i-1

Spr 2016 Math 221

Multigrid V-Cycle Algorithm (write on board, Matlab code on webpage)
Function MGV (b(i), x(i))
 … Solve T(i)*x(i) = b(i) given b(i) and an initial guess for x(i)
 … return an improved x(i)
 if (i = 1)
 compute exact solution x(1) of P(1) only 1 unknown
 return x(1)
 else
 x(i) = S(i) (b(i), x(i)) improve solution by
 damping high frequency error
 r(i) = T(i)*x(i) - b(i) compute residual
 d(i) = In(i-1) (MGV(R(i) (r(i)), 0)) solve T(i)*d(i) = r(i) recursively
 x(i) = x(i) - d(i) correct fine grid solution
 x(i) = S(i) (b(i), x(i)) improve solution again
 return x(i)

8

Spr 2016 Math 221

Why is this called a V-Cycle?

° Just a picture of the call graph
°  In time a V-cycle looks like the following

Spr 2016 Math 221

Cost (#flops) of a V-Cycle for 2D Poisson

° Constant work per mesh point (average with
neighbors)

° Work at each level in a V-cycle is O(the number of
unknowns)

° Cost of Level i is O((2i-1)2) = O(4 i)
°  If finest grid level is m, total time is:
 Σ O(4 i) = O(4 m) = O(# unknowns)

m

i=1

9

Spr 2016 Math 221

Full Multigrid (FMG)

°  Intuition:
•  improve solution by doing multiple V-cycles
•  avoid expensive fine-grid (high frequency) cycles
•  analysis of why this works is beyond the scope of this class

 Function FMG (b(m), x(m))
 … return improved x(m) given initial guess
 compute the exact solution x(1) of P(1)
 for i=2 to m
 x(i) = MGV (b(i), In (i-1) (x(i-1)))
°  In other words:

•  Solve the problem with 1 unknown
•  Given a solution to the coarser problem, P(i-1) , map it to starting guess for

P(i)
•  Solve the finer problem using the Multigrid V-cycle

Spr 2016 Math 221

Full Multigrid Cost Analysis

° One V-cycle for each call to FMG
•  people also use “W cycles” and other compositions

° #Flops: Σ O(4 i) = O(4 m) = O(# unknowns)
m

i=1

10

Spr 2016 Math 221

Complexity of Solving Poisson’s Equation

° Theorem: error after one FMG call ≤ c · error before,
where c < 1/2, independent of # unknowns

° Corollary: We can make the error < any fixed
tolerance in a fixed number of steps, independent of
size of finest grid

° This is the most important convergence property of
MG, distinguishing it from all other methods, which
converge more slowly for large grids

° Total complexity just proportional to cost of one
FMG call

Spr 2016 Math 221

The Solution Operator S(i) – Details (on board)

° The solution operator, S(i), is a weighted Jacobi
° Consider the 1D problem

° At level i, pure Jacobi replaces:
 x(j) := 1/2 (x(j-1) + x(j+1) + b(j))
 in notation from lecture: R_J = I – T/2
°  Weighted Jacobi uses:
 x(j) := 1/3 (x(j-1) + x(j) + x(j+1) + b(j))
 R_wJ = I – T/3
°  In 2D, similar average of nearest neighbors

•  Chosen so that “high frequency” eigenvector components of
error get decreased by as much as possible (1/3)

11

Spr 2016 Math 221

Eigenvalues of Solution Operator S(i) (R_wJ = I – T/3)

° The solution operator, S(i), is a weighted Jacobi
° Consider the 1D problem

° At level i, pure Jacobi replaces:
 x(j) := 1/2 (x(j-1) + x(j+1) + b(j))
°  Weighted Jacobi uses:
 x(j) := 1/3 (x(j-1) + x(j) + x(j+1) + b(j))

°  In 2D, similar average of nearest neighbors

•  Chosen so that “high frequency “eigenvector components of
error get decreased by as much as possible (1/3)

1/3

-1/3

How much
High Freq.

Error Damped

How much
Low Freq.

Error Damped

High
Frequencies

Low
Frequencies

Spr 2016 Math 221

Weighted Jacobi chosen to damp high frequency error

Initial error
 “Rough”
 Lots of high frequency components
 Norm = 1.65

Error after 1 weighted Jacobi step
 “Smoother”
 Less high frequency component
 Norm = 1.06

Error after 2 weighted Jacobi steps
 “Smooth”
 Little high frequency component
 Norm = .92,
 won’t decrease much more

12

Spr 2016 Math 221

Multigrid as Divide and Conquer Algorithm

° Each level in a V-Cycle reduces the error in one part
of the frequency domain

Spr 2016 Math 221

Error on fine and coarse grids

smoothing

Finest Grid

First Coarse Grid

Restriction (R)

13

Spr 2016 Math 221

The Restriction Operator R(i) - Details
°  The restriction operator, R(i), takes

•  a problem P(i) with Right-Hand-Side (RHS) bfine and
•  maps it to a coarser problem P(i-1) with RHS bcoarse = R(i)(bfine)

°  In 1D, average values of neighbors
•  Simplest: Sampling: bcoarse(k) = bfine(k)
•  Better: Averaging: bcoarse(k) = 1/4 * bfine(k-1) + 1/2 * bfine(k) + 1/4 * bfine(k+1)

°  In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)

Simplest: Sampling

Better: Averaging

Spr 2016 Math 221

Interpolation Operator In(i-1): details
°  The interpolation operator In(i-1), takes a function xcoarse on a

coarse grid P(i-1) , and produces a function xfine on a fine grid P(i) :
°  xfine = In(i-1)(xcoarse)

°  In 1D, linearly interpolate nearest coarse neighbors
•  xfine(k) = xcoarse(k) if the fine grid point k is also a coarse one, else
•  xfine(k) = 1/2 * xcoarse(left of k) + 1/2 * xcoarse(right of k)

°  In 2D, interpolation requires averaging with 4 nearest
neighbors (NW,SW,NE,SE)

14

Spr 2016 Math 221

Convergence Picture of Multigrid in 1D

Spr 2016 Math 221

Convergence Picture of Multigrid in 2D

15

Spr 2016 Math 221

Multigrid V-Cycle Algorithm Analysis (1/2)
Function MGV (b(i), x(i))
 … Solve T(i)*x(i) = b(i) given b(i) and an initial guess for x(i)
 … return an improved x(i)
 if (i = 1)
 compute exact solution x(1) of P(1) only 1 unknown
 return x(1)
 else
 x(i) = S(i) (b(i), x(i)) x(i) = S·x(i) + b(i)/3
 r(i) = T(i)*x(i) - b(i) r(i) = T(i)*x(i) - b(i)
 d(i) = In(i-1) (MGV(R(i) (r(i)), 0)) d(i) = In·(T(i-1)-1·(R·r(i)))
 (Note: we assume recursive solve is exact, for ease of analysis)

 x(i) = x(i) - d(i) x(i) = x(i) - d(i)
 x(i) = S(i) (b(i), x(i)) x(i) = S·x(i) + b(i)/3
 return x(i)

Spr 2016 Math 221

Multigrid V-Cycle Algorithm Analysis (2/2)
Goal: combine these equations to get formula for error e(i) = x(i) – x:
 x(i) = S·x(i) + b(i)/3 subtract x = S·x + b(i)/3 to get e(i) = S·e(i)
 r(i) = T(i)*x(i) - b(i) subtract 0 = T(i)*x – b(i) to get r(i) = T(i)*e(i)
 d(i) = In·(T(i-1)-1·(R·r(i))) assume coarse problem solved exactly
 x(i) = x(i) - d(i) subtract x = x to get e(i) = e(i) – d(i)
 x(i) = S·x(i) + b(i)/3 subtract x = S·x + b(i)/3 to get e(i) = S·e(i)

Substitute each equation into later ones to get
 e(i) = S · (I - In·(T(i-1)-1·(R·T(i)))) · S · e(i) ≡ M · e(i)

Theorem: For 1D Poisson problem, the eigenvalues of M are either 0 or 1/9,

independent of dimension.
This means multigrid converges in a bounded number of steps,

independent of dimension.

16

Spr 2016 Math 221

° What does it mean to do Multigrid anyway?
° Need to be able to coarsen grid (hard problem)

•  Can’t just pick “every other grid point” anymore
•  How to make coarse graph approximate fine one
•  What if there are no grid points?

° Need to define R() and In()
•  How do we convert from coarse to fine mesh and back?
•  How do we define coarse matrix (no longer formula, like Poisson)

° Need to define S()
•  How do we damp “high frequency” error?

° Dealing with coarse meshes efficiently
•  Should we switch to another solver on coarsest meshes?

Generalizing Multigrid beyond Poisson, to unstructured meshes (1/2)

Spr 2016 Math 221

Generalizing Multigrid beyond Poisson, to unstructured meshes (2/2)
° Given original problem, how do we generate a

sequence of coarse approximations?
° For finite element problems, could regenerate matrix

starting on coarser mesh
•  Need access to original physical problem and finite element

modeling system, i.e. a lot more than just the original matrix, so it
may be impossible

•  What does “coarse” mean, once very coarse?

° Geometric Multigrid
•  Assume we know (x,y,z) coordinates of underlying mesh, and matrix
•  Generate coarse mesh points, analogous to taking every other point

in regular mesh
•  Retriangulate to get new mesh
•  Use finite element shape functions on coarse mesh to project fine

matrix to coarse one

° Algebraic Multigrid
•  Don’t even have (x,y,z) coordinates, just matrix

17

Spr 2016 Math 221

Geometric Multigrid
°  Need matrix, (x,y,z) coordinates of mesh points

•  Not minimum information (just matrix), but a little more
•  Based on work of Guillard, Chan, Smith

°  Finite element intuition
•  Goal is to compute function, represented by values at points
•  Think of approximation by piecewise linear function connecting points

-  Easy in 1D, need triangulated mesh in 2D, 3D uses tetrahedra

°  Geometric coarsening
•  Pick a subset of coarse points “evenly spaced” among fine points

-  Use Maximal Independent Sets
-  Try to keep important points, like corners, edges of object

•  Retriangulate coarse points
-  Try to approximate answer by piecewise linear function on new triangles

•  Let columns of P (“prolongator”) be values at fine grid points given values at
coarse ones

-  Generalizes Interpolation operator “In” from before
•  Acoarse = PT Afine P – Galerkin method
•  For Poisson: P = In, PT = 2*R, Tcoarse = 2 * PT * Tfine * P

Spr 2016 CS267 Lecture 17

Example of Geometric Coarsening

Simple Greedy Algorithm:

 repeat
 pick unmarked vertex
 mark it and its neighbors
 until no unmarked vertices

18

Spr 2016 CS267 Lecture 17

Examples of meshes from geometric coarsening

Spr 2016 CS267 Lecture 17

What can go wrong

•  Care needed so coarse grid preserves geometric features of fine grid
•  Label fine grid points as corner, edge, face, interior
•  Delete edges between same-labeled points in different features
•  Ex: delete edges between points on different faces
•  Keeps feature represented on coarse meshes

19

Spr 2016 CS267 Lecture 17

How to coarsen carefully

Spr 2016 Math 221

Algebraic Multigrid
°  No information beyond matrix needed
°  Galerkin still used to get Acoarse = PT Afine P
°  Prolongator P defined purely algebraically

•  Cluster fine grid points into nearby groups
-  Can use Maximal Independent Sets or Graph Partitioning
-  Use magnitude of entries of Afine to cluster

•  Associate one coarse grid node to each group
•  To interpolate coarse grid values to associated fine grid point, can use

properties of PDE, eg elasticity:
-  Rigid body modes of coarse grid point
-  Let coarse grid point have 6 dof (3 translation, 3 rotation)
-  Can be gotten from QR factorization of submatrix of Afine

•  Can also apply smoother to resulting columns of P
•  “Smoothed Aggregation”

°  Based on work of Vanek, Mandel, Brezina, Farhat, Roux,
Bulgakov, Kuhn …

20

Spr 2016 Math 221

Parallel Smoothers for Unstructured Multigrid

§  Weighted Jacobi
§  Easy to implement, hard to choose weight

§  Gauss-Seidel
§  Works well, harder to parallelize because of triangular solve

§  Polynomial Smoothers
§  Chebyshev polynomial p(Afine)
§  Easy to implement (just SpMVs with Afine)
§  Chebyshev chooses p(y) such that

§  |1 - p(y) y | = min over interval [λ* , λmax] estimated to contain
eigenvalues of Afine

Spr 2016 Math 221

Source of Unstructured Finite Element Mesh: Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

Study failure modes of trabecular Bone under stress

21

Spr 2016 Math 221

Micro-Computed Tomography!
µCT @ 22 µm resolution!

Mechanical Testing!
E, εyield, σult, etc.!

Methods: µFE modeling

3D image!

2.5 mm cube!
44 µm elements!

µFE mesh"

Source: Mark Adams, PPPL

Up to 537M unknowns

Spr 2016 Math 221

80 µm w/ shell

Vertebral Body With Shell

§  Large deformation elasticity
§  6 load steps (3% strain)
§  Scaled speedup

§  ~131K dof/processor

§  7 to 537 million dof
§  4 to 292 nodes
§  IBM SP Power3

§  14 of 16 procs/node used
§  Up to 4088 processors

§  Double/Single Colony switch
§  Gordon Bell Prize, 2004
§  Clinical application to predicting

chance of fracture due to osteoporosis

22

Spr 2016 Math 221

131K dof / proc (weak scaling) - Flops/sec/proc
.47 Teraflops - 4088 processors

537M dof !

Conclusions

° Multigrid can be very fast
•  Provably “optimal” (does O(N) flops to compute N unknowns)

for many problems in which one can show that using a coarse
grid gives a good approximation

•  Can be parallelized effectively

° Multigrid can be complicated to implement
•  Lots of software available (see web page for pointers)

-  PETSc (includes many iterative solvers, interfaces to other
packages, Python interface, runs in parallel)

-  ACTS (repository for PETSc and other packages)
–  Offers periodic short courses on using these packages

-  MGNET
•  Sample Matlab implementation for 1D and 2D Poisson

-  See class web page under “Matlab Programs for Homework
Assignments”

Spr 2016 Math 221

23

Extra slides

Spr 2016 Math 221

Spr 2016 Math 221

Parallel 2D Multigrid

° Multigrid on 2D
requires nearest
neighbor (up to 8)
computation at each
level of the grid

° Start with n=2m+1 by
2m+1 grid (here m=5)

° Use an s by s
processor grid
(here s=4)

24

Spr 2016 Math 221

Performance Model of parallel 2D Multigrid (V-cycle)

°  Assume 2m+1 by 2m+1 grid of points, n= 2m-1, N=n2

°  Assume p = 4k processors, arranged in 2k by 2k grid
•  Processors start with 2m-k by 2m-k subgrid of unknowns

°  Consider V-cycle starting at level m
•  At levels m through k of V-cycle, each processor does some work
•  At levels k-1 through 1, some processors are idle, because a 2k-1 by 2k-1 grid of

unknowns cannot occupy each processor

°  Cost of one level in V-cycle
•  If level j >= k, then cost =

 O(4j-k) …. Flops, proportional to the number of grid points/processor
+ O(1) α …. Send a constant # messages to neighbors
+ O(2j-k) β …. Number of words sent

•  If level j < k, then cost =
 O(1) …. Flops, proportional to the number of grid points/processor
+ O(1) α …. Send a constant # messages to neighbors
+ O(1) β .… Number of words sent

°  Sum over all levels in all V-cycles in FMG to get complexity

Spr 2016 Math 221

Comparison of Methods (in O(.) sense)

 # Flops # Messages # Words sent
MG N/p + (log N)2 (N/p)1/2 +
 log p * log N log p * log N
FFT N log N / p p1/2 N/p
SOR N3/2 /p N1/2 N/p

° SOR is slower than others on all counts
° Flops for MG and FFT depends on accuracy of MG
° MG communicates less total data (bandwidth)
° Total messages (latency) depends …

•  This coarse analysis can’t say whether MG or FFT is better when
α >> β

25

Spr 2016 Math 221

Practicalities

°  In practice, we don’t go all the way to P(1)
°  In sequential code, the coarsest grids are negligibly

cheap, but on a parallel machine they are not.
•  Consider 1000 points per processor
•  In 2D, the surface to communicate is 4xsqrt(1000) ~= 128, or 13%
•  In 3D, the surface is 1000-83 ~= 500, or 50%

°  See Tuminaro and Womble, SIAM J. Sci. Comp.,
v14, n5, 1993 for analysis of MG on 1024 nCUBE2

•  on 64x64 grid of unknowns, only 4 per processor
-  efficiency of 1 V-cycle was .02, and on FMG .008

•  on 1024x1024 grid
-  efficiencies were .7 (MG Vcycle) and .42 (FMG)
-  although worse parallel efficiency, FMG is 2.6 times faster

that V-cycles alone
•  nCUBE had fast communication, slow processors

Spr 2016 Math 221

Multigrid on an Adaptive Mesh

° For problems with very
large dynamic range,
another level of
refinement is needed

° Build adaptive mesh
and solve multigrid
(typically) at each level

° Can’t afford to use finest mesh everywhere

26

Spr 2016 Math 221

Multiblock Applications

° Solve system of equations on a union of rectangles
•  subproblem of AMR

° E.g.,

Spr 2016
Math 221

Adaptive Mesh Refinement

° Data structures in AMR
° Usual parallelism is to assign grids on each level to

processors
° Load balancing is a problem

27

Spr 2016 Math 221

Support for AMR

° Domains in Titanium designed for this problem
° Kelp, Boxlib, and AMR++ are libraries for this
° Primitives to help with boundary value updates, etc.

Spr 2016 Math 221

Multigrid on an Unstructured Mesh

° Another approach to
variable activity is to
use an unstructured
mesh that is more
refined in areas of
interest

° Adaptive rectangular
or unstructured?

•  Numerics easier on
rectangular

•  Supposedly easier to
implement (arrays without
indirection) but boundary
cases tend to dominate
code

Up to 39M unknowns on 960 processors,
With 50% efficiency (Source: M. Adams)

