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Poisson’s equation in 1D:    ∂2u/∂x2  =  f(x) 
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2D Poisson’s equation 

° Similar to the 1D case, but the matrix T is now 

° 3D is analogous 
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Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars) 
Algorithm  Serial   PRAM   Memory      #Procs 
°  Dense LU  N3   N   N2   N2 
°  Band LU  N2  (N7/3)  N   N3/2  (N5/3)  N (N4/3) 
°  Jacobi  N2 (N5/3)   N (N2/3)   N   N 
°  Explicit Inv.  N2   log N   N2   N2 

°  Conj.Gradients N3/2 (N4/3)  N1/2(1/3) *log N  N   N 
°  Red/Black SOR N3/2 (N4/3)  N1/2 (N1/3)  N   N 
°  Sparse LU  N3/2 (N2)   N1/2   N*log N (N4/3)  N 
°  FFT   N*log N  log N   N   N 
°  Multigrid  N   log2 N   N   N 
°  Lower bound  N   log N   N 

PRAM is an idealized parallel model with zero cost communication 
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Fall 2009 
CS267 Lecture 16 

Multigrid Motivation 
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Multigrid Motivation 

° Recall that Jacobi, SOR, CG, or any other sparse-
matrix-vector-multiply-based algorithm can only 
move information one grid cell at a time 

•  Take at least n steps to move information across n x n grid 

° Can show that  decreasing error by fixed factor c<1 
takes Ω(log n) steps 

•  Convergence to fixed error < 1 takes Ω(log n) steps 

° Therefore, converging in O(1) steps requires moving 
information across grid faster than to one 
neighboring grid cell per step 

•  One step can’t just do sparse-matrix-vector-multiply 
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Big Idea used in multigrid and elsewhere 

°  If you are far away, problem looks simpler 
•  For gravity: approximate earth, distant galaxies, … by point masses 

° Can solve such a coarse approximation to get an 
approximate solution, iterating if necessary 

•  Solve coarse approximation problem by using an even coarser 
approximation of it, and so on recursively 

° Ex: Multigrid for solving PDE in O(n) time 
•  Use coarser mesh to get approximate solution of Poisson’s Eq. 

° Ex: Fast Multipole Method, Barnes-Hut for computing 
gravitational forces on n particles in O(n log n) time: 

•  Approximate particles in box by total mass, center of gravity 
•  Good enough for distant particles; for close ones, divide box 

recursively 

° Ex: Graph Partitioning (used to parallelize SpMV)  
•  Replace graph to be partitioned by a coarser graph (CS267 for details) 
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Fine and Coarse Approximations 

Fine Coarse 
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Multigrid Overview 

° Basic Algorithm: 
•  Replace problem on fine grid by an approximation on a coarser 

grid 
•  Solve the coarse grid problem approximately, and use the 

solution as a starting guess for the fine-grid problem, which is 
then iteratively updated 

•  Solve the coarse grid problem recursively, i.e. by using a still 
coarser grid approximation, etc. 

° Success depends on coarse grid solution being a 
good approximation to the fine grid 

Fine Coarse 
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Multigrid uses Divide-and-Conquer in 2 Ways 

° First way: 
•  Solve problem on a given grid by calling Multigrid on a coarse 

approximation to get a good guess to refine 

° Second way: 
•  Think of error as a sum of sine curves of different frequencies 
•  Same idea as FFT solution, but not explicit in algorithm 
•  Each call to Multigrid responsible for suppressing coefficients of sine 

curves of the lower half of the frequencies in the error (pictures later) 
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Multigrid Sketch in 1D 

°  Consider a 2m+1 grid in 1D for simplicity 
°  Let P(i) be the problem of solving the discrete Poisson equation 

on a 2i+1 grid in 1D.  Write linear system as T(i) * x(i) = b(i) 
°  P(m) , P(m-1) , … , P(1) is sequence of problems from finest to 

coarsest 
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Multigrid Sketch (1D and 2D) 

°  Consider a 2m+1 grid in 1D (2m+1 by 2m+1 grid in 2D) for simplicity 
°  Let P(i) be the problem of solving the discrete Poisson equation 

on a 2i+1 grid in 1D  (2i+1 by 2i+1 grid in 2D) 
•  Write linear system as T(i) * x(i) = b(i) 

°  P(m) , P(m-1) , … , P(1) is sequence of problems from finest to 
coarsest 
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Multigrid Operators (write on board) 
°  For problem P(i) : 

•  b(i) is the RHS and  
•  x(i) is the current estimated solution  

°  All the following operators just average values on neighboring grid 
points (so information moves fast on coarse grids) 

°  The restriction operator R(i) maps P(i) to P(i-1) 
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)  
•  Uses sampling or averaging 
•  b(i-1)= R(i) (b(i)) 

°  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i) 
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i) 
•  x(i) = In(i-1)(x(i-1)) 

°  The solution operator S(i) takes P(i) and improves solution x(i)  
•  Uses “weighted” Jacobi or SOR on single level of grid 
•  x improved (i) = S(i) (b(i), x(i)) 

°  Overall algorithm, then details of operators 

both live on grids of size 2i-1  
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Multigrid V-Cycle Algorithm (write on board, Matlab code on webpage) 
Function MGV ( b(i), x(i) ) 
   … Solve T(i)*x(i) = b(i) given b(i) and an initial  guess for x(i) 
   … return an improved x(i) 
   if (i = 1)  
        compute exact solution x(1) of P(1)        only 1 unknown 
        return x(1) 
   else  
        x(i) = S(i) (b(i), x(i))                                   improve solution by  
                                                                           damping high frequency error 
        r(i)  = T(i)*x(i) - b(i)                                    compute residual 
        d(i) = In(i-1) ( MGV( R(i) ( r(i) ), 0 ) )         solve T(i)*d(i) = r(i) recursively    
        x(i) = x(i) - d(i)                                           correct fine grid solution 
        x(i) = S(i) ( b(i), x(i) )                                 improve solution again 
        return x(i) 
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Why is this called a V-Cycle? 

° Just a picture of the call graph 
°  In time a V-cycle looks like the following 
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Cost (#flops) of a V-Cycle for 2D Poisson 

° Constant work per mesh point (average with 
neighbors) 

° Work at each level in a V-cycle is O(the number of 
unknowns) 

° Cost of Level i is O((2i-1)2) = O(4 i) 
°  If finest grid level is m, total time is: 
                  Σ     O(4 i) = O( 4 m) = O(# unknowns) 

m 

i=1 
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Full Multigrid (FMG) 

°  Intuition:  
•  improve solution by doing multiple V-cycles 
•  avoid expensive fine-grid (high frequency) cycles 
•  analysis of why this works is beyond the scope of this class 

          Function FMG (b(m), x(m)) 
              … return improved x(m) given initial guess 
              compute the exact solution x(1) of P(1) 
              for i=2 to m 
                   x(i) = MGV ( b(i), In (i-1) (x(i-1) ) ) 
°  In other words: 

•  Solve the problem with 1 unknown 
•  Given a solution to the coarser problem, P(i-1) , map it to starting guess for 

P(i) 
•  Solve the finer problem using the Multigrid V-cycle  
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Full Multigrid  Cost Analysis 

° One V-cycle for each call to FMG  
•  people also use “W cycles” and other compositions 

° #Flops:         Σ      O(4 i) = O( 4 m) = O(# unknowns) 
m 

i=1 
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Complexity of Solving Poisson’s Equation 

° Theorem: error after one FMG call ≤ c · error before, 
where c < 1/2, independent of # unknowns 

° Corollary: We can make the error < any fixed 
tolerance in a fixed number of steps, independent of 
size of finest grid 

° This is the most important convergence property of  
MG, distinguishing it from all other methods, which 
converge more slowly for large grids 

° Total complexity just proportional to cost of one 
FMG call 
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The Solution Operator S(i) – Details (on board) 

° The solution operator, S(i), is a weighted Jacobi 
° Consider the 1D problem 

° At level i, pure Jacobi replaces: 
        x(j) :=  1/2 (x(j-1) + x(j+1) + b(j) ) 
        in notation from lecture: R_J = I – T/2 
°   Weighted Jacobi uses: 
        x(j) :=  1/3 (x(j-1) + x(j) + x(j+1) + b(j) ) 
        R_wJ = I – T/3 
°  In 2D, similar average of nearest neighbors 

•  Chosen so that  “high frequency” eigenvector components of 
error get  decreased by as much as possible (1/3) 
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Eigenvalues of Solution Operator S(i)   (R_wJ = I – T/3) 

° The solution operator, S(i), is a weighted Jacobi 
° Consider the 1D problem 

° At level i, pure Jacobi replaces: 
        x(j) :=  1/2 (x(j-1) + x(j+1) + b(j) ) 
°   Weighted Jacobi uses: 
        x(j) :=  1/3 (x(j-1) + x(j) + x(j+1) + b(j) ) 
 
°  In 2D, similar average of nearest neighbors 

•  Chosen so that  “high frequency “eigenvector components of 
error get  decreased by as much as possible (1/3) 

1/3 

-1/3 

How much 
High  Freq. 

Error Damped 

How much 
Low  Freq. 

Error Damped 

High  
Frequencies 

Low  
Frequencies 
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Weighted Jacobi chosen to damp high frequency error 

Initial error 
    “Rough” 
    Lots of high frequency components 
     Norm = 1.65 

Error after 1 weighted Jacobi step 
    “Smoother” 
     Less high frequency component 
     Norm = 1.06 

Error after 2 weighted Jacobi steps 
    “Smooth” 
     Little high frequency component 
     Norm = .92,  
            won’t decrease much more 
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Multigrid as Divide and Conquer Algorithm 

° Each level in a V-Cycle reduces the error in one part 
of the frequency domain 
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Error on fine and coarse grids 

smoothing 

Finest Grid 

First Coarse Grid 

Restriction (R) 
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The Restriction Operator R(i) - Details 
°  The restriction operator, R(i), takes  

•  a problem P(i)  with Right-Hand-Side (RHS) bfine and 
•  maps it to a coarser problem P(i-1) with RHS   bcoarse = R(i)( bfine ) 

°  In 1D, average values of neighbors 
•  Simplest: Sampling:   bcoarse(k) = bfine(k) 
•  Better: Averaging: bcoarse(k) = 1/4 * bfine(k-1)   +   1/2 * bfine(k)   +   1/4 * bfine(k+1) 

°  In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW) 

Simplest: Sampling 

Better: Averaging 

Spr 2016 Math 221 

Interpolation Operator In(i-1): details 
°  The interpolation operator In(i-1), takes a function xcoarse on a 

coarse grid P(i-1) , and produces a function xfine on a fine grid P(i) : 
°  xfine = In(i-1)(xcoarse) 

°  In 1D, linearly interpolate nearest coarse neighbors 
•  xfine(k) = xcoarse(k) if the fine grid point  k is also a coarse one, else 
•  xfine(k) = 1/2 * xcoarse(left of k) + 1/2 * xcoarse(right of k) 

°  In 2D, interpolation requires averaging with 4 nearest   
neighbors (NW,SW,NE,SE) 
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Convergence Picture of Multigrid in 1D 

Spr 2016 Math 221 

Convergence Picture of Multigrid in 2D 
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Multigrid V-Cycle Algorithm Analysis (1/2) 
Function MGV ( b(i), x(i) ) 
   … Solve T(i)*x(i) = b(i) given b(i) and an initial  guess for x(i) 
   … return an improved x(i) 
   if (i = 1)  
        compute exact solution x(1) of P(1)        only 1 unknown 
        return x(1) 
   else  
        x(i) = S(i) (b(i), x(i))                                    x(i) =  S·x(i) + b(i)/3 
        r(i)  = T(i)*x(i) - b(i)                                    r(i)  =  T(i)*x(i) - b(i) 
        d(i) = In(i-1) ( MGV( R(i) ( r(i) ), 0 ) )         d(i) =   In·(T(i-1)-1·(R·r(i)) )  
                      (Note: we assume recursive solve is exact, for ease of analysis) 

        x(i) = x(i) - d(i)                                           x(i) =  x(i) - d(i) 
        x(i) = S(i) ( b(i), x(i) )                                 x(i) =  S·x(i) + b(i)/3 
        return x(i) 
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Multigrid V-Cycle Algorithm Analysis (2/2) 
Goal: combine these equations to get formula for error e(i) = x(i) – x: 
    x(i) =  S·x(i) + b(i)/3                        subtract  x = S·x + b(i)/3   to get   e(i) = S·e(i) 
    r(i)  =  T(i)*x(i) - b(i)                        subtract  0 = T(i)*x – b(i)  to get   r(i) = T(i)*e(i) 
    d(i) =   In·(T(i-1)-1·(R·r(i)) )               assume coarse problem solved exactly 
    x(i) =  x(i) - d(i)                               subtract x = x to get e(i) = e(i) – d(i) 
    x(i) =  S·x(i) + b(i)/3                        subtract  x = S·x + b(i)/3   to get   e(i) = S·e(i) 
 
Substitute each equation into later ones to get 
   e(i) = S · (I - In·(T(i-1)-1·(R·T(i)) ) ) · S · e(i) ≡ M · e(i) 
 
Theorem:  For 1D Poisson problem, the eigenvalues of M are either 0 or 1/9, 

independent of dimension. 
This means multigrid converges in a bounded number of steps,        

independent of dimension. 
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° What does it mean to do Multigrid anyway? 
° Need to be able to coarsen grid (hard problem) 

•  Can’t just pick “every other grid point” anymore 
•  How to make coarse graph approximate fine one 
•  What if there are no grid points? 

° Need to define R() and In() 
•  How do we convert from coarse to fine mesh and back? 
•  How do we define coarse matrix (no longer formula, like Poisson) 

° Need to define S() 
•  How do we damp “high frequency” error? 

° Dealing with coarse meshes efficiently 
•  Should we switch to another solver on coarsest meshes? 

Generalizing Multigrid beyond Poisson, to unstructured meshes (1/2) 
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Generalizing Multigrid beyond Poisson, to unstructured meshes (2/2) 
° Given original problem, how do we generate a 

sequence of coarse approximations? 
° For finite element problems, could regenerate matrix 

starting on coarser mesh 
•  Need access to original physical problem and finite element 

modeling system, i.e. a lot more than just the original matrix, so it 
may be impossible 

•  What does “coarse” mean, once very coarse? 

° Geometric Multigrid 
•  Assume we know (x,y,z) coordinates of underlying mesh, and matrix 
•  Generate coarse mesh points, analogous to taking every other point 

in regular mesh 
•  Retriangulate to get new mesh 
•  Use finite element shape functions on coarse mesh to project fine 

matrix to coarse one 

° Algebraic Multigrid 
•  Don’t even have (x,y,z) coordinates, just matrix 



17 

Spr 2016 Math 221 

Geometric Multigrid 
°  Need matrix, (x,y,z) coordinates of mesh points 

•  Not minimum information (just matrix), but a little more 
•  Based on work of Guillard, Chan, Smith 

°  Finite element intuition 
•  Goal is to compute function, represented by values at points 
•  Think of approximation by piecewise linear function connecting points 

-  Easy in 1D, need triangulated mesh in 2D, 3D uses tetrahedra 

°  Geometric coarsening 
•  Pick a subset of coarse points “evenly spaced” among fine points 

-  Use Maximal Independent Sets 
-  Try to keep important points, like corners, edges of object 

•  Retriangulate coarse points 
-  Try to approximate answer by piecewise linear function on new triangles 

•  Let columns of P (“prolongator”) be values at fine grid points given values at 
coarse ones 

-  Generalizes Interpolation operator “In” from before 
•  Acoarse = PT Afine P    –    Galerkin method    
•  For Poisson: P = In, PT = 2*R,  Tcoarse = 2 *  PT * Tfine * P 

Spr 2016 CS267 Lecture 17 

Example of Geometric Coarsening 

Simple Greedy Algorithm: 
  
     repeat 
         pick unmarked vertex 
         mark it and its neighbors 
     until no unmarked vertices 
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Examples of meshes from geometric coarsening 
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What can go wrong 

•  Care needed so coarse grid preserves geometric features of fine grid 
•  Label fine grid points as corner, edge, face, interior 
•  Delete edges between same-labeled points in different features 
•  Ex: delete edges between points on different faces 
•  Keeps feature represented on coarse meshes 
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How to coarsen carefully 
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Algebraic Multigrid 
°  No information beyond matrix needed 
°  Galerkin still used to get Acoarse = PT Afine P 
°  Prolongator P defined purely algebraically 

•  Cluster fine grid points into nearby groups 
-  Can use Maximal Independent Sets or Graph Partitioning 
-  Use magnitude of entries of  Afine to cluster 

•  Associate one coarse grid node to each group 
•  To interpolate coarse grid values to associated fine grid point, can use 

properties of PDE, eg elasticity: 
-  Rigid body modes of coarse grid point 
-  Let coarse grid point have 6 dof (3 translation, 3 rotation) 
-  Can be gotten from QR factorization of submatrix of Afine 

•  Can also apply smoother to resulting columns of P 
•  “Smoothed Aggregation”  

°  Based on work of Vanek, Mandel, Brezina, Farhat, Roux, 
Bulgakov, Kuhn … 
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Parallel Smoothers for Unstructured Multigrid 

§  Weighted Jacobi 
§  Easy to implement, hard to choose weight  

§  Gauss-Seidel 
§  Works well, harder to parallelize because of triangular solve 

§  Polynomial Smoothers  
§  Chebyshev polynomial p(Afine) 
§  Easy to implement (just SpMVs with Afine ) 
§  Chebyshev chooses p(y) such that 

§  |1 -  p(y) y | = min     over  interval [λ* , λmax] estimated to contain 
eigenvalues of Afine   
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Source of Unstructured Finite Element Mesh: Vertebra 

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta 

Study failure modes of trabecular Bone under stress 
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Micro-Computed Tomography!
µCT @ 22 µm resolution!

Mechanical Testing!
E, εyield, σult, etc.!

Methods: µFE modeling 

3D image!

2.5 mm cube!
44 µm elements!

µFE mesh"

Source: Mark Adams, PPPL 

Up to 537M unknowns 
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80 µm w/ shell 

Vertebral Body With Shell 

§  Large deformation elasticity 
§  6 load steps (3% strain) 
§  Scaled speedup 

§  ~131K dof/processor 

§  7 to 537 million dof 
§  4 to 292 nodes 
§  IBM SP Power3 

§  14 of 16 procs/node used 
§  Up to 4088 processors 

§  Double/Single Colony switch 
§  Gordon Bell Prize, 2004 
§  Clinical application to predicting 

chance of fracture due to osteoporosis 
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131K dof / proc (weak scaling) - Flops/sec/proc   
.47 Teraflops - 4088 processors 

537M dof ! 

Conclusions 

° Multigrid can be very fast 
•  Provably “optimal” (does O(N) flops to compute N unknowns)   

for many problems in which one can show that using a coarse 
grid gives a good approximation 

•  Can be parallelized effectively 

° Multigrid can be complicated to implement 
•  Lots of software available (see web page for pointers) 

-  PETSc  (includes many iterative solvers, interfaces to other 
packages, Python interface, runs in parallel) 

-  ACTS (repository for PETSc and other packages) 
–  Offers periodic short courses on using these packages 

-  MGNET 
•  Sample Matlab implementation for 1D and 2D Poisson 

-  See class web page under “Matlab Programs for Homework 
Assignments” 

Spr 2016 Math 221 
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Parallel 2D Multigrid 

° Multigrid on 2D 
requires nearest 
neighbor (up to 8) 
computation at each 
level of the grid 

° Start with n=2m+1 by 
2m+1 grid (here m=5) 

° Use an s by s 
processor grid                   
(here s=4) 
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Performance Model of parallel 2D Multigrid (V-cycle) 

°  Assume 2m+1 by 2m+1 grid of points, n= 2m-1, N=n2 

°  Assume p = 4k processors, arranged in 2k by 2k grid 
•  Processors start with 2m-k by 2m-k subgrid of unknowns 

°  Consider V-cycle starting at level m 
•  At levels m through k of V-cycle, each processor does some work 
•  At levels k-1 through 1, some processors are idle, because a 2k-1 by 2k-1 grid of 

unknowns cannot occupy each processor 

°  Cost of one level in V-cycle 
•  If level j >= k, then cost =  

   O(4j-k )       ….  Flops, proportional to the number of grid points/processor 
+ O( 1 ) α       …. Send a constant # messages to neighbors 
+ O( 2j-k) β     …. Number of words sent 

•  If level j < k, then cost =  
   O(1)            ….  Flops, proportional to the number of grid points/processor 
+ O(1) α         …. Send a constant # messages to neighbors 
+ O(1) β          .… Number of words sent 

°  Sum over all levels in all V-cycles in FMG to get complexity 
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Comparison of Methods (in O(.) sense) 

                # Flops           # Messages        # Words sent 
MG           N/p +               (log N)2                   (N/p)1/2 + 
                log p * log N                             log p * log N 
FFT          N log N / p       p1/2                  N/p 
SOR         N3/2 /p              N1/2                 N/p 
 
° SOR is slower than others on all counts 
° Flops for MG and FFT depends on accuracy of MG 
° MG communicates less total data (bandwidth) 
° Total messages (latency) depends … 

•  This coarse analysis can’t say whether MG or FFT is better when 
α >> β 
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Practicalities 

°  In practice, we don’t go all the way to P(1) 
°  In sequential code, the coarsest grids are negligibly 

cheap, but on a parallel machine they are not. 
•  Consider 1000 points per processor 
•  In 2D, the surface to communicate is 4xsqrt(1000) ~= 128, or 13% 
•  In 3D, the surface is 1000-83 ~= 500, or 50% 

°   See Tuminaro and Womble, SIAM J. Sci. Comp., 
v14, n5, 1993 for analysis of MG on 1024 nCUBE2 

•  on 64x64 grid of unknowns, only 4 per processor 
-  efficiency of 1 V-cycle was .02, and on FMG .008 

•  on 1024x1024 grid 
-  efficiencies were .7 (MG Vcycle) and .42 (FMG) 
-  although worse parallel efficiency, FMG is 2.6 times faster 

that V-cycles alone 
•  nCUBE had fast communication, slow processors 
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Multigrid on an Adaptive Mesh 

° For problems with very 
large dynamic range, 
another level of 
refinement is needed 

° Build adaptive mesh 
and solve multigrid 
(typically) at each level 

° Can’t afford to use finest mesh everywhere 
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Multiblock Applications 

° Solve system of equations on a union of rectangles 
•  subproblem of AMR 

° E.g., 

Spr 2016 
Math 221 

Adaptive Mesh Refinement 

° Data structures in AMR 
° Usual parallelism is to assign grids on each level to 

processors 
° Load balancing is a problem 
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Support for AMR 

° Domains in Titanium designed for this problem 
° Kelp, Boxlib, and AMR++ are libraries for this 
° Primitives to help with boundary value updates, etc. 
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Multigrid on an Unstructured Mesh 

° Another approach to 
variable activity is to 
use an unstructured 
mesh that is more 
refined in areas of 
interest 

° Adaptive rectangular 
or unstructured? 

•  Numerics easier on 
rectangular 

•  Supposedly easier to 
implement (arrays without 
indirection) but boundary 
cases tend to dominate 
code 

Up to 39M unknowns on 960 processors, 
With 50% efficiency (Source: M. Adams) 


