
Predicting Parallelization of Sequential Programs
Using Supervised Learning
Daniel Fried∗, Zhen Li†‡, Ali Jannesari†‡, and Felix Wolf†‡

∗University of Arizona, Tucson, Arizona, USA
†German Research School for Simulation Sciences, Aachen, Germany

‡RWTH Aachen University, Aachen, Germany
dfried@cs.arizona.edu,{z.li,a.jannesari,f.wolf}@grs-sim.de

Abstract—We investigate an automatic method for classifying
which regions of sequential programs could be parallelized, using
dynamic features of the code collected at runtime. We train a
supervised learning algorithm on versions of the NAS Parallel
Benchmark (NPB) [14] code hand-annotated with OpenMP par-
allelization directives in order to approximate the parallelization
that might be produced by a human expert. A model comparison
shows that support vector machines and decision trees have
comparable performance on this classification problem, but
boosting using AdaBoost is able to increase the performance of
the decision trees. We further analyze the relative importance
of the collected program features and demonstrate that within-
loop instruction counts provide the greatest contribution to
decision tree error reduction, with dependency graph features
of secondary importance.

I. INTRODUCTION

The growing prevalence of multi-core computing systems
has led to an increased need for parallelized code capable of
fully using the processing power of modern systems. Parallel
programming models such as OpenMP make writing parallel
code less difficult and error-prone by managing the low-level
details of thread handling and synchronization. OpenMP in
particular provides a way to incrementally parallelize existing
sequential code by adding annotations to regions of code that
specify the code should be run in separate threads and control
how the work should be distributed and results synchronized.
However, a fully-automatic system for auto-parallelization
must choose which regions of sequential code to annotate
with these parallelization directives and select the type of
parallelization directive to apply to each region.

To select which regions of code to parallelize, static analy-
sis (examination of the source code without running it) and
dynamic analysis (running the source code and monitoring
control and data flow) can be used. Static analysis can de-
termine which regions of code are guaranteed to be paralleliz-
able. However, static analysis can be overly conservative in
identifying which loops are parallelizable since potential data
dependencies identified by a static analysis of the program may
actually never occur when the program is run. We investigate
using dynamic analysis to determine whether to parallelize a
given region of code. Our system extracts features from data
dependency graphs generated dynamically as the program is
run to capture the observed dependencies between instructions.

In this work we address the problem of identifying loops
that are efficiently parallelizable, meaning that parallelization
will result in a runtime speedup without a prohibitive amount
of memory or thread synchronization overhead. Since the gen-
eral agreement is that expert programmers are most capable of

determining which loops are efficiently parallelizable, we use
OpenMP parallelization annotations on standard benchmarks
as groundtruth for classifier training. This allows us to train and
evaluate a model against how a programmer might parallelize
existing sequential code.

The paper is structured as follows. In Section II, we
overview related work on using machine learning techniques
to model program parallelization and performance using static
and dynamic features. We outline our method of classifica-
tion in Section III, describing features used in the learning
algorithms, the construction of training and evaluation data
sets, and experimental methodology. Section IV gives an
overview of the classification models used. Parameter setting
and classification results are discussed in Section V. Section VI
analyzes the relative importance of each extracted feature in
classification error minimization. We present the classification
results in Section VII, and outline prospects for further inves-
tigation in Section VIII.

II. RELATED WORK

Previous work has applied machine learning algorithms
to the tasks of code optimization selection, identification of
parallelizable regions of sequential code, and the automatic
parallelization of such regions. These approaches include
supervised methods, which train a model using information
about whether parallelization is suitable for given regions
of sequential code, as well as unsupervised methods, which
attempt to infer parallelization effects without using labelled
training data.

Tournavitis et al [16] perform supervised classification of
loops in sequential code as parallelizable using a support vector
machine and provide a method for automatically parallelizing
loops with OpenMP pragma statements. The Centrifuge system
of Demme et al [5] takes an unsupervised approach, building
graphs of program control and data flow from static and
dynamic analyses of the code, with graph vertices at the
level of blocks of code. Programs are clustered into groups
using similarity between these flow graphs. These clusters are
evaluated based on the responsiveness of programs within each
cluster to optimizations. Srivastava et al [15] use a neural
network to predict how changing loop scheduling policy affects
load balancing in an already parallelized application. Although
not directly predicting parallelization, Park et al [11] use an
SVM with a kernel function operating on the static control flow
graph of a program to predict the improvements gained from
compiler optimizations, and demonstrate that this graph-based
classification improves performance.

func: 1:433-1:594

loop: 1:587-1:590

loop: 1:576-1:582

loop: 1:578-1:580

loop: 1:463-1:569

loop: 1:485-1:491

loop: 1:487-1:489

loop: 1:547-1:556 loop: 1:566-1:568 loop: 1:534-1:536

1:587

1:588 1:576

1:589

1:581

1:437

1:579

1:578

1:577

1:5481:463

1:487

1:490 1:566

1:555

1:5671:488 1:4851:486

1:447

1:4541:549

1:5351:444 1:547

1:534

1:541

1:445

1:446

1:455

1:470

1:561

1:469

1:433

1:468

1:443

1:436

1:593

Fig. 1: Part of a data dependency graph for a function from the sequential CG (conjugate gradient) NAS Parallel Benchmark.
Vertices represent the line numbers of individual instructions. RAW dependencies are blue, WAR dependencies are red, and
WAW dependencies are green. Boxes correspond to loops within the function (possibly nested).

.

Our method, like Park’s and Tournavitis’s, is supervised
and, like Demme’s, uses data dependency graph features
collected dynamically from running the program. Unlike these
methods, our system is trained using a set of existing paral-
lelizations of sequential code, creating a model of human par-
allelization decisions. Additionally, we extend the work of the
supervised parallelization prediction methods through model
comparison, the application of boosting to improve classifier
performance, and analysis of relative feature importance in
error minimization.

III. LOOP CLASSIFICATION

A. Feature Extraction

We use the DiscoPoP (Discovery of Potential Parallelism)
tool [10] to extract dynamic profiling and instruction depen-
dency data from instrumented versions of sequential programs.
First, sequential programs are compiled to the Low Level Vir-
tual Machine (LLVM)’s intermediate representation (IR) [9].
Then, DiscoPoP instruments the target program and executes
it. Control-flow information and data-dependence relationships
are obtained in this phase. Next, analysis of potential paral-
lelism is performed based on the information produced in the
first phase, and the final result of the analysis is written into
a file on the disk. DiscoPoP provides a number of features
about the program execution for each block of code executed.
A subset of these features (outlined below and listed in Table
I) are extracted from the DiscoPoP output for each loop in the
program and used as input to the classification algorithms.

N_Inst and exec_times provide a direct measurement
of the execution cost of a loop. They are the number of IR

TABLE I: Dynamic features used for loop parallelization
classification.

feature name description
N Inst Number of instructions within the loop
exec times Total number of times the loop is executed
CFL Critical path length
ESP Estimated speedup
incoming dep Dependency count of external instructions on loop instructions
internal dep Dependency count between loop instructions
outgoing dep Dependency count of loop instructions on external instructions

instructions within the loop body and the number of times the
loop is executed, respectively. Critical path length, CFL, mea-
sures the length of the maximal length sequence of dependent
instructions within the loop [17]. Estimated speedup, ESP, is
a heuristic calculated using the maximum breadth and critical
path length of the dependency graph and Amdahl’s Law [1].
This feature estimates the maximal decrease in run time for a
given loop if it is parallelized.

To allow classification based on data dependencies between
a loop and the code containing it, we extract features from each
program’s dependency graph. Fig. 1 shows a portion of a data
dependency graph produced for a single function from CG, one
program from the NAS Parallel Benchmark. Vertices represent
individual instructions. Edges between instructions are the data
dependencies detected by DiscoPoP. Our graph features are the
counts of each type of dependency (RAW, WAR, and WAW)
leaving each loop, entering each loop, and contained within
each loop. These features extracted from the dependency
graph for a loop (outgoing_dep, incoming_dep, and
internal_dep, respectively) are further subdivided into
counts for each of three different types of data dependency:
Read After Write (RAW), Write After Read (WAR), and Write
After Write (WAW). A fourth type of data dependency, Read
After Read, is not considered, since dependencies involving
only reads do not affect parallelization.

B. Comparing Sequential and Parallel Code

We use C implementations of the NAS Parallel Bench-
marks (NPB) [2] provided in the SNU NPB Suite [14]. This
test suite includes a set of programs implementing numerical
algorithms that have been parallelized by hand using the
OpenMP framework. However, the parallel and sequential ver-
sions of the benchmarks provided are not directly comparable
either in source code or single-threaded performance due to
the restructuring and refactoring of the parallel codes, similar
to the restructuring reported by Tournavitis et al [16]. To
facilitate direct comparison of the parallelized code against
sequential versions, we produce sequential code from the
OpenMP versions of the benchmarks by stripping out all
OpenMP pragma statements and replacing calls to OpenMP’s
thread counting and thread identification functions with con-

stants appropriate for running in a single thread. This produces
two versions of the benchmark code that are identical except
for the presence of the OpenMP parallelization directives.
Stripping out all pragma statements in this manner does not
affect program correctness: all sequential programs produce
the same numerical output as their parallelized counterparts
when validated on the NPB tests.

C. Classification Methodology

In the supervised learning process, we divide the loops
into training and testing sets. Each loop in the training set is
labelled according to whether or not it is parallelized with an
OpenMP pragma in the parallelized version of the benchmarks.
All benchmarks are then instrumented and run with input size
S [2], the smallest input size defined for the benchmarks.
The dynamic features described above are recorded for each
for loop in the program and used as input to one of the
classification models (support vector machine, decision tree,
or boosted ensemble) described below. These classification
models learn an association between the features of each loop
and whether or not it is designated as parallelized (using an
OpenMP pragma) in the parallel version of the benchmarks.

To evaluate the ability of the classifier to predict whether
unseen code can be parallelized, loops from the testing set are
shown to the classifier, which predicts whether each individual
loop should be parallelized using OpenMP. These predictions
are then compared against the loops in the parallel version of
the code.

We use a modified form of Leave-One-Out cross validation
(LOOCV) to evaluate the performance of a classifier and
estimate generalization error, or the tendency of the classifier
to be biased toward the training data and lose accuracy on
predictions of unseen data. Loops within a single function
from the benchmark are withheld as the testing set and all
other loops are used as the training set. Scores are recorded
for this split of the data. This process is repeated with loops
from each entire function in turn withheld as the testing set.
Scores are then averaged across all partitions.

LOOCV’s large training sets and high number of folds
allow us to decrease variance in our estimates of the gen-
eralization error by running as many partitions as possible.
We separate the loops based on their containing functions
since loops can be nested inside of one another within the
same function, and could therefore have identical features,
such as number of incoming dependencies. Separating based
on containing function therefore decreases the chance that a
loop present in the testing set could exactly match one present
in the training set.

IV. CLASSIFICATION MODELS

We compare the performance of three different classifi-
cation models: support vector machine (SVM), decision tree,
and an ensemble of decision trees boosted with AdaBoost. The
scikit-learn [12] Python library is used for implementa-
tion of all classifiers.

A. Support Vector Machine

We use a soft margin SVM [4] with a Gaussian Radial
Basis Function (RBF) kernel, which maps data non-linearly

based on distance from the origin in the feature space. Since
the RBF’s performance is dependent on the mean and variance
of its features, we normalize all data by centering each feature
around 0 and scaling so that the standard deviation is 1.

The SVM has two hyperparameters: the soft margin multi-
plier, C, and a scaling constant, γ, in the RBF kernel function:

K(x1,x2) = exp(−γ||x1 − x2||22)

where x1 and x2 are feature vectors for two source code loops.
We set C and γ using cross-validation on a training set, and
evaluate performance on a held-out evaluation set (see Sec. V
for details).

B. Decision Tree

SVMs learn a classification boundary in high dimensional
space that can be difficult to visualize. Decision trees, on
the other hand, produce an interpretable set of rules used for
classification, and although often less accurate than an SVM,
are less sensitive to error caused by irrelevant features [8]. This
feature robustness motivates our comparison of decision trees
to the SVM, since it is unknown if all the dynamic program
features extracted are relevant to the classification problem.

We use the CART tree construction algorithm with Gini
impurity function [3]. The hyperparameters for the tree clas-
sifier are the maximum depth of the tree and the maximum
number of features to consider in any node when looking for
the best split. Sec. V contains details of how the optimal values
of these hyperparameters are determined.

C. Boosted Decision Trees

Boosting attempts to increase classification performance by
combining the decisions of many weak classifiers (classifiers
not closely correlated with the target class). We use the Ad-
aBoost algorithm [7] with a decision tree as the base classifier.
AdaBoost iteratively trains T classifiers on the training data. At
each stage, it weights the importance of each sample according
to its misclassification by previous iterations: samples that are
misclassified receive higher weights, biasing future classifier
iterations toward classifying these harder examples correctly.
Additionally, each iterated classifier is assigned a weight which
is large if the classifier’s error rate on the training set is small,
and vice versa. The final result is an ensemble of instances of
the weak classifier, each with its own weight. During testing,
the ensemble classifies unseen instances using a weighted
combination of the votes from each of these weak classifiers.
We refer to [6] for a thorough description of the algorithm.

Hyperparameters for AdaBoost are the number of iterated
classifiers, T ; a learning rate 0 < r ≤ 1 which controls to
what degree sample weights are updated at each iteration; and
the hyperparameters of the base classifier (maximum depth
and maximum number of features for our base decision tree
classifier). We set these using cross-validation, see Sec V.

V. PARAMETER SETTING AND EVALUATION

To maximize classifier performance, it is necessary to
tune the hyperparameters for each of the classification models
described above. We split the available data into a training
set and a held-out evaluation set. Hyperparameter setting is

-12.0 -9.0 -6.0 -3.0 0.0 3.0 6.0 9.0
log2γ

-6.0

-1.0

4.0

9.0

14.0

19.0

24.0

29.0

34.0

lo
g 2
C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) SVM with RBF Kernel

1 6 11 16 21 26 31 36 41 46
Max Depth

1

3

5

7

9

11

13

15

M
ax

 F
ea

tu
re

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Decision Tree

1 4 7 10 13 16 19
Decision Tree Max Depth

0.05

0.2

0.35

0.5

0.65

0.8

0.95

Le
ar

ni
ng

 R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) AdaBoost with Decision Tree base classifier,
Max Features = 11

Fig. 2: Classifier F1 score as a function of hyperparameters, cross-validated using function-level LOOCV across the training data
set.

performed through cross-validation on the training set, and
classifiers are scored on the evaluation set. The training set
consists of 630 loops, and the evaluation set of the remaining
160 loops, for a split of roughly 80% / 20%. 126 loops in
the training set have pragma statements, compared to 21 in
the evaluation set. Loops are divided so that no loop in the
training set is in the same containing function as a loop in the
evaluation set for the reasons described in Sec III-C.

To set the parameters for a given classifier, we perform a
grid search through the Cartesian product of possible parame-
ters for that classifier, within a given range and step size, delta
(Table II). Parameters are chosen that maximize average F1
score averaged across all LOOCV folds within the training set.
Once parameters are tuned, evaluation is performed by running
the classifier on the held-out evaluation set. Using each scoring
metric, labels produced by the classifier are compared with the
presence or absence of a pragma on each loop in the parallel
version of the NPB code.

Fig. 2 shows average F1 score as a function of parameter
values for each classifier type. The heatmap in Fig. 2a shows
that the SVM has a relatively narrow range of high perfor-
mance and that increasing or decreasing C and γ will decrease
F1 score. On the other hand, Fig. 2b shows that increasing the
depth of the decision tree beyond about 4 and increasing the
number of features considered at each split of the tree only
increases the cross-validated F1 score slightly, which indicates
that the decision tree is fitting the data completely for relatively
small values of these parameters. In Fig. 2c, we see that F1

TABLE II: Parameter ranges used in grid search for each clas-
sifier and optimal parameter value as determined by LOOCV
on the training set.

optimal
classifier parameter range delta value

SVM C [2−6, 235] 2 (exp) 222

γ [2−12, 210] 2 (exp) 2−4

Decision Tree Max Features [1, 16] 1 11
Max Depth [1, 50] 1 13

AdaBoost DT Learning Rate [0.05, 1] 0.05 0.25
DT Max Depth [1, 20] 1 3

score does not vary much with the learning rate parameter, and
is more greatly affected by the max depth limit of the base
decision tree classifier. Weaker (depth-limited) decision trees
produce higher F1 scores when using the AdaBoost method.

VI. FEATURE ANALYSIS AND SELECTION

We can compute feature importance in a decision tree by
calculating a weighted sum of the reduction in the impurity
criterion that each feature provides across all nodes for which
it is the splitting point [8]. The weight on each node in this
linear combination is the number of training instances present
within the node. The importance for a feature l is calculated
as

Importance(l) =

M∑
m=1

(
wm

MJ−1∑
t=1

i2t · I(v(t) = l)

)
where m indexes over the M trees in the ensemble, wm is
the weight of the tree within the ensemble, t indexes over the
internal nodes inside each tree, i2t is the square of the loss in
Gini impurity for this node, and I(v(t) = l) is an indicator
function that is 1 if node t splits on feature l, and 0 otherwise.

Intuitively, features that receive higher importance scores
were used to split larger number of training instances and re-
sulted in larger impurity reductions in these splits. Importance
for a single tree may not be informative if the tree is a weak
classifier, but if we have an ensemble of trees (as we do in

TABLE III: Feature importance in decision trees, calculated
using weighted error reduction in an AdaBoost ensemble of
trees.

feature importance
N Inst 0.12
internal dep RAW 0.09
outgoing dep RAW 0.08
incoming dep 0.08
incoming dep RAW 0.08
internal dep WAR 0.08
outgoing dep 0.07
exec times 0.07

feature importance
internal dep 0.06
incoming dep WAR 0.06
outgoing dep WAR 0.06
CFL 0.05
internal dep WAW 0.02
ESP 0.02
outgoing dep WAW 0.02
incoming dep WAW 0.02

AdaBoost), we can average these feature importances across
all the trees in the ensemble, producing more robust feature
scores. Table III shows relative feature importance calculated
in this manner on the loops in the training set. In Sec. VII
we use these importance scores to perform feature selection,
and evaluate the effect on classification performance on the
held-out evaluation set.

VII. RESULTS

Classifier results on the held-out evaluation set are shown
in Table IV. Results are shown for two sets of features: all
features listed in Table III, and those top features with an
importance score of 0.08 or greater (calculated using the error
reduction method of Sec VI). Also shown for comparison are
the results achieved by a baseline classifier that simply predicts
every loop as ”not parallelizable”.

We report accuracy as a basic measure of classifier ef-
fectiveness. However, since the majority of loops (643 out of
790) in our benchmarks do not have pragmas, a classifier could
achieve a high accuracy by simply marking every loop it sees
as not parallelizable, as the baseline classifier does. Therefore,
we score classifiers according to three additional metrics, to
more accurately portray performance despite class imbalance:
precision, the proportion of the classifier’s positive predictions
that were correct; recall, the proportion of the parallelizable
loops the classifier recognized; and F1-measure, the harmonic
mean of precision and recall.

The scores under identifying pragma presence assess each
classifier’s ability to correctly identify loops with pragmas
as parallelizable (i.e. a true positive is a loop with pragma
that the classifier identified as parallelizable, while a false
positive is a loop without pragma that the classifier identified as
parallelizable). The scores in the identifying pragma absence
set of columns assess each classifier’s ability to correctly
identify loops without pragmas (i.e. a true positive is a
loop without a pragma that the classifier did not identify as
parallelizable, while a false positive is a loop with a pragma
that the classifier did not identify as parallelizable). Accuracy
summarizes overall success for both classes as the number
of correct identifications out of the total number of testing
instances.

Because of the class imbalance, the baseline classifier is
able to achieve a high accuracy simply by predicting every
testing instance as no pragma. When using all features, the
SVM and Decision Tree classifiers achieve nearly identical

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SVM (area = 0.88)
Decision Tree (area = 0.76)
AdaBoost DT (area = 0.91)

Fig. 3: Receiver operating characteristic curves showing trade-
off between true positive rate (aka recall, TP/(TP + FN))
and false positive rate (FP/(FP + TN)) as a score cutoff
threshold varies for each classifier.

scores. Boosting (with AdaBoost) significantly improves the
precision of the decision tree resulting in a higher F1 score as
well as increased overall accuracy. When using only the most
important features, as ranked by importance in the boosted
ensemble of decision trees, performance of the SVM and
decision tree both increase in accuracy and F1 score, although
performance of the AdaBoost ensemble decreases slightly. The
lower performance of the SVM and decision tree when using
all features could indicate overfitting to less-relevant features.
However, as the evaluation scores of AdaBoost are higher
when using all features, overfitting seems to have less of an
effect on the performance of the boosted trees.

To evaluate the trade-off between true positive and false
positive rates in each type of classifier, we also evaluate
prediction performance using thresholded score classification.
Each type of classifier can be modified to output a score
indicating the confidence that a given loop has a pragma,
instead of simply functioning as a binary classifier. For SVM,
this score is calculated using Platt scaling [13], with five-fold
cross validation to prevent overfitting. For the decision tree,
it is simply the proportion of training instances with pragmas
in the decision tree leaf reached by the data point. The score
in the boosted decision tree is the weighted average of the
scores of all trees in the ensemble. Varying a cutoff threshold

TABLE IV: Classification scores on the held-out evaluation set, separated by loops with pragmas and loops without pragmas. All
Features indicates classifier performance using all extracted features. Top Features indicates classifier performance using features
with importance ≥ 0.08 (see Sec. VI).

identifying pragma presence identifying pragma absence
classifier precision recall f1-measure precision recall f1-measure accuracy
Baseline 0.00 0.00 0.00 1.00 1.00 1.00 0.81
SVM - All Features 0.46 0.62 0.53 0.94 0.89 0.92 0.85
Decision Tree - All Features 0.45 0.62 0.52 0.94 0.88 0.91 0.85
AdaBoost DT - All Features 0.72 0.62 0.67 0.94 0.96 0.95 0.92
SVM - Top Features 0.53 0.81 0.64 0.97 0.89 0.93 0.88
Decision Tree - Top Features 0.63 0.57 0.60 0.94 0.95 0.94 0.90
AdaBoost DT - Top Features 0.71 0.48 0.57 0.92 0.97 0.95 0.91

on these scores for each classifier gives a trade-off between
true positive rate and false positive rate, producing receiver-
operating characteristic (ROC) curves (Fig. 3). The area under
these curves is another measure of the quality of the classifier:
1.0 is perfect, and 0.5 is no better than chance. The AdaBoost
decision tree has the highest area under its ROC curve, at 0.91.

VIII. CONCLUSION AND FUTURE WORK

This work investigates the use of dynamically-collected
program features for the prediction of loop parallelization,
modelled after human-produced parallelization decisions. We
demonstrate an improvement in classifier performance using
boosting of weak decision tree classifiers and analyze the
importance of each program feature in the minimization of
error in these decision trees. We observe that number of
instructions within a loop is the feature that best minimizes
classification error in decision trees. This may be due to a
tendency for programmers to parallelize loops that perform a
large amount of work. Extra computation required for thread
management could make parallelization of simple loops not
worth the extra overhead. Additionally, we find that RAW
dependency counts have the highest relative feature importance
of the three types of data dependencies. Furthermore, when
evaluating the classifiers on only the most important features
according to the decision-tree criterion, we see increased
performance by both the SVM and decision tree, although they
do not outperform the boosted tree classifiers when trained on
all features.

We currently train and evaluate our classifier using a
human-produced gold standard, in the form of the OpenMP-
parallelized versions of the NAS Parallel Benchmarks. How-
ever, it may be the case that some loops that are not labelled
with pragma statements in this benchmark are effectively
parallelizable, or that some loops that have been parallelized
do not produce an overall speedup in program execution. In
future work, we could acquire labels using actual performance
comparisons of sequential and parallelized code, rather than
relying on the presence or absence of these OpenMP pragmas
in the benchmarks as an indicator of whether the loop is
parallelizable. It would also be possible to profile each individ-
ual loop in the program and calculate the speedup associated
with each. This numeric data could be used as the target
of a regression classifier, using for example support vector
regression or (boosted) decision tree regression, with the goal
of predicting the speed up resulting from parallelization of
an individual loop. Such a regression algorithm could use the
same dynamic runtime behavior and dependency features used
in this classification problem.

Finally, there is the potential to include more features
from profiling or statically analyzing the sequential code to
improve detection of parallelism. We currently use numerical
dependency counts extracted from the dynamic data depen-
dency graph of the application, but it is possible that a full
comparison of dependency graphs, using a graph kernel or
graph similarity method, could capture more of the information

present in these graphs. Control-flow graphs could also be
produced and analyzed to contribute information about loop
behavior, possibly increasing accuracy in the classification of
potential parallelism.

REFERENCES

[1] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, spring joint computer conference, pages 483–485. ACM, 1967.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, et al. The NAS parallel benchmarks summary and prelimi-
nary results. In Supercomputing, 1991. Supercomputing’91. Proceedings
of the 1991 ACM/IEEE Conference on, pages 158–165. IEEE, 1991.

[3] L. Breiman. Classification and regression trees. CRC press, 1993.
[4] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.
[5] J. Demme and S. Sethumadhavan. Approximate graph clustering for

program characterization. ACM Trans. Archit. Code Optim., 8(4):21:1–
21:21, Jan. 2012.

[6] Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612,
1999.

[7] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. In Computational learning
theory, pages 23–37. Springer, 1995.

[8] T. Hastie, R. Tibshirani, and J. J. H. Friedman. The elements of
statistical learning, volume 1. Springer New York, 2001.

[9] C. Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. Master’s thesis, Computer Science Dept., University
of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[10] Z. Li, A. Jannesari, and F. Wolf. Discovery of Potential Parallelism in
Sequential Programs. In Proc. of the 42nd International Conference
on Parallel Processing Workshops (ICPPW), Workshop on Parallel
Software Tools and Tool Infrastructures (PSTI), Lyon, France, 2013.

[11] E. Park, J. Cavazos, and M. A. Alvarez. Using graph-based program
characterization for predictive modeling. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, pages
196–206. ACM, 2012.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[13] J. C. Platt. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. In ADVANCES IN
LARGE MARGIN CLASSIFIERS, pages 61–74. MIT Press, 1999.

[14] S. Seo, G. Jo, and J. Lee. Performance characterization of the
NAS parallel benchmarks in OpenCL. In Workload Characterization
(IISWC), 2011 IEEE International Symposium on, pages 137–148.
IEEE, 2011.

[15] S. Srivastava, B. Malone, N. Sukhija, I. Banicescu, and F. M. Ciorba.
Predicting the flexibility of dynamic loop scheduling using an artificial
neural network. In 12th International Symposium on Parallel and
Distributed Computing (ISPDC), 2013.

[16] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle. Towards
a holistic approach to auto-parallelization: integrating profile-driven
parallelism detection and machine-learning based mapping. In ACM
Sigplan Notices, volume 44, pages 177–187. ACM, 2009.

[17] C.-Q. Yang and B. P. Miller. Critical path analysis for the execution of
parallel and distributed programs. In Distributed Computing Systems,
1988., 8th International Conference on, pages 366–373. IEEE, 1988.

