
Low-rank tensor approximations for
compositional distributional semantics

Daniel Fried
Churchill College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of

Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: df345@cam.ac.uk

July 1, 2015

Declaration

I Daniel Fried of Churchill College, being a candidate for the M.Phil in

Advanced Computer Science, hereby declare that this report and the work

described in it are my own work, unaided except as may be specified below,

and that the report does not contain material that has already been used to

any substantial extent for a comparable purpose.

Total word count: 13,886

Signed:

Date:

Abstract

This thesis explores compositional distributional semantics: methods for

mapping words to feature vectors representing their meaning, and compos-

ing these word vectors to produce representations of the meanings of longer

expressions such as phrases and sentences. Several compositional distribu-

tional semantic methods use matrices and their generalization, higher-order

tensors, to model multi-way interactions between vectors. Unfortunately, the

size of these higher-order tensors has been one obstacle to large-scale imple-

mentations of the compositional frameworks that would be able to produce

representations for full-length sentences with a diverse vocabulary.

In this work, we investigate whether we can match the performance of full

matrices and tensors with low-rank approximations that use a fraction of

the original number of parameters. We compare low-rank matrices and ten-

sors to full, unconstrained-rank matrices and tensors on standard semantic

similarity tasks for two syntactic constructions: adjectives represented by

matrices, and transitive verbs represented by third-order tensors. Using low-

rank approximations allows us to reduce the number of the parameters in the

models by about 40% for matrices, and by 99% (two orders of magnitude) for

the third-order tensors. Despite this reduction in the size of the models, the

low-rank matrices and tensors achieve performance comparable to, and occa-

sionally surpassing, the full models. The parameters of these low-rank repre-

sentations can be optimized directly using standard gradient-based methods,

allowing them to be incorporated into existing machine learning models for

compositional distributional semantics.

Acknowledgements

This thesis was done under the supervision of Stephen Clark and Tamara
Polajnar. I’ve learned a great deal from them and would like to thank them
for their encouragement and advice on this project, and for always being
accessible. I’d also like to thank Tamara for allowing me to use and adapt her
code from previous work for building the count vectors for words, adjective-
noun pairs, and subject-verb-object triples.

Contents

1 Introduction 1

2 Background: vector space semantics 5

2.1 Vector representations for words 6

2.1.1 Count models . 7

2.1.2 Prediction models . 11

2.2 Compositional distributional semantics 13

2.2.1 Combinatory categorial grammar 15

2.2.2 CCG in vector space 16

3 Background: factorization and optimization 19

3.1 Matrix and tensor decompositions 19

3.1.1 Singular value decomposition 20

3.1.2 Canonical polyadic decomposition 21

3.2 Optimization . 23

3.2.1 Optimization methods 23

3.2.2 Preventing overfitting 26

4 Learning distributional models 29

4.1 Learning vectors . 30

4.1.1 Defining context for multi-word expressions 30

4.1.2 Modifying word-based models 32

4.2 Learning matrices and tensors 33

4.2.1 Full matrices and tensors 34

4.2.2 Low-rank matrices and tensors 36

i

5 Experiments 41

5.1 Training . 41

5.1.1 Corpus data . 42

5.1.2 Producing vectors for training 42

5.1.3 Training methods . 45

5.2 Tasks . 46

5.3 Results . 48

5.3.1 Adjective matrix results 48

5.3.2 Verb tensor results . 50

6 Related work 53

7 Conclusions 57

7.1 Summary . 57

7.2 Future Work . 57

ii

Chapter 1

Introduction

How can a computer represent the meaning of human languages? A long tra-

dition of work in linguistic semantics, the study of the meaning of language,

has produced a variety of representations that have been used in computa-

tional linguistics (Liang and Potts, 2015). One logic-based approach, exem-

plified by the theories of Montague (1970; 1974) and recent computational

implementations (Bos et al., 2004; Zettlemoyer and Collins, 2005), maps lin-

guistic units, typically sentences, to logical representations. It provides an

account of compositionality : how the meanings of words compose to form

the meaning of phrases, sentences, and documents. However, while this logi-

cal approach allows applying theorem-provers and model theory to language,

and provides an interpretation for words with direct logical meanings such

as “all” and “or”, it typically leaves the meanings of content words, such as

“ran” or “car”, symbolic and unspecified.

A recent wave of statistical approaches to semantics use algorithms and opti-

mization to produce numeric representations for units of language, typically

words. This work has usually been based on the distributional hypothesis,

the idea that words which appear in similar contexts tend to be related in

meaning (Harris, 1954; Firth, 1957; Turney and Pantel, 2010). For exam-

ple, the semantic similarity of “automobile” and “car” is revealed by their

usage with words such as “road”, “drive”, “wheels”, and “fuel”. Large text

1

corpora have made it possible to automatically produce representations of

words’ distributions based on this principle. Counting the co-occurrence of

words with some type of context, such as nearby words within a fixed length

window, produces vector representations for words, where the basis elements

of these vectors correspond to possible contexts. These vectors can then be

compared using distance in vector space to approximate the similarity of the

words’ meanings, or used as features in a machine learning system.

The distributional hypothesis has been borne out in practice: vector space

representations of words’ contextual distributions have been used to improve

the performance of machine learning systems performing a wide variety of

tasks in computational language processing (Schütze, 1998; Baker and Mc-

Callum, 1998). Such methods allow words to be compared using distance in

the vector space, providing fine-grained representation of lexical relationships

such as similarity, which correlate well with human similarity judgements

(Mitchell and Lapata, 2010).

While there is, as of yet, no work that comprehensively combines the dis-

tributional, logical, and compositional accounts of semantics, there has been

work on combining distributional and logical representations (Copestake and

Herbelot, 2012; Beltagy et al., 2013), as well as the approach we follow in this

thesis, compositional distributional semantics (CDS). CDS aims to develop

methods for composing the distributional representations for words to pro-

duce representations of phrases and sentences (Mitchell and Lapata, 2008;

Baroni and Zamparelli, 2010; Socher et al., 2012; Zanzotto and Dell’arciprete,

2012; Baroni et al., 2014a).

This thesis will be situated within the Categorial framework for CDS (Coecke

et al., 2011), which uses linear algebra to compose vector-space representa-

tions for words into representations for phrases and sentences. Semantic

composition in this framework is driven by the syntactic structure of the

phrases and sentences, and the primary method of composition is function

application. An adjective, for example, can be thought of as a function that

takes a noun as input and returns a modified noun – so if we represent nouns

(for example, car) as vectors, we could represent each adjective (such as

2

red) as a matrix, and multiply the matrix for red with the vector for car to

produce a vector representing red car. Similarly, transitive verbs could be

represented as tensors taking two noun phrase vectors and returning a vector

representing a sentence.

A concrete implementation of the Categorial framework requires specifying

the vectors, matrices, and higher-order tensors that represent words. There

are a number of standard approaches for creating vectors to represent words

based on their contexts. Similar contextual methods can also be used to

learn vectors for phrases and sentences. However, there are several obstacles

to learning the matrices and tensors used to transform the input word vectors

into the output phrase vectors. These problems stem from the large number

of parameters needed for the tensor models: even a model in relatively low-

dimensional vector space will require hundreds or thousands of parameters

in its tensors.

For example, the syntactic type ((S\NP)\(S\NP))/((S\NP)\(S\NP)) (see

§2.2.1 for a description of this notation) is relatively frequent, appearing

143 times in a sample of about 1900 sentences from an annotated corpus

of newspaper text (Hockenmaier and Steedman, 2007). This syntactic type

requires a seventh-order tensor to represent in the full form of the Categorial

framework. If we use 50-dimensional vector spaces (most previous work has

used at least this many dimensions to get good results on phrase similarity

tasks, limited to tensors with much lower order) and store the entire tensor,

we would need 507 or about 780 billion parameters for this single tensor,

requiring terrabytes of storage space. If parameters are independent between

words, so that each word has its own unique tensor, the number of parameters

required is even higher.

Our primary goal in this thesis is to reduce the number of parameters re-

quired to represent these matrices and higher-order tensors, helping to lay

the foundation for a full implementation of the framework. We use low-rank

matrix decomposition and its higher-order generalization to tensors (Kolda

and Bader, 2009) to approximate full matrices and tensors, and investigate

optimization methods to set the parameters of the matrices and tensors. By

3

using these low-rank decompositions, we can both train the model and use it

to produce representations for unseen text without ever constructing the full

matrices and tensors. We are therefore able to improve substantially (by as

much as two orders of magnitude for third-order tensors) on memory usage.

Despite the large reduction in model complexity, we show that these low-rank

approximations achieve comparable or even better performance than the full

matrices and tensors on three different semantic comparison tasks, for two

types of syntactic composition (adjectives and verbs) and two different meth-

ods of defining distributional vector spaces.

A paper presenting the low-rank tensor decomposition model and results for

the verb disambiguation and sentence similarity tasks has been accepted to

appear at the 2015 Meeting of the Association for Computational Linguis-

tics (Fried et al., 2015).

4

Chapter 2

Background: vector space

semantics

A foundational issue in natural language processing (NLP) is how to rep-

resent the meanings of words, phrases, sentences, and documents. Many

NLP systems have successfully used the simple approach of treating words

as atomic units, and counting the number of times each word occurs in a

text. For example, a system designed to determine whether a movie review

is positive or negative could use a large number of training reviews to learn

that reviews where the word exciting appears multiple times have a higher

probability of being positive than reviews containing boring.

However, this simple bag-of-words model has a number of shortcomings.

First, it encodes no knowledge about the similarity in meanings between

words: in our example, if the sentiment classifier is able to determine that

exciting is a positive feature, it would ideally be able to treat words with

similar meaning, such as thrilling, as positive features as well. Second, word

meanings influence each other in complex, compositional ways: “despite a

boring start, it turned out to be wonderful” and “despite a wonderful start,

it turned out to be boring” have opposite meanings despite containing all

the same words. A recent strand of research, compositional distributional

semantics, attempts to address both of these problems: first by developing

5

pet

extinct

eats

cat dog

mammoth

Figure 2.1: A three-dimensional subspace containing count vectors repre-
senting words. Each target word (cat, dog, mammoth) has a vector whose
components count the number of times the word co-occurred with a given
context word (pet, extinct, eat).

vector representations for word meanings that allow finer-grained compar-

isons of similarity and relationships between words, and then by composing

these word representations into representations of the meanings of phrases

and sentences.

2.1 Vector representations for words

The traditional methods for producing vector representations of word mean-

ings directly encode words’ contextual distributions in vectors by counting

their contexts within a large corpus.1 Each component of a word’s vector

corresponds to one possible context (or one dimension of a low-dimensional

projection of this contextual space, as we will describe). For example, us-

ing other nearby words as context might produce vector representations like

Fig. 2.1. Following Baroni et al. (2014b), we refer to these methods of pro-

ducing distributional vectors for words as count models.

More recently, a family of methods based on machine learning have emerged

under various names: distributed representations, neural language models,

1These counts are often re-weighted in the final vectors, as described later.

6

and word embedding methods. The common trait of all these prediction

models is that they use machine learning to predict words given their con-

texts, or vice versa, and learn vectors in the process. The vectors produced by

these prediction models have similar properties to the count vectors: words

that appear in similar contexts have similar vectors. In fact, some work has

shown that certain types of prediction models optimize objectives that pro-

duce the same vectors as modified count models (Levy and Goldberg, 2014b;

Pennington et al., 2014)

Both the count and prediction models allow comparing the similarity of words

by measuring how close their vectors are, providing empirical support for the

distributional hypothesis. The most common measure is cosine similarity

(Manning et al., 2008), the cosine of the angle between the two vectors,

which for vectors w1 and w2 is given by

cos(w1,w2) =
w1 ·w2

||w1|| ||w2||
(2.1)

where · is the vector dot product and ||w|| gives the magnitude of w:

||w|| =
√

w ·w (2.2)

2.1.1 Count models

Count models typically use a pipeline of steps, each of which has several

possible options and parameters, to produce distributional vectors for words.

Curran (2004) and Turney and Pantel (2010) provide detailed descriptions

and comparisons of these methods. Here, we outline the most common steps

and give a brief introduction to the methods we use in our experiments.

Defining context

The first step is choosing the context used to define the words’ distributions.

A variety of contexts have been investigated in previous work: words sur-

7

rounding the target word within a fixed-length window (Lund and Burgess,

1996) or within a linguistic unit such as a sentence, identifiers for the docu-

ments a target word is contained in (Landauer and Dumais, 1997; Manning

et al., 2008), words linked to the target word by syntactic dependencies (Cur-

ran, 2004; Padó and Lapata, 2007; Levy and Goldberg, 2014a), or even logical

representations for sentences containing the word (Copestake and Herbelot,

2012). The intended application for the vectors often determines the context

used; for measuring the semantic similarity of words, the standard choice is

to use other words either within a window or a sentence as context (Turney

and Pantel, 2010). Since some very common words (e.g. “the”, “and”, “to”,

“is”) convey very little information about the meaning of nearby words, such

words (known as stopwords) are usually not included as contexts.

Context weighting

Although it is possible to use vectors with raw frequency counts, these counts

are typically re-weighted to assign higher values to more informative contexts

for a given word. The motivation is similar to the removal of stopwords:

words that occur frequently throughout a corpus convey less information

about the meaning of a target word than words that may occur rarely, but

have a strong association with the target word. For example, the similarity

of “author” and “writer” is better revealed by a comparatively rare but

strongly-associated context word such as “publish” than a word that appears

as a context for many target words, such as “has”. There are a wide variety

of context weighting functions. We describe two here, but refer to Curran

(2004) for a catalogue and discussion of other possible functions.

Let C(wi, cj) be the number of times that the target word wi co-occurs with

context word cj in the corpus. We use these frequencies to calculate the joint

8

probabilities p(wi, cj) and marginal probabilities p(wi), p(cj) given by:

p(wi, cj) =
C(wi, cj)∑
k,l C(wk, cl)

(2.3)

p(wi) =

∑
j C(wi, cj)∑
k,l C(wk, cl)

(2.4)

p(cj) =

∑
iC(wi, cj)∑
k,l C(wk, cl)

(2.5)

A commonly-used context weighting method, pointwise mutual information

(PMI) (Church and Hanks, 1990), is given by

pmi(wi, cj) = log
p(wi, cj)

p(wi)p(cj)
(2.6)

If word wi’s distribution of occurrence is independent from context cj, p(wi, cj) =

p(wi)p(cj). Therefore the PMI will be 0 if the word and context are indepen-

dent, higher if they are correlated (which by the distributional hypothesis

implies there is some semantic information conveyed about the word by the

context), and lower if they are anti-correlated. Since the degree of anti-

correlation is less useful for detecting informative contexts, a variant called

positive pointwise mutual information (PPMI) (Niwa and Nitta, 1994) re-

places negative PMI values by 0:

ppmi(wi, cj) = max(pmi(wi, cj), 0) (2.7)

Curran (2004) compares PMI with a weighting function motivated by statis-

tical hypothesis testing, the t-test (Manning and Schütze, 1999):

t− test(wi, cj) =
p(wi, cj)− p(wi)p(cj)√

p(wi)p(cj)
(2.8)

Similarly to PMI and PPMI, this function compares the co-occurrence proba-

bilities to the expected probabilities if words and contexts were independent.

9

Dimensionality reduction

Contextual vectors for words usually have high dimensionality, since they

have one component corresponding to each possible context. For most types

of context, the vectors are sparse (mostly zeros), since text resources are

limited and only have some term-context co-occurrences out of all the ones

that are linguistically plausible. Dimensionality reduction methods are often

used on the term-context vectors as a method of removing noise, decreasing

the number of vector components, and compensating for the fact that not

all possible co-occurrences will actually be observed in a corpus (Turney and

Pantel, 2010). In our experiments we will use latent semantic analysis (LSA)

(Landauer et al., 1998), which formulates dimensionality reduction as matrix

factorization using singular value decomposition (SVD, see §3.1.1).

First, LSA defines a matrix C whose rows are the contextual vectors for

terms: that is, Ci,j is the weighted co-occurrence of target word wi with

the context cj. This matrix is first decomposed into the SVD: C = UΣV>.

For a chosen value of k the best k-rank approximation Ck = UkΣkV>k is

produced as described in §3.1.1. This low-rank approximation removes noisy

observations present in the matrix C by forcing word vectors in Ck to be a

sum of some smaller number of basis vectors, which can be interpreted as

latent senses or features of meaning.

Second, to reduce the number of components in the word vectors, rows in

the matrix product UkΣk are used to represent words. These vectors have

k components, but still preserve the similarity relationships between word

vectors in Ck: the dot product between the ith and jth rows of Ck is given

by the i, jth component of CkC>k , and we have

CkC>k = (UkΣkV>k)(UkΣkV>k)>

= UkΣkV>k VkΣ>k Uk

= (UkΣk)(Σ>k U>k) since V is orthonormal, §3.1.1

= (UkΣk)(UkΣk)>

10

so the dot product of rows (word vectors) in Ck is given by the dot product

of rows in UkΣk.

2.1.2 Prediction models

The second type of methods for producing vector representations, prediction

models, replace the pipeline of steps used in the traditional count vector

models with a machine learning model. These methods typically attempt to

predict words from their context (or vice-versa) using a model parameterized

by vector representations for both words and contexts. By optimizing the

components of these vectors to maximize prediction accuracy on a training

corpus of text, the models learn vectors that encode word similarity, since

words that appear in similar contexts will be assigned similar vectors during

the optimization process.

These prediction models are often called neural language models because they

originate in work on multi-layered neural network replacements for n-gram

language models (Bengio et al., 2003; Collobert et al., 2011). When it was

discovered that the word vectors learned as a side effect of these models could

substitute well for traditional distributional vectors on a variety of tasks, the

models were simplified to focus specifically on producing word vectors and

allow training more efficiently on larger corpora (Mnih and Kavukcuoglu,

2013; Mikolov et al., 2013). Recent work has shown that prediction models

often outperform count models across a variety of tasks (Baroni et al., 2014b)

without careful tuning of the possible options of the count models (Levy et

al., 2015).

The prediction model we will use, skip-gram (Mikolov et al., 2013), has re-

cently become widely popular as a method of producing word vectors due to

its scalability to large corpora and an efficient implementation, word2vec2.

We briefly describe the method here, since we later modify it to learn rep-

resentations for other constituents with atomic types in CCG, but refer to

2http://code.google.com/p/word2vec/

11

Goldberg and Levy (2014) for a more thorough exposition.

The skip-gram model defines a word’s context as words contained in a fixed-

length window around the word, for example, the previous 5 and next 5

words. Skip-gram predicts contexts from target words by modeling the con-

ditional probability of contexts given targets, p(ci|wj) for a context word ci

and target word wj. The model has a vector for each context and target

word, which we will denote by ci and wj.
3 The conditional probability is

modelled using a softmax function:

p(ci|wj) =
exp(ci ·wj)∑
k exp(ck ·wj)

(2.9)

where exp(x) is the exponential function ex, k indexes over all possible con-

text words in the vocabulary, and · is the vector dot product. This equation

fundamentally seeks to maximize the dot product of target word vectors with

their context words. The intuition behind this is that if two target words

wi and wj both appear frequently with context word ck, wi and wj should

be similar to ck, and therefore similar to each other. Maximizing the dot

product, which is an unnormalized version of cosine similarity, is a method

of enforcing this. To ensure a (conditional) probability distribution, the ex-

ponential function monotonically maps the dot product to a positive real

value, and the denominator of the fraction is a normalization constant which

ensures the values sum to one.

The skip-gram model attempts to set the components of the vectors for the

target words w and context words c to maximize this conditional probability

over the set of all target and context word pairs (w, c) in the corpus S:

arg max
w,c

∏
(w,c)∈S

p(c|w) (2.10)

Directly optimizing this objective would be computationally intractable for

a large corpus and vocabulary, so several methods are employed to make

3Separate vectors are maintained for targets and contexts, although the same words
can appear as both targets and contexts.

12

it more efficient. We mention them briefly, but refer to Goldberg and Levy

(2014) and Rong (2014) for detailed explanations. To deal with a large corpus

(many word and context pairs), taking the logarithm of the loss to rewrite

it as a sum allows training with an optimization method called stochastic

gradient descent (SGD):

arg max
w,c

log
∏

(w,c)∈S

p(c|w) = arg max
w,c

∑
(w,c)∈S

log p(c|w) (2.11)

An individual word and context pair are sampled from the corpus, the gradi-

ents of the word and all context vectors (since Eq.2.10 uses all context vectors

in the normalization context) with respect to this pair are calculated, and

then the parameters of the vectors are updated by gradient descent (§3.2).

This is then repeated for other pairs of words and context from the corpus.

For a large vocabulary, the gradient of the softmax normalization constant

(the denominator of Eq. 2.9) is computationally expensive to compute (since

it involves every possible context word’s vector), so one of two approxima-

tion techniques is used during the training process to increase efficiency. The

first, negative sampling (Mnih and Kavukcuoglu, 2013), generates a number

of negative training examples for each actual training example by randomly

replacing the context word. An unnormalized softmax is then used to score

the actual training examples higher than the negative examples, so that dur-

ing training only the vectors for the actual context and the negative context

samples need to be updated for each term-context pair. The second method,

hierarchical softmax, (Morin and Bengio, 2005), stores the vocabulary in a

Huffman tree. This decreases the complexity of each training update from

being linear to log-linear in the size of the vocabulary.

2.2 Compositional distributional semantics

Ideally, if we had distributional vectors representing longer units of text, such

as phrases, sentences, and documents, the same vector similarity methods

13

currently applied to word vectors could be used to determine the similarities

of phrases and sentences by comparing their vectors. This would be useful in

a variety of applications such as classifying a sentence as having positive or

negative sentiment (Socher et al., 2012), retrieving documents that match a

query (Clark, 2015), or determining whether a sentence is nonsensical (Vec-

chi et al., 2011). However, sparsity makes it difficult to build distributional

representations for expressions above the word level: while large corpora pro-

vide enough text to give a decent approximation of the possible contexts that

a word could appear in, these corpora are insufficient to produce represen-

tations for longer phrases and for sentences (since the longer an expression

is, the less likely we are to see it in a corpus). Indeed, there are an infinite

number of possible phrases in language, so a given expression may not occur

in a corpus at all.

One possible solution is to build representations for phrases and sentences

in a bottom-up fashion. Motivated by the principle of compositionality, that

“the meaning of an expression is a function of a meaning of its parts and of

the way they are syntactically combined” (Partee, 1984), compositional dis-

tributional semantics (CDS) aims to develop methods for composing distri-

butional vector representations for word meanings into vector representations

for the meanings of phrases, sentences, and documents.

A simple approach to CDS is to simply treat a phrase as a mixture of the

distributional vectors for its component words, for example by adding or mul-

tiplying their components element-wise (Mitchell and Lapata, 2010). This

approach is limited because it ignores all syntax (the structure of language),

and indeed is commutative: for example, while dog bites man and man bites

dog have clearly different meanings, they will have the same composed vec-

tor in the additive or multiplicative model. Baroni et al. (2014a) and Clark

(2015) describe other linguistic limitations of this model, and motivate the

use of syntax in a compositional framework.

The Categorial framework (Coecke et al., 2011) describes one such syntax-

driven process for composing representations for words in vector space. It

relies on the fact that syntactic operations can be viewed as functions, for

14

example the meaning of a noun is represented as a vector, so each adjec-

tive is represented as a function in vector space. The Categorial framework

chooses to use linear functions (or multi-linear, for words such as transitive

verbs which take multiple syntactic arguments) for these words, which allows

representing the words with matrices (or their higher-order generalizations,

tensors, for words with multiple arguments). To compose the feature vectors

representing words into vectors for longer expressions such as phrases and

sentences, the framework uses vector-space operations such as matrix-vector

multiplication and its higher-order generalization, tensor contraction.

We will focus on a variant of this framework based on a type of grammar

called Combinatory Categorial Grammar (CCG) (Steedman, 2000) since ex-

isting annotated corpora (Hockenmaier and Steedman, 2007) and efficient

statistical parsers (Curran et al., 2007) make it possible to generate CCG

parses for the large corpora needed to produce distributional representations.

The CCG version of the framework is also desirable because it has a simple

vector composition function (Maillard et al., 2014), and some prior work on

compositional semantics in vector space (Baroni and Zamparelli, 2010) can

be seen as a special case of the CCG framework.

2.2.1 Combinatory categorial grammar

Categorial Grammars associate grammatical constituents (e.g. adjectives,

noun phrases, or even entire sentences) with syntactic types. These gram-

mars are highly lexicalized: each word in a sentence is assigned a syntactic

type according to a lexicon. The grammar specifies a small number of rules

describing how these syntactic types for words combine to form a derivation

for the sentence.

Syntactic types are recursively defined. There are a small set of atomic types,

such as N (noun), NP (noun phrase), and S (sentence). All other syntac-

tic types are functions of these atomic types, or higher-order functions on

functions. In Combinatory Categorial Grammar (CCG) (Steedman, 2000),

these functions are directed: they specify which side in the sentence their

15

He drove the red car

NP (S\NP)/NP NP/N N/N N
>

N
>

NP
>

S\NP
<

S

Figure 2.2: A CCG derivation for an example sentence.

argument(s) must appear on. These are denoted as result / argument for a

function taking input on the right, and result \argument for a function taking

input on the left. For example, a determiner such as the has type NP/N ,

which indicates it takes an argument of type N on the right, and produces an

NP (Fig. 2.2). All functions take only one argument, but can be nested (this

can be thought of as similar to currying a function of multiple arguments):

for example, a transitive verb, such as “drove”, has type (S\NP)/NP , which

means it first takes a NP to the right (the object noun phrase), and returns a

function which takes an NP to the left (the subject noun phrase) to produce

an S (Fig. 2.2).

In addition to function application, as shown above, CCG also defines several

other rules for combining syntactic types, such as function composition and

type raising. These combinatory rules are useful for dealing with certain

linguistic phenomena such as non-constituent coordination (Steedman, 2000);

however they will not be necessary for the simple syntactic constructions we

consider in this work.

2.2.2 CCG in vector space

Maillard et al. (2014) describe a transparent method of integrating the Cate-

gorial framework with CCG. Atomic types each have their own vector space:

e.g. a vector space N contains representations for nouns, and a vector space

S has representations for sentences. These vector spaces need not have the

same bases or even the same dimensionality. Although the framework is ag-

16

nostic about the semantic interpretation of these vectors, most prior work

has used distributional vectors for nouns and one of several types of sen-

tence space, such as a distributional space (Grefenstette et al., 2013) or a

space measuring the plausibility of the sentence (Clark, 2013; Polajnar et al.,

2014b).

CCG function types are then represented by functions in vector space. Fol-

lowing Coecke et al. (2011), Maillard et al. (2014) use multi-linear functions,

which are well-suited to representing the combinatory rules of CCG. Consider

again the case of adjectives, which are functions of type N/N : they take a

noun, and return a modified noun. In vector-space terms, an adjective should

be a function that takes a noun vector in N and returns another noun vector

in N . For a n-dimensional vector space representing nouns, the function for

a given adjective is then determined by a parameter matrix A ∈ N ⊗ N ,

that is A ∈ Rn×n (assuming again that all functions are linear).4 Note that

since each adjective is a distinct function, each has its own matrix. Function

application is then given by matrix multiplication: multiplying the vector for

car by the red matrix produces a vector representing red car. Formally, if an

adjective A has parameter matrix A and is applied to a noun with vector n,

the resulting vector An has its ith component given by:

Ani =
∑
j

Ai,jnj (2.12)

This generalizes in a straightforward way to syntactic functions of multiple

arguments. For example, given a space S containing vectors for sentences, a

transitive verb V , with type (S\NP)/NP, is a function parameterized by a

third-order tensor V ∈ S ⊗ N ⊗ N .5 Given vectors s and o for subject and

object nouns, respectively, the compositional representation for the subject,

verb, and object is a vector (Vo)s ∈ S, produced by tensor contraction, the

higher-order analogue of matrix-vector multiplication. The ith component of

4N ⊗ N is the vector space spanned by all possible tensor products of vectors in N ,
which for our purposes we can take to be Rn×n.

5For simplicity in this discussion, we assume that nouns and noun phrases have the
same vector space.

17

the sentence-space vector is given by

((Vo)s)i =
∑
j,k

Vljkoksj (2.13)

=
∑
j

[(∑
k

Vljkok

)
sj

]
(2.14)

Eq. 2.14 shows that this contraction can be viewed as first applying the

verb tensor to the object noun, forming a matrix (by summing the matrices

stacked in the tensor, weighted by the components of the object noun). This

matrix is then multiplied by the subject noun to give a final vector.

As these simple examples (which will be sufficient for the syntactic construc-

tions we examine in this work) demonstrate, CCG syntactic types map to

vector spaces by replacing the slashes in function types with the tensor prod-

uct operator (Maillard et al., 2014). Applying a function to an atomic type is

done simply by summing the function’s tensor along its final index, weighted

by the components of the atomic vector.

18

Chapter 3

Background: factorization and

optimization

In this chapter, we outline the matrix and tensor decompositions we use to

reduce the number of parameters of the full compositional models, as well as

the optimization methods used to fit the functions defined by matrices and

tensors to distributional vectors obtained from text.

3.1 Matrix and tensor decompositions

We will use rank factorizations as our basic tool to reduce the number of

parameters required to represent matrices and tensors. We first introduce

some notation. Rank factorizations express matrices and tensors in terms

of component vectors using tensor products. Given two column vectors (all

vectors in our discussions will be column vectors) u ∈ Rm and v ∈ Rn, the

tensor product u⊗ v is the m× n matrix with the component in the ith row

and jth column given by

(u⊗ v)i,j = (uv>)i,j = uivj (3.1)

19

where ui is the ith component of u.1

The tensor product of more than two vectors is similarly defined: for example

for u ∈ Rl, v ∈ Rm,w ∈ Rn, the tensor product u ⊗ v ⊗ w is a l × m × n
tensor with the component at position i, j, k given by

(u⊗ v ⊗w)i,j,k = uivjwk (3.2)

In this section, we will describe the singular value decomposition (SVD)

for matrices, which can be used to express a matrix in terms of a sum of

weighted tensor products, and an analogue for tensors, canonical polyadic

decomposition (CPD).

3.1.1 Singular value decomposition

Singular value decomposition (SVD) provides a method to factor any matrix

into a form that is convenient for producing low-rank approximations. This

approximation is useful, for example, to reduce the dimensionality of distri-

butional word vectors (§2.1.1). Later, in §4.2.2, we will explicitly represent

matrices in an SVD-like form during an optimization procedure to force them

to have a low-rank.

A matrix A ∈ Rl×n with rank r has the singular value decomposition

A = UΣ̂V>; Σ̂ =

(
Σ 0

0 0

)
(3.3)

where U ∈ Rl×l and V ∈ Rn×n are orthogonal matrices (the columns are

mutually-perpendicular vectors of unit length, and so are the rows), and

Σ ∈ Rr×r is a diagonal matrix with r positive entries in decreasing order,

σ1 ≥ σ2 ≥ . . . ≥ σr > 0. These diagonal entries σ1 . . . σr are called the

singular values of A, and the number of them is equal to the rank r of the

1There is another definition of tensor product that produces a vector, but it is equivalent
to this definition when the values in the vector are reshaped into a matrix.

20

matrix.

Given the SVD, it is simple to produce a low-rank approximation for A

by truncating each of the three component matrices. Let Uk ∈ Rl×k and

Vk ∈ Rn×k be the matrices given by taking the first k columns of U and V,

and let Σk be the diagonal matrix with the k largest singular values σ1 . . . σk

on the diagonal (that is, the upper-left k×k matrix of Σ). Then the product

Ak = UkΣkV>k (3.4)

has rank k. Ak is the matrix of rank k that is the least-squares best fit to A:

specifically, Ak minimizes the following Frobenius norm of the element-wise

difference between it and A:

||A− Ak||F =

√√√√ l∑
i=1

n∑
j=1

[
(A− Ak)i,j

]2
(3.5)

SVD also provides a method to represent a matrix as a sum of weighted tensor

products of vectors, which we will use to store low-rank matrices using fewer

numerical components than the entire expanded matrix would require. Given

the SVD for A, we can rewrite

A =
r∑

i=1

σiUi ⊗ Vi (3.6)

where Ui ∈ Rl and Vi ∈ Rn are the ith columns of U and V. This represen-

tation for A is known as the Schmidt decomposition.

3.1.2 Canonical polyadic decomposition

SVD for matrices computes a factorization with two properties: 1) it rep-

resents the matrix as a sum of r tensor products of vectors, and 2) these

vectors can be partitioned into orthonormal sets. For higher-order tensors,

canonical polyadic decomposition (CPD) has the first property, and Tucker

21

decomposition has the second (Kolda and Bader, 2009). In this work we use

CPD, since it is a more compact representation and our primary focus is

reducing the number of parameters required to store a tensor.

CPD factors a tensor into a sum of r tensor products of vectors. Given a

third-order tensor T ∈ Rl×m×n, a CPD of T is:

T =
r∑

i=1

λiUi ⊗ Vi ⊗Wi (3.7)

where λ1 . . . λr are scalar values, U ∈ Rl×r,V ∈ Rm×r,W ∈ Rn×r are pa-

rameter matrices, Ui gives the ith column of matrix U, and ⊗ is the tensor

product. The smallest r that allows the tensor to be expressed as this sum

of outer products is the rank of the tensor (Kolda and Bader, 2009). This

decomposition generalizes to tensors with order greater than 3 by simply

maintaining one parameter matrix for each order of the tensor, increasing

the number of vectors in each tensor product.

While the form of CPD looks similar to SVD for matrices, there are some key

differences (Kolda and Bader, 2009). First, the parameter matrices U,V,W

do not in general have orthonormal columns. Second, while for SVD, taking

the vectors corresponding to the k-largest singular values produces the best

approximation of rank k, this is not the case for tensors: for example the

best approximation of rank k may share no common components with the

best approximation of rank k + 1 for a given tensor. Third, there are no

simple algorithms for calculating the tensor rank r, and the problem is in

general NP-hard (Kolda and Bader, 2009). Generally, an approximate CPD

for a tensor is determined numerically by fixing a rank r and optimizing the

parameter matrices to minimize the squared loss. If this loss is too large, r

is increased and the decomposition is recalculated.

22

3.2 Optimization

All of our learning algorithms involve fitting a parameterized model to some

training data. This is done by defining a loss function that measures the error

in the model’s prediction of the training data as a function of the parameters.

An optimization procedure can then be used to find parameters that produce

a low value of the loss function.

3.2.1 Optimization methods

Consider a function L, called the loss function, that takes as input a vector

of values x (the parameters of our model) and outputs a single scalar value

L(x), which evaluates how well the model fits our data (where a lower score

is better). To use any of the optimization methods described below, L must

be differentiable, which all of our loss functions will be. We aim to find a

value for x that makes L(x) as low as possible. Our primary tool will be the

gradient, that is the vector of partial derivatives of L at x, with ith component

given by

(∇L(x))i =
∂L(x)

∂xi

(3.8)

We compared three gradient-based optimization methods: gradient descent,

AdaGrad, and AdaDelta.

Gradient descent

Gradient descent (GD) (Boyd and Vandenberghe, 2004) is an iterative, greedy

algorithm that attempts to update the parameters x slightly at each itera-

tion to reach a lower value of the loss function. Let x(t) be the value of the

parameters at iteration t. Then the gradient of the loss evaluated at these

parameter values, ∇L(x(t)), is a vector pointing in the direction of fastest

increase of L from the point x(t). At each iteration, GD slightly adjusts the

parameters in the direction opposite to the gradient (since we aim to mini-

mize the function). A small constant, α, the step-size, determines how far to

23

adjust the parameters in this direction. Given the current parameter values

at iteration t, x(t), the GD update is

x(t+1) = x(t) − α∇L(x(t)) (3.9)

where ∇L(x(t)) gives the gradient of f evaluated at x(t), and α is the step

size.

GD has two main flaws. First, the step size α has a large effect on the

optimization procedure: if α is set too low, the algorithm will take a long

time to reach the local minimum of the function; if α is set too high, GD may

oscillate back and forth, repeatedly jumping over the local minimum. One

solution is to use a step size that changes over the course of GD, starting

out large and gradually decreasing. A second problem is that GD pays no

attention to the relative importance of each parameter (component of x) in

the loss function’s value: a step size that is too small for one parameter

may be too large for another, causing oscillation. This can be addressed by

maintaining a separate step size for each parameter.

AdaGrad

AdaGrad (Duchi et al., 2011) implements both of these solutions. It main-

tains a dynamically-changing step-size for each parameter, determined by

that parameter’s past gradient values: parameters that have had relatively

large gradients will have a smaller step-size (to prevent overshooting a min-

imum) and parameters with small gradients will have a larger step-size (to

allow faster descent). At each iteration, AdaGrad’s update for the ith pa-

rameter is given by

x(t+1) = x(t) − α√∑t
k=1∇L(x(k))2

∇L(x(t)) (3.10)

where the denominator is the element-wise L2 norm of the gradient across all

previous iterations (the square and square root are applied element-wise to

24

the gradient vector), and α is a base learning rate shared by all parameters.

AdaDelta

However, as AdaGrad training proceeds, gradients accumulate and the de-

nominator increases, which can eventually slow the descent to a halt. The

final gradient descent method we use, AdaDelta, aims to address this prob-

lem by allowing the stored gradient sum to decay over time. Suppose θ is

a scalar variable whose squared value we want to track (such as a gradient

component). A variable D(θ2) stores a decaying average for θ2, with value

in iteration t+ 1 given by:

D(θ2)(t+1) = ρD(θ2)(t) + (1− ρ)θ2 (3.11)

for a decay constant 0 ≤ ρ ≤ 1. Then an approximation of the root-mean-

squared average for θ at iteration t is given by

Avg(θ)(t) =
√
D(θ2)(t) + ε (3.12)

where ε is a small positive value to avoid numerical instability. Using this

decaying average for the gradient, rather than the L2 norm of the full history,

gives the following update value for the ith parameter:

∆x(t)
i = − α

Avg(∇L(x)i)(t)
(3.13)

Finally, to decrease the algorithm’s sensitivity to the base learning rate α,

AdaDelta multiplies this update by a decaying average of the ∆x values as a

corrective factor, accounting for the curvature of the loss function. We refer

to Zeiler (2012) for details. The final update is given by

x(t+1) = x(t) − Avg(∆x)(t−1)

Avg(∇L(x))(t)
∇L(x(t)) (3.14)

25

3.2.2 Preventing overfitting

The gradient descent methods described above all allow finding model param-

eters that achieve a local minimum of the loss function evaluated on training

data. However, the training data generally includes some noise or variation,

and if the model is forced to explain this noise, it will be less capable of mak-

ing accurate predictions for data not used during the training procedure.

This is known as overfitting. For this reason, it is not usually desirable to

model the training data as closely as possible by strictly minimizing the loss

function by itself. We compare two different methods to prevent overfitting.

Early stopping

Early stopping directly evaluates the model on a set of validation data not

used in training, and stops the optimization process when the model’s per-

formance on the validation data is no longer decreasing. So long as gradient

descent is working properly (i.e. there are no problems such as a large step-

size leading to oscillation), the loss function evaluated on the training data

will always decrease during optimization until a point close to a local mini-

mum of the loss function is reached. If the validation data is similar to the

training data (drawn from the same underlying distribution), the loss func-

tion evaluated on the validation data should also decrease as the model fits

the underlying distribution. However, once the model begins to fit the noise

in the training data (i.e. variation that is not present in the validation data),

the loss on the validation data will stop decreasing, and may in fact increase.

At this point, training should cease.

Previously, we defined a loss function of the model’s parameters L(x) by eval-

uating the model on the training data. We define a validation loss Lvalid(x)

by evaluating the model on the held-out validation set. We then halt the

iterative optimization procedure at the iteration t when

Lvalid(x(t+1)) ≥ fvalid(x(t)) + ε (3.15)

26

for a small constant value ε, which allows for very slight fluctuations in the

score on the validation data due to noise.

Regularization

The second method for preventing overfitting, regularization, can be viewed

as an application of Occam’s Razor: the simplest model that explains the

data should be preferred. Regularization adds a weighted penalty on model

complexity directly into the loss function, forcing the optimization procedure

to find a tradeoff between having a good fit to the training data and having

a simple model. An advantage of regularization is that it does not require

holding out a set of validation data, so more data can be used in the training

procedure; a disadvantage is its sensitivity to the value chosen for the penalty

weight.

Ridge regression (also known as weight decay), is based on the intuition that

a complex model will have larger magnitude parameter values than a simple

model. This assumption naturally depends on how the model is parame-

terized, but usually works well for the linear models we consider (Hastie et

al., 2009). The sum of the squared values (the squared L2 norm) of the

parameters x, given by

Pl2(x) =
∑
i

(xi)
2 = x>x (3.16)

is added as an additional penalty to the loss function. The augmented loss

function used in optimization is then

Ll2(x) = L(x) + λ Pl2(x) (3.17)

where λ ≥ 0 is the penalty weight that controls how strongly the parameters

should be shrunk toward zero.

While ridge regression provides a method to shrink the values of all parame-

ters, it may be desirable to train a model that does not consider some of the

27

parameters at all. In a linear model, this can be done using the lasso (least

absolute shrinkage and selection operator) (Tibshirani, 1996). Similarly to

ridge regression, the lasso penalizes the size of the parameters; however it

uses the sum of their absolute values (the L1 norm) as a penalty:

Pl1(x) =
∑
i

|xi| (3.18)

giving the augmented loss function

fl1(x) = f(x) + λ Pl1(x) (3.19)

Whereas ridge regression shrinks all the parameters toward zero more or less

equally, the geometry of the L1 norm makes the lasso more likely to find a

solution to a linear model that sets some of the parameters to zero (Hastie et

al., 2009). While this comes at the expense of other parameters having larger

magnitude, it results in a simpler model because the variables corresponding

to the zeroed-out parameters can then be excluded from the model entirely.

28

Chapter 4

Learning distributional models

The Categorial framework describes how to compose vector-space representa-

tions for word meanings: each syntactically-typed word has a vector, matrix,

or higher-order tensor which represents its meaning. Given these mappings

from words to representations in vector space, and a syntactic parse for a

sentence, we can combine the word representations to produce representa-

tions for the sentence (along with all of the syntactic constituents which it

contains) using linear algebraic operations, most commonly tensor contrac-

tion. However, the framework does not specify how these vectors, matrices,

and tensors for words should be determined, or even what aspects of meaning

they should represent.

In this chapter, we describe a procedure for producing vectors, matrices,

and tensors for words using a corpus of text. First, we describe how to ap-

ply the count and prediction methods for producing word vectors (§2.1) to

produce vectors for multi-word expressions with atomic CCG types, such as

adjective-noun and transitive verb phrases. We then describe how to use

syntactic parses for sentences in the corpus, the vector representations for

words and multi-word expressions obtained previously, and standard opti-

mization methods to produce matrices and tensors representing words with

function types, such as adjectives and verbs. These methods for learning

matrices and tensors are, like the Categorial framework itself, agnostic to

29

the type of vector representations used for the atomic types, and require

only instances of the input and output vectors of the matrices and tensors.

Finally, we explain modifications to these optimization methods that allow

learning low-rank approximations of matrices and tensors.

4.1 Learning vectors

Choosing the vector spaces for atomic syntactic types (such as nouns and sen-

tences) is the major decision in defining a compositional model within the

Categorial framework, since the functions on atomic types are determined

by their mappings from input vectors to output vectors. Although there

have been alternate definitions such as a vector-space encoding of sentence

plausibilities (Clark, 2013; Polajnar et al., 2014b), compositional frameworks

generally use vector spaces (both for words and for phrases) defined contextu-

ally. In §2.1, we outlined commonly-used methods for producing these types

of contextual vectors for words. Here, we describe how to adapt these same

methods to produce contextual vectors for multi-word expressions found in

a corpus.1

4.1.1 Defining context for multi-word expressions

The count (§2.1.1) and prediction (§2.1.2) models produce vectors for target

words using context (typically words in the same sentence, or in a fixed-length

window surrounding the target word), but can be adapted to produce vectors

for target expressions consisting of multiple words by defining some context

for the expressions. There is a great deal of potential flexibility in defining

this context: for example, a sentence’s context could be words in surrounding

sentences or possible additions to the sentence that preserve the sentence’s

1Since these methods require that the expressions occur in a corpus of text, they are not
a replacement for a compositional framework that can build representations in a bottom-
up fashion for previously unseen phrases and sentences. However, they can be used to
produce data to train such a model, as we will describe.

30

He drove the fast red car

subj

obj

adj

adj

Figure 4.1: A simplified example dependency parse, used to extract syntactic
constituents from sentences.

meaning (Baroni et al., 2014a). In our experiments, we are mainly concerned

with comparing the performance of low-rank and full matrices and tensors, so

we follow previous work (Grefenstette et al., 2013; Polajnar et al., 2015) by

using an intra-sentential context space: words that appear within the same

sentence as the multi-word expression. By using this type of contextual

sentence space, we can use the same count and prediction methods we used

to generate vectors for words.

As a motivating example, consider the sentence “He drove the fast red car”.

We will show how to extract identifiers and context for the adjective and

transitive verb expressions. The syntactic dependency parse (Fig. 4.1) ex-

tracts the grammatical relations contained in the sentence from its CCG

derivation (Clark et al., 2002; Briscoe et al., 2006; Clark and Curran, 2007).

For example, drove has subject he and object car, and both adjectives fast

and red modify the base noun car. Our multi-word expressions are then the

adjective-noun pairs (red, car) and (fast, car), and the subject-verb-object

triple (he, drove, car).

Given a sufficient amount of training data, it might be desirable to use the

entire text that is spanned by a multi-word expression as an identifier for the

expression, for example using He drove the fast red car as the full expression

for the verb with its arguments. However, we use only the words linked by

the syntactic dependencies of interest which correspond to the base argument

types (e.g. the subject noun and object noun for transitive verbs, and mod-

ified noun for adjectives) as an approximation, to reduce sparsity: we are

much more likely to see multiple occurrences of the dependency triple (he,

31

drove, car) in a corpus than the n-gram He drove the fast red car. While the

training data produced by this method does not model nested applications of

functions (for example recursive application of adjectives, i.e. fast modifies

red car rather than car), given a large enough corpus with a diversity of

examples it should be possible to train representative composition functions

regardless.

One possible context for multi-word expressions would be all other words in

the sentence. However, as the length of a multi-word expression increases,

the amount of context available within the sentence decreases; in the limit,

a sentence would have no available context words, since all words in the

sentence would be part of the expression. Because of this trade-off between

constituency and context, we use all words in the sentence other than the

word with the functional type itself (e.g. the adjective in an adjective-noun

pair, and the verb in a subject-verb-object triple) as context words, and

additionally exclude the noun in the adjective-noun pairs for comparison

with Polajnar et al. (2015).

4.1.2 Modifying word-based models

Having defined labels and contexts for the multi-word expressions, we can

apply the count and prediction models to learn vectors for them with few

modifications.

We produce count vectors for multi-word expressions through the pipeline of

steps in 2.1.1. For example, the adjective-noun phrase red car has an initial

vector where the ith entry is given by the number of times the pair red car had

word wi in its context (defined as in §4.1.1) throughout the corpus. These

counts are then re-weighted and the vectors reduced in dimensionality using

SVD. We perform this dimensionality reduction separately for each type of

constituent being learned: nouns (of CCG type N , which include single word

nouns as well as adjective-noun pairs) have their own space which is distinct

from the sentence space S containing subject-verb-object triples (as well as

other constituents with type S).

32

For the prediction model, we use the Paragraph Vector distributed bag of

words (PV-DBOW) method of Le and Mikolov (2014), which is an extension

of the skip-gram model of Mikolov et al. (2013) (§2.1.2). The model uses

the same softmax representation for conditional probability (Eq. 2.9) as the

skip-gram model, but conditions the context word prediction on the multi-

word expression label. For a corpus S consisting of co-occurrences of context

words and multi-word expressions (c, e), this probability is modelled by

∏
(ci,ej)∈S

p(ci|ej) =
∏

(ci,ej)∈S

exp(ci · ej)∑
k exp(ck · ej)

(4.1)

where ci is the vector for context word ci, ej is the vector for the multi-

word expression ej, and k indexes over all the possible context words. As in

the skip-gram model, this objective is optimized by SGD: sampling a multi-

word expression and one of its content words and updating embeddings using

gradient descent.

4.2 Learning matrices and tensors

The matrices and tensors of the Categorial framework can be viewed simply

as parameterizations of functions: for example, a matrix A ∈ Rl×n defines a

linear function A : Rn → Rl given by A(x) = Ax (matrix-vector multiplica-

tion) and a tensor T ∈ Rl×m×n defines a bi-linear function T : (Rn×Rm)→ Rl

given by T (x, y) = (T x)y (tensor contraction). We use the methods previ-

ously outlined (§4.1) to produce vectors for atomic types, which are the

inputs and outputs to these functions, then optimize the parameters of the

functions to map these input vectors to the outputs as closely as possible.

For example, if we aim to learn a representation for the adjective red, we

search in a corpus for instances where red is applied to a noun (e.g. red

car, red balloon). Distributional vectors for the nouns car and balloon, pro-

duced using the standard methods in §2.1, are inputs to the red function.

Distributional vectors for the pairs (red car, red balloon), produced using the

33

extensions in §4.1, are the corresponding outputs of the function. If we have

a sufficient number of examples of vectors representing the input and output

to these functions, we can perform regression (linear regression for matri-

ces, or its generalization, multi-linear regression, for higher-order tensors)

to set the matrix of parameters of the “red” function (Baroni and Zampar-

elli, 2010). We do this by defining a loss function which measures how well

the parameters of the function predict the training outputs vectors from the

input vectors, then optimizing the parameters to minimize this loss.

4.2.1 Full matrices and tensors

Loss functions

For the matrix case, suppose we have a set of N input vectors paired with

output vectors, where the ith input vector is x(i) ∈ Rn and the ith output

vector is z(i) ∈ Rl. We aim to find a matrix A ∈ Rl×n that minimizes

the difference between the predicted output vectors Ax(i) and the training

output vectors z(i).2 Motivated by linear regression, we define a loss function

as the sum of squared Euclidean distances between the predicted output and

training output vectors:

L(A) =
N∑
i=1

||Ax(i) − z(i)||2 (4.2)

The tensor case is similar. We now have two input vectors x(i) ∈ Rn, y(i) ∈ Rm

for each output vector z(i) ∈ Rl, and aim to find a tensor T ∈ Rl×m×n that

minimizes

L(T) =
N∑
i=1

||(T x(i))y(i) − z(i)||2 (4.3)

2In this discussion, we will have all vectors be column vectors.

34

Optimization

There are closed form solutions for minimizing these loss functions. For the

matrix case, horizontally stacking the input vectors to construct a matrix

X ∈ Rn×N and the output vectors to construct a matrix Z ∈ Rl×N , we can

reformulate Eq. 4.2 as finding A that minimizes the Frobenius norm (Eq. 3.5)

between the output matrix Z and the matrix of predicted outputs AX:

L(A) = ||AX− Z||F (4.4)

By a generalization of the normal equations for linear regression to multiple

outputs (Hastie et al., 2009), this loss is minimized by

arg min
A

L(A) = Z(X>X)−1X> (4.5)

where the matrix product (X>X)−1X> is known as the Moore-Penrose pseudo-

inverse of X.3 Because we can formulate tensor contraction as matrix mul-

tiplication using tensor products (Magnus and Neudecker, 1988), a similar

technique can be used to minimize the loss in the tensor case by taking the

pseudo-inverse of a matrix consisting of stacked tensor products of the input

vectors x(i), y(i) and a flattened l × l identity matrix (Minka, 2000).

In our work, however, we use one of the gradient-based optimization methods

(§3.2) to set A. This is for two reasons: First, we were unable to find a closed-

form solution minimizing the loss when matrices or tensors are expressed in

decomposed, low-rank form, and we wanted the training procedures for the

unconstrained and low-rank tensors to be as comparable as possible. Second,

computational constraints make it less efficient to compute the pseudo-inverse

of the training matrix X than to optimize the parameters using one of the

iterative methods (§3.2). In the tensor case, the closed-form solution requires

a prohibitive amount of memory for any reasonably large dimensionality of

the input and output spaces, since we must first compute tensor products

3A closed form solution also exists if ridge regression is used on the parameters of A,
(Hastie et al., 2009)

35

resulting in a matrix with dimensions N × (l2mn).

4.2.2 Low-rank matrices and tensors

The matrix and tensor decompositions described in §3.1 typically take a full

matrix or tensor and decompose it into a vector-based form. Rather than

learn a full matrix or tensor, as in 4.2.1, and then decompose it to try to

reduce the number of parameters, we fix a maximal value for the rank and

learn the parameters directly. This approach, which follows the work of

Lei et al. (2014), allows us to increase computational and memory efficiency

by never having to store the full matrix or tensor either during training or

evaluation of the compositional model.

Matrix loss

Recall the matrix SVD, which gives a rank decomposition for a matrix A ∈
Rl×n (Eq. 3.6). To simplify the optimization, we will not maintain a separate

σi for each vector pair (since it is a scalar value, it can be absorbed into

either of the Ui or Vi vectors). This gives the form

A =
r∑

i=1

Ui ⊗ Vi = UV> (4.6)

where Ui ∈ Rl and Vi ∈ Rn give the ith column of the parameter matrices U ∈
Rl×r and V ∈ Rn×r. We also do not enforce that U and V are orthonormal

since this is not necessary to reduce the number of parameters of the model;

the existence of the SVD for an arbitrary matrix A implies that any matrix

can be represented in this more general form.4

If the value of r is sufficiently small compared to l and n (i.e. if rl+rn < ln),

this will reduce the number of parameters required to store the matrix.

4The matrix represented in this form may have rank less than r, since we do not require
that the component vectors are orthonormal; however the rank will be at most r.

36

=T

W

+ ... +

U

V

1

1

1

W
U

V

r

r

r

Figure 4.2: The CPD for a tensor T decomposes the tensor into the sum of
r tensor products of vector triples.

We can then substitute this representation for the matrix into the matrix

loss function (Eq. 4.2), giving

L(U,V) =
N∑
i=1

||UV>x(i) − z(i)||2 (4.7)

Tensor loss

Similarly, we adapt the CPD for a tensor T ∈ Rl×m×n (Eq. 3.7) by absorbing

the scaling coefficients into the component vectors, giving

T =
r∑

i=1

Ui ⊗ Vi ⊗Wi (4.8)

for parameter matrices U ∈ Rl×r, V ∈ Rm×r, and W ∈ Rn×r, with Ui giving

the ith column of U (Fig. 4.2).

If r is sufficiently small (rl+rm+rn < lmn), this decomposition will require

fewer parameters than the full tensor.

The tensor contraction with vectors x ∈ Rn, y ∈ Rm is then given by

(T x)y =
r∑

i=1

Ui(Viy)(Wix) (4.9)

= U[(V>y)� (W>x)] (4.10)

where � is the element-wise vector product (Fig. 4.3)

37

=T

W

+ ... +

U

V

1

1

1
y x y

x
W

U

V

r

r

ry

x

Figure 4.3: The contraction of a tensor in CPD form with two input vectors is
given by a sum of one set of the vector components, weighted by dot products
between the input vectors and the other components.

Substituting this into the tensor loss function (Eq. 4.3) gives

L(U,V,W) =
N∑
i=1

||U[(V>y
(i)

)� (W>x
(i)

)]− z(i)||2 (4.11)

Optimization

We compare two different methods of optimizing the parameters for the de-

composed matrices and tensors. The first, joint optimization, optimizes all

parameters (e.g. U,V,W for the tensor) simultaneously: at each iteration,

the gradient for all parameters is computed, and each parameter is updated

using the updated equation of the optimization method (e.g. AdaGrad or

AdaDelta). The second is an alternating optimization method similar to

previous tensor decomposition algorithms (Harshman, 1970; Carroll et al.,

1980; Lei et al., 2014). We optimize one set of parameters (for example U)

for a fixed number of iterations while holding the other two fixed. This is

then repeated, rotating through the other parameter matrices in turn until

convergence or a fixed-number of iterations is reached (or until the loss on

a validation increases if early stopping is being used, §3.2.2). Alternating

optimization often converges more quickly and can be better at avoiding lo-

cal minima than joint optimization, although this is difficult to predict and

depends on the loss function and the way the parameters are partitioned

(Bezdek and Hathaway, 2002).

38

Since the loss function is non-convex when a tensor in decomposed form is

used, there may be multiple local minima of the loss function. The opti-

mization methods we use are only capable of finding a local minimum of the

function, specifically the one that will be reached by steepest descent (or al-

ternating descent) from the initial values of the parameters. For this reason,

initialization of the low-rank tensors can affect the final parameter values.

In our experiments, we initialize the parameter values randomly by sampling

from a Gaussian distribution centered at zero with small variance, but we

suspect that better initialization schemes would produce better results.

39

40

Chapter 5

Experiments

We compare the performance of low-rank matrices and tensors to full, uncon-

strained rank matrices and tensors for two syntactic constructions: adjectives

modifying nouns (such as “red car”), and transitive verb phrases (verbs with

a subject and object, such as “dogs bite men”). This comparison is performed

for both the count and prediction types of vectors (§§2.1,4.1). We evaluate

our trained compositional models on three standard evaluation tasks, which

require the model to rank the similarity of pairs of phrases, and compare the

model’s scores to similarity scores assigned by human evaluators.

5.1 Training

We train the compositional models for adjectives and transitive verbs in

three steps: 1) extracting adjective-noun (AN) pairs and subject-verb-object

(SVO) triples from a text corpus, 2) producing distributional vectors for the

nouns, the AN pairs, and the SVO triples, and 3) learning parameters of the

adjective and verb functions using these vectors.

41

5.1.1 Corpus data

We use the context extraction methods and dataset of Polajnar et al. (2015).

Their corpus consists of an October 2013 download of Wikipedia, from which

they extract AN and SVO pairs and contexts. The corpus is tokenized using

the Stanford CoreNLP (Manning et al., 2014). Words are then mapped to

lemmas (root forms, such as walk for walking) using the Morpha lemmatizer

(Minnen et al., 2001), allowing syntactic dependency parses to be assigned

to sentences using the C&C parser (Curran et al., 2007). The dependency

parse structures are finally used to extract AN pairs and SVO triples from

all the sentences.

The AN pairs and SVO triples are filtered to a set containing 400 distinct

adjectives and 345 distinct verbs. These included the adjectives and verbs

from the test datasets as well as some additional high-frequency adjectives

and verbs included to produce more representative sentence spaces. For

each adjective (or verb), they selected up to 600 pairs (or triples for verbs)

that occurred more than once and contained a noun which occurred at least

100 times (both nouns in the SVO triples are required to have occurred at

least this frequently), to allow sufficient context to produce a distributional

representation for the triple. This resulted in approximately 178,000 AN

pairs and 150,000 SVO triples overall.

5.1.2 Producing vectors for training

We use the Wikipedia corpus to produce vectors for both the nouns (inputs to

the adjective and verb functions) and the AN pairs and SVO triples (outputs

of the functions) using either a count model or a prediction model. We follow

the steps outlined in §2.1 and §4.1, but describe details of the implementation

here. All vectors used in our experiments, for both the count and prediction

models, are 100-dimensional.

42

Count model

Words contained within the same sentence as the target word were used as

context. Since some possible context words convey little information about

the meaning of a target word, we exclude a set of stopwords containing deter-

miners (e.g. “the”, “a”), pronouns (e.g. “he”, “they”), common prepositions

(e.g. “of”, “at”), and other uninformative words (e.g. “is”, “could”).1 To re-

duce the impact of sparsity and rare words, only the top 10,000 words from

the Wikipedia corpus (§5.1.1) by frequency (after removing stopwords) are

used as context.

We use the t-test as a reweighting function in our experiments, following

Polajnar and Clark (2014)’s finding that t-test weighting had the highest

performance out of several weighting functions, including PPMI, when pro-

ducing distributional vectors for the Mitchell and Lapata (2010) adjective-

noun comparison task. Following Polajnar and Clark (2014), we further

reduce noise in each word or phrase’s vector using context selection: keeping

only the 70 largest weighted values in the context vector (this value comes

from previous work, and was not tuned for our task). Finally, we use SVD

to reduce the vectors to 100-dimensions, performing SVD on the nouns and

AN pairs separately from the SVO triples.

Prediction model

We use a modification of the word2vec software written by the authors of the

skip-gram (Mikolov et al., 2013) and PV-DBOW models (Le and Mikolov,

2014).2 This implementation combines the skip-gram and PV-DBOW models

by taking a corpus of labelled sequences of words and predicting 1) words

in each sequence from other words in the sequence (the skip-gram model,

§2.1.2) and 2) words in each sequence from the sequence’s label (the PV-

1We use Martin Porter’s list of 127 stopwords, available in the NLTK Python library
and at http://snowball.tartarus.org/algorithms/english/stop.txt.

2https://groups.google.com/d/msg/word2vec-toolkit/Q49FIrNOQRo/

J6KG8mUj45sJ

43

DBOW model, §4.1.2). In the process, it produces vectors for the labels and

for the words in the sequences.3

We use sentences from the Wikipedia corpus to produce these labelled se-

quences of words. A given sentence is used to generate one labelled sequence

for each targeted AN pair or SVO triple found in the dependency parse for

the sentence. The AN pair or SVO triple is used as the label, and the con-

text words of the pair or triple (which are all words in the sentence, with

the adjective removed in the case of AN pairs or the verb removed in the

case of SVO triples, for the reasons outlined in §4.1.1) are used as the text

sequence.4

Since most sentences in the Wikipedia corpus do not contain one of the

targeted AN pairs or SVO triples, and discarding these sentences would waste

a large amount of data that could be used to train the skip-gram model, we

also include each sentence in its entirety with a special *BLANK* label which

is later discarded. For example, the sentence “He drove the fast red car” has

two AN pairs (fast car and red car) and one SVO triple (he drove car),

so it would produce the labelled sequences in Fig. 5.1.

label sequence
BLANK he drove the fast red car
red car he drove the fast car
fast car he drove the red car
he drove car he the fast red car

Figure 5.1: Sample training data used to produce word and constituent vec-
tors for the sentence “He drove the fast red car”.

The model then iterates through the corpus performing SGD: for each la-

3We also experimented with implementations of PV-DBOW by itself, https://

github.com/piskvorky/gensim/ and https://bitbucket.org/yoavgo/word2vecf and
found that the compositional models trained on the resulting vectors achieved much lower
performance on the evaluation tasks, highlighting the importance of having good base
representations for words in the compositional model.

4Although the sequences with adjectives and verbs removed do not generally form
grammatically correct sentences, this is acceptable because the skip-gram and PV-DBOW
models sample individual words from the sequences and do not perform any concatenation
of words.

44

belled sequence predicts the words in the sequence from the label, and the

words in the sequence from other words in the sequence, updating the vector

representations for the labels and the words to improve performance on these

two prediction tasks (§2.1.2,§4.1.2).

We use the hierarchical sampling training procedure, perform 20 iterations

through the training data, and do not remove any words from the context

vocabulary.

5.1.3 Training methods

In both the low-rank and full-rank matrix and tensor learning, we use mini-

batch AdaDelta optimization with batch-size set to 100 training instances.

We use the values ε = 1e − 6 and ρ = 0.95 which produced the best results

in the original AdaDelta description (Zeiler, 2012). We also tried using Ada-

Grad, but found that, without much tuning of its learning rate, it required

longer training time to converge on a local minimum of the loss function than

AdaDelta.

We compare seven different maximal ranks for the low-rank matrices and

tensors, R = 1, 5, 10, 20, 30, 40 and 50. We found that alternating optimiza-

tion generally converged on lower local minima of the loss functions than the

joint optimization, so we use alternating optimization for all results reported

here. In the full matrix and tensor experiments, we perform a maximum of

500 iterations of AdaDelta, which we found to be more than sufficient for

the optimization to converge in all instances. In the low-rank alternating

optimization experiments, we perform 10 AdaDelta iterations on each set of

parameters during its alternation, and set a maximum of 50 outer batch it-

erations so that the total number of iterations per parameter set is the same

as in the full tensor experiments.

We tried all of the regularization methods described in §3.2. We found that

using an L2 regularization penalty on the parameters of the low-rank ma-

trices and tensors produced very high loss scores even on the training sets,

45

likely because the interacting nature of the component parameters in the final

tensor would require careful tuning of the regularization constant. L1 regu-

larization produced good results on artificial datasets, when reconstructing

generated tensors with low-rank (and actually allowed recovering the rank of

the original artificially-generated tensor by thresholding the magnitudes of

the component vectors), but overly constrained the optimization on vectors

produced from the corpora. Instead, we used early stopping for both the

low-rank and full matrices and tensors, using validation sets consisting of

10% of the available AN pairs for each adjective and SVO triples for each

verb and an ε threshold of 1× 10−6.

5.2 Tasks

We compare the performance of the low-rank matrices and tensors against

unconstrained-rank matrices and tensors on three tasks. All tasks require

the model to produce a numeric score evaluating the semantic similarity of a

pair of short phrases. These pairs have also been assigned scores by human

evaluators, providing a ranking of most similar pairs to least similar pairs.

The ranking of all pairs defined by the model’s similarity scores is compared

to the ranking given by the human similarity judgements using Spearman’s

rank correlation, ρ. The first dataset (ML10) evaluates the model’s repre-

sentation of adjective-noun composition; the second two (GS11 and KS14)

test transitive verbs.

Adjective-Noun Phrase Similarity (ML10)

This dataset (Mitchell and Lapata, 2010) consists of 72 AN phrases, which are

arranged into 36 pairs of phrases. The model must rank these pairs of phrases

in terms of similarity, and these scores are compared to those produced by

human annotators (on a 1-7 similarity scale). For example, the pair important

part – significant role has a high similarity score, while small house – old

person has a low score. The average human inter-annotator correlation (the

46

correlation of each annotator’s scores with the scores produced by the other

annotators), which provides an upper bound for how well a compositional

model could do on the task, is 0.52.

We use our trained compositional model to produce a similarity score for each

AN pair by multiplying the adjectives for the matrices with the vectors for

the nouns to produce a vector for each phrase, for example multiplying the

matrix for important and the vector for part to give a vector
−−−−−−−−−−→
important part.

We then use the cosine similarity of the phrase vectors as the similarity score

for the phrase pairs:

cos(
−−−−−−−−−−→
important part,

−−−−−−−−−−→
significant role)

Verb Disambiguation (GS11)

This task (Grefenstette and Sadrzadeh, 2011) involves distinguishing between

senses of an ambiguous verb, given subject and object nouns as context. For

example, the verb write has the senses publish and spell, which are distin-

guished by the contexts author write book and child write name. The dataset

consists of 200 phrase pairs, where the two phrases in each pair have the same

subject and object but differ in the verb. Each of these pairs was ranked by

human evaluators so that properly disambiguated pairs (e.g. author write

book – author publish book) have higher similarity scores than improperly

disambiguated pairs (e.g. author write book – author spell book). The aver-

age inter-annotator agreement on this task is 0.62.

We produce similarity scores for the phrase pairs in a similar manner to

adjectives: first contracting the tensor for the verb with the object noun’s

vector, and then multiplying the resulting matrix with the subject noun.

This gives a vector for the phrase, for example
−−−−−−−−−−−−−→
author write book. Phrase

similarity is again calculated using the cosine similarity of the phrase vectors.

47

Transitive Sentence Similarity (KS14)

This dataset (Kartsaklis and Sadrzadeh, 2014) consists of 72 SVO phrases

arranged into 108 phrase pairs. As in GS11, each pair has a gold standard

semantic similarity score assigned by human evaluators. In this dataset,

however, the phrases in each pair have no lexical overlap: neither subjects,

objects, nor verbs are shared. For example, the pair medication achieve result

– drug produce effect has a high similarity rating, while author write book –

delegate buy land has a low rating. Similarity scores are produced in the

same manner as for GS11. The average inter-annotator agreement is 0.66.

5.3 Results

We compare low-rank and full matrices and tensors on the tasks presented

above. We also compare these models to the additive and multiplicative

composition methods of Mitchell and Lapata (2008), which have traditionally

produced some of the highest results on these datasets. These methods

produce a vector for a phrase using vectors for each of the component words,

simply by performing element-wise addition or multiplication of the vectors.

This requires having vectors for the functional words such as adjectives and

verbs – which are not required to train our compositional models – so we

produce these vectors at the same time as we produce noun and phrase

vectors. For the count model, we use the same context and weighting methods

for adjectives and verbs as for nouns, and apply SVD simultaneously to the

nouns, adjectives, and verbs so that the vector components correspond and

the vectors can be added. The prediction model automatically learns vector

representations for all words in the corpus including the adjectives and verbs.

5.3.1 Adjective matrix results

Table 5.1 displays correlations between the systems’ scores and human AN

similarity judgements on the adjective-noun phrase similarity task (ML10),

48

ML10 # of adj.
CV PV params.

Add. 0.39 0.50 –
Mult. 0.27 0.36 –
R=1 0.28 0.35 200
R=5 0.35 0.44 1K
R=10 0.35 0.43 2K
R=20 0.37 0.45 4K
R=30 0.39 0.48 6K
R=40 0.37 0.45 8K
R=50 0.34 0.47 10K
Full 0.40 0.50 10K

Table 5.1: Matrix performance on the adjective-noun comparison task
(ML10), and the number of parameters needed to represent each adjective’s
matrix. We show the highest matrix result for each task and vector set in
bold (and also bold the Add. or Mult. methods when they outperform the
matrix methods). Human inter-annotator agreement (an upper bound for
the task) is 0.52.

for both the count (CV) and prediction vectors (PV).

We observe that, unsurprisingly, the rank-1 matrices have the lowest per-

formance of all the matrix models, but are comparable to the element-wise

multiplication baseline (Mult.) for both the CV and PV sets of vectors.

Performance generally increases with the maximum rank R, but begins to

decrease after R = 30 for both sets of vectors. The scores for R = 30 are still

slightly lower than the scores of the full matrices (ρ values of 0.39 vs 0.40

for CV, and 0.45 vs 0.50 for PV), but the number of parameters required to

store each verb has also been reduced by 40% (from 10,000 to 6,000).

While our main objective in these experiments was to compare the full and

low-rank tensors, it is worth noting that the full matrices slightly outperform

the additive baseline (Add.) on count vectors, and tie its scores for PV,

which has not been achieved with many past compositional models (Blacoe

and Lapata, 2012; Hermann and Blunsom, 2013). The highest score is 0.50,

achieved by the Add and full matrix model using PV vectors, which comes

close to the average human inter-annotator agreement of 0.52. We also see

49

GS11 KS14 # tensor
CV PV CV PV params.

Add. 0.13 0.14 0.55 0.56 –
Mult. 0.13 0.14 0.09 0.27 –
R=1 0.10 0.05 0.18 0.30 300
R=5 0.26 0.30 0.28 0.40 1.5K
R=10 0.29 0.32 0.26 0.45 3K
R=20 0.31 0.34 0.39 0.44 6K
R=30 0.28 0.33 0.32 0.46 9K
R=40 0.32 0.30 0.31 0.52 12K
R=50 0.34 0.32 0.42 0.51 15K
Full 0.29 0.36 0.41 0.52 1M

Table 5.2: Tensor performance on the verb disambiguation (GS11) and sen-
tence similarity (KS14) tasks, and the number of parameters needed to repre-
sent each verb’s tensor. We show the highest tensor result for each vector set
in bold (and also bold Add. and Mult. if they outperform the tensor meth-
ods). Human inter-annotator agreement (an upper bound for the tasks) is
0.62 for GS11 and 0.66 for KS14.

that the prediction vectors outperform the count vectors in every instance,

which is consistent with results on other tasks and datasets (Baroni et al.,

2014b; Milajevs et al., 2014).

5.3.2 Verb tensor results

Table 5.2 displays results on the verb disambiguation (GS11) and sentence

similarity (KS14) tasks. As is consistent with prior work, the tensor-based

models are surpassed by vector addition on the KS14 dataset (Milajevs et

al., 2014), but perform better than both addition and multiplication on the

GS11 dataset.5

5The results in this table are not directly comparable with Milajevs et al. (2014), who
differ from previous GS11 and KS14 evaluation methods by comparing against averaged
annotator scores. Comparing against averaged annotator scores, our best result on GS11
is 0.47 for the full-rank tensor with PV vectors, and our best non-addition result on KS14
is 0.68 for the K=40 tensor with PV vectors (the best result is addition with PV vectors,
which achieves 0.71). These results exceed the tensor model results of Milajevs et al.
(2014).

50

Similarly to the adjective matrix results, the rank-1 tensor has lowest perfor-

mance for both tasks and vector sets and performance generally increases as

we increase the maximal rank R. The full tensor achieves the best, or tied

for the best, performance on both tasks when using the prediction vectors.

However, for the count vectors (CV), low-rank tensors occasionally surpass

the performance of the full-rank tensor. The reduction in the number of pa-

rameters is even more pronounced for the low-rank verb tensors than for the

low-rank adjective matrices: the best performing low-rank tensors, R = 40

and R = 50, require nearly two orders of magnitude fewer parameters than

the full tensors (12-15 thousand for these low-rank tensors; 1 million for the

full tensor).

On GS11, the CV and PV vectors have varying but mostly comparable perfor-

mance, with PV achieving higher performance on 5 out of 8 models. However,

on KS14, the PV vectors have better performance than the CV vectors for

every model, by at least 0.05 points, which is consistent with prior work com-

paring count and prediction vectors on these datasets (Milajevs et al., 2014).

Levy et al. (2015) indicate that tuning hyperparameters of the count-based

vectors may be able to produce comparable performance. Regardless, we

show that the low-rank tensors are able to achieve performance comparable

to the full rank for both types of vectors.

We also informally compared the efficiency of the low-rank and full tensor

models, and found that the low-rank tensor models are at least twice as fast

to train as the full tensors: on a single core, training a rank-1 tensor takes

about 5 seconds for each verb on average, ranks 5-50 each take between 1 and

2 minutes, and the full tensors each take about 4 minutes. There is a large

gap between rank-1 training time and higher-rank training time because we

compute batched rank-1 tensor updates as optimized matrix multiplications.

51

52

Chapter 6

Related work

Early work on combining distributional representations for words relied on

adding the words’ vectors (Landauer and Dumais, 1997; Foltz et al., 1998;

Kintsch, 2001). To evaluate this additive method and its variations for a

variety of vector spaces, Mitchell and Lapata (2010) defined the adjective-

noun similarity task which we use for evaluation in this thesis. Since in

vector addition the magnitudes of the vectors influence the direction of the

resulting vector, they also introduce element-wise vector multiplication as an

alternative composition method.

These vector mixture models are widely applicable because they require no

training other than the production of word vectors from a text corpus. How-

ever, as mentioned previously, they they do not account for the syntactic

properties of composition needed to represent the semantics of more com-

plex expressions (Baroni et al., 2014a). While these models seem ill-suited

for capturing complex linguistic phenomena, they have traditionally pro-

duced some of the best results on similarity tasks on short phrases that do

not involve complex syntax (Erk and Padó, 2008; Vecchi et al., 2011; Boleda

et al., 2012), which we also found to be true in most of our experiments.

A variety of CDS models based on syntax emerged to deal with these concerns

about the vector mixture models. Socher and co-authors (2011; 2012; 2013)

53

define a succession of compositional models using recursive neural networks.

As in the Categorial framework, composition is applied syntactically, mir-

roring the constituency parse of the sentence; however, they use non-linear

composition functions. The best-performing models use tensors to allow in-

teraction between the components of the vectors being composed. A feature

of this work is that it has been implemented for full-length sentences, al-

lowing its application to a variety of tasks including syntactic parsing and

sentiment classification. Our work on parameter reduction aims to help make

a similar implementation of the Categorial framework feasable.

A number of pieces of work which use linear composition functions, includ-

ing this thesis, can be viewed as implementations of parts of the Categorial

framework. Baroni and Zamparelli (2010) treat adjectives as functions rep-

resented by matrices, and introduce the linear regression method for setting

the adjective function parameters which we extend to learn low-rank ap-

proximations of adjectives. The tensor model for the subject-verb-object

construction is first explored by Grefenstette et al. (2013), although they use

a multi-step regression algorithm while we optimize the tensor parameters di-

rectly, following Polajnar et al. (2015). Our performance scores on the GS11

task using the single step regression are about the same as their multi-step

regression results, although not directly comparable given differences in the

vectors we use to train the tensors.

Other work has also sought to reduce the number of parameters of the tensors

in a compositional semantic framework. Polajnar et al. (2014a) introduce

several alternative ways of reducing the number of tensor parameters for a

verb by using matrices. The best performing method uses two matrices,

one representing the subject-verb interactions and the other the verb-object

interactions. Some interaction between the subject and the object is re-

introduced through a non-linear softmax layer. A similar method is presented

in Paperno et al. (2014).

Tensor decompositions in various forms have been used in a wide variety of

applications (Kolda and Bader, 2009). The most relevant to our work are

low-rank tensor-based models for dependency parsing (Lei et al., 2014) and

54

semantic role labeling (Lei et al., 2015) tasks. These models also use tensors

stored in a low-rank CPD form, and optimize the component parameters of

the tensor directly to overcome large feature spaces, but are not comparable

to our evaluation results since the models are intended for different tasks.

Our decomposition approach is also closely related to the notion of entangle-

ment explored by Blacoe et al. (2013) and Kartsaklis and Sadrzadeh (2014):

a matrix or tensor with high rank has high entanglement, and allows more

information to be passed from the arguments to the output of the function it

represents. Kartsaklis and Sadrzadeh (2014) find that matrices for transitive

verbs, constructed by summing outer products of distributional vectors for

their subject and objects, have surprisingly low entanglement. Our finding

that low-rank tensors match or surpass the performance of unconstrained

rank tensors suggests that verb tensors trained to output a distrbutional

representation also tend to have relatively low entanglement.

55

56

Chapter 7

Conclusions

7.1 Summary

We have used low-rank matrix and tensor decompositions to reduce the num-

ber of parameters required by a compositional vector space model of linguis-

tic meaning. We train these low-rank models efficiently using gradient-based

methods, allowing approximations of multi-linear functions of unconstrained

rank without ever producing the full matrices and tensors used to represent

these functions. This allows us to improve on both runtime and memory

usage. Our best performing low-rank models reduce the memory require-

ments of the full models by 40% for matrices and 99% for tensors, and are at

least twice as fast to train. Despite these increases in efficiency, we find that

the low-rank models achieve comparable or better performance than the full

models on several standard compositional similarity tasks.

7.2 Future Work

In this work, we compared the performance of various fixed rank decomposi-

tions, where all adjectives and verbs being modelled have the same maximal

rank. We saw that increasing the rank of all matrices and tensors generally

57

increased performance on the semantic evaluation tasks up to a point, af-

ter which performance stabilized or decreased. With this in mind, it would

be natural to use set maximal ranks independently for different words in

the vocabulary to optimize the trade-off between accuracy and efficiency.

One possible method is to attempt to determine these ranks automatically

using a optimization procedure such as nuclear norm minimization (Jaggi

et al., 2010) or structured sparsity (Huang et al., 2011), which would use

regularization to force some vector components of a larger-rank representa-

tion toward zero. Another possibility is to use linguistic information such as

measuring the entanglement of an adjective or verb in a corpus (Kartsaklis

and Sadrzadeh, 2014). Indeed, in some preliminary experiments we found a

slight but statistically significant correlation between the approximate ranks

of a verb’s full tensor learned distributionally and the number of word senses

defined for the verb in the WordNet database (Miller, 1995).

The larger goal of this work is to help enable a full implementation of the

Categorial framework, capable of representing the compositional meaning of

real sentences. In this work we deal only with relatively low-order types

and one form of syntactic composition, function application. A concrete

implementation will need to model many more grammatical types, such as

adverbs and relative clauses, which have corresponding tensors of higher or-

der. The decomposition methods we use here can approximate these tensors,

but there are a few challenges in adapting the training algorithms to learn

the parameters of such a model.

First, if distributional spaces are used to train this model, training data will

be difficult to acquire. This is for reasons of sparsity: these more complex

grammatical types will tend to appear in longer phrases and sentences, which

will occur fewer times in a text corpus. One possible solution is an extension

of the tensor skip-gram model of Maillard and Clark (2015) to construc-

tions beyond adjectives and nouns. The context of multi-word expressions

would be predicted from a composed representation of the expressions, and

back-propagation used to update the parameters of all contained words to

maximize the accuracy of this prediction. All sentences that a given word

58

(including those with a high-order syntactic type) occurs in could then be

used to train the representation for the word.

Second, these higher-order types are often used in syntactic constructions

beyond function application, such as function composition, which requires

contracting two higher-order tensors (Coecke et al., 2011; Maillard et al.,

2014). While tensor rank is not preserved during tensor contraction (e.g.

a third-order tensor of rank m, contracted along one index with another

third-order tensor of rank n, produces a tensor with maximal rank m × n),

it would be possible to store the individual tensors in their low-rank form

and update the parameters using back-propagation. Such a model would

be similar to the recursive neural networks of Socher et al. (2013) which

parallel a sentence’s syntactic composition, but would use linear functions

parameterized independently for each word in the lexicon. This type of

wide-coverage implementation of the Categorial framework would allow it to

be applied to the same sort of tasks (e.g. parsing and sentiment classification)

as the recursive neural networks, and allow a direct comparison of the linear

(Categorial) and non-linear (neural network) approaches.

59

References

L. Douglas Baker and Andrew Kachites McCallum. 1998. Distributional
clustering of words for text classification. In Proceedings of the 21st An-
nual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Melbourne, Australia.

Marco Baroni and Roberto Zamparelli. 2010. Nouns are vectors, adjectives
are matrices: Representing adjective-noun constructions in semantic space.
In Proceedings of the 2010 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2010), Cambridge, Massachusetts.

Marco Baroni, Raffaela Bernardi, and Roberto Zamparelli. 2014a. Frege
in space: A program of compositional distributional semantics. Linguistic
Issues in Language Technology, 9.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014b. Don’t
count, predict! A systematic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (ACL 2014), Baltimore,
Maryland.

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, and
Raymond Mooney. 2013. Montague meets Markov: Deep semantics with
probabilistic logical form. In Proceedings of the 2nd Joint Conference on
Lexical and Computational Semantics (*Sem 2013), Atlanta, Georgia.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin.
2003. A neural probabilistic language model. Journal of Machine Learning
Research, (3):1137–1155.

James C Bezdek and Richard J Hathaway. 2002. Some notes on alternating
optimization. In Advances in Soft Computing (AFSS 2002), pages 288–300.
Springer.

William Blacoe and Mirella Lapata. 2012. A comparison of vector-based
representations for semantic composition. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL 2012), Jeju Island,
Korea.

William Blacoe, Elham Kashefi, and Mirella Lapata. 2013. A quantum-
theoretic approach to distributional semantics. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Compu-

60

tational Linguistics: Human Language Technologies (NAACL-HLT 2013),
Atlanta, Georgia.

Gemma Boleda, Eva Maria Vecchi, Miquel Cornudella, and Louise McNally.
2012. First-order vs. higher-order modification in distributional semantics.
In Proceedings of the 2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL 2012), Jeju Island, Korea.

Johan Bos, Stephen Clark, Mark Steedman, James R. Curran, and Julia
Hockenmaier. 2004. Wide-coverage semantic representations from a CCG
parser. In Proceedings of the 20th International Conference on Computa-
tional Linguistics (COLING 2004), Geneva, Switzerland.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cam-
bridge University Press.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006. The second release
of the RASP system. In Proceedings of the COLING/ACL 2006 Interactive
Presentation Sessions, Sydney, Australia.

J Douglas Carroll, Sandra Pruzansky, and Joseph B Kruskal. 1980. CAN-
DELINC: A general approach to multidimensional analysis of many-way ar-
rays with linear constraints on parameters. Psychometrika, 45(1):3–24.

Kenneth Ward Church and Patrick Hanks. 1990. Word association norms,
mutual information, and lexicography. Computational Linguistics, 16(1):22–
29.

Stephen Clark and James R Curran. 2007. Wide-coverage efficient statis-
tical parsing with CCG and log-linear models. Computational Linguistics,
33(4):493–552.

Stephen Clark, Julia Hockenmaier, and Mark Steedman. 2002. Building deep
dependency structures with a wide-coverage CCG parser. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics
(ACL 2002), Philadelphia, Pennsylvania.

Stephen Clark. 2013. Type-driven syntax and semantics for composing
meaning vectors. Quantum Physics and Linguistics: A Compositional, Dia-
grammatic Discourse, pages 359–377.

Stephen Clark. 2015. Vector space models of lexical meaning. In Handbook
of Contemporary Semantics, 2nd Edition. Wiley-Blackwell.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. 2011. Mathematical

61

foundations for a compositional distributional model of meaning. Linguistic
Analysis, 36(1-4):345–384.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. 2011. Natural language processing (almost) from scratch. Journal
of Machine Learning Research, 12:2493–2537.

Ann Copestake and Aurelie Herbelot. 2012. Lexicalised compositionality.
http://www.cl.cam.ac.uk/~ah433/lc-semprag.pdf.

James R Curran, Stephen Clark, and Johan Bos. 2007. Linguistically moti-
vated large-scale NLP with C&C and Boxer. In Proceedings of the Demon-
stration Session of the 45th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2007), Prague, Czech Republic.

James R. Curran. 2004. From distributional to semantic similarity. Ph.D.
thesis, University of Edinburgh.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient
methods for online learning and stochastic optimization. The Journal of
Machine Learning Research, 12:2121–2159.

Katrin Erk and Sebastian Padó. 2008. A structured vector space model for
word meaning in context. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2008), Waikiki, Honolulu,
Hawaii.

John R. Firth. 1957. A synopsis of linguistic theory, 1930-1955. Studies in
Linguistic Analysis, pages 1–32.

Peter W Foltz, Walter Kintsch, and Thomas K Landauer. 1998. The mea-
surement of textual coherence with latent semantic analysis. Discourse pro-
cesses, 25(2-3):285–307.

Daniel Fried, Tamara Polajnar, and Stephen Clark. 2015. Low-rank tensors
for verbs in compositional distributional semantics. In Proceedings of the
Short Papers of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2015), Beijing, China.

Yoav Goldberg and Omer Levy. 2014. word2vec explained: deriving
Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011. Experimenting with
transitive verbs in a DisCoCat. In Proceedings of the 2011 Workshop on Ge-

62

ometrical Models of Natural Language Semantics (GEMS 2011), Edinburgh,
Scotland.

Edward Grefenstette, Georgiana Dinu, Yao-Zhong Zhang, Mehrnoosh
Sadrzadeh, and Marco Baroni. 2013. Multi-step regression learning for com-
positional distributional semantics. In Proceedings of the 10th International
Conference on Computational Semantics (IWCS 2013), Pottsdam, Germany.

Zellig S Harris. 1954. Distributional structure. Word, 10(23):146–162.

Richard A Harshman. 1970. Foundations of the PARAFAC procedure: Mod-
els and conditions for an” explanatory” multi-modal factor analysis. UCLA
Working Papers in Phonetics, 16:1–84.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The El-
ements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 2nd edition.

Karl Moritz Hermann and Phil Blunsom. 2013. The role of syntax in vector
space models of compositional semantics. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (ACL 2013), Sofia,
Bulgaria.

Julia Hockenmaier and Mark Steedman. 2007. CCGbank: a corpus of CCG
derivations and dependency structures extracted from the penn treebank.
Computational Linguistics, 33(3):355–396.

Junzhou Huang, Tong Zhang, and Dimitris Metaxas. 2011. Learning with
structured sparsity. The Journal of Machine Learning Research, 12:3371–
3412.

Martin Jaggi, Marek Sulovsk, et al. 2010. A simple algorithm for nuclear
norm regularized problems. In Proceedings of the 27th International Confer-
ence on Machine Learning (ICML 2010), pages 471–478.

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2014. A study of entangle-
ment in a categorical framework of natural language. In Proceedings of the
11th Workshop on Quantum Physics and Logic (QPL 2014), Kyoto, Japan,
June.

Walter Kintsch. 2001. Predication. Cognitive Science, 25(2):173–202.

Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and
applications. SIAM Review, 51(3):455–500.

Thomas K Landauer and Susan T Dumais. 1997. A solution to Plato’s

63

problem: The latent semantic analysis theory of acquisition, induction, and
representation of knowledge. Psychological Review, 104(2):211.

Thomas K Landauer, Peter W Foltz, and Darrell Laham. 1998. An intro-
duction to latent semantic analysis. Discourse Processes, 25(2-3):259–284.

Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sen-
tences and documents. In Proceedings of the 31st International Conference
on Machine Learning (ICML 2014), Beijing, China.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2014.
Low-rank tensors for scoring dependency structures. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (ACL
2014), Baltimore, Maryland.

Tao Lei, Yuan Zhang, Lluis Marquez, Alessandro Moschitti, and Regina
Barzilay. 2015. High-order low-rank tensors for semantic role labeling. In
Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics – Human Language Technologies
(NAACL-HLT 2015), Denver, Colorado.

Omer Levy and Yoav Goldberg. 2014a. Dependency-based word embed-
dings. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (ACL 2014), Baltimore, Maryland.

Omer Levy and Yoav Goldberg. 2014b. Neural word embedding as implicit
matrix factorization. Advances in Neural Information Processing Systems,
27:2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional
similarity with lessons learned from word embeddings. Transactions of the
Association for Computational Linguistics, 3:211–225.

Percy Liang and Christopher Potts. 2015. Bringing machine learning and
compositional semantics together. Annual Reviews of Linguistics, 1(1):355–
376.

Kevin Lund and Curt Burgess. 1996. Producing high-dimensional semantic
spaces from lexical co-occurrence. Behavior Research Methods, Instruments,
& Computers, 28(2):203–208.

Jan R Magnus and Heinz Neudecker. 1988. Matrix differential calculus with
applications in statistics and econometrics. John Wiley & Sons.

Jean Maillard and Stephen Clark. 2015. A tensor skip-gram model for

64

learning adjective and noun representations. In Advances in Distributional
Semantics Workshop, London, UK.

Jean Maillard, Stephen Clark, and Edward Grefenstette. 2014. A type-
driven tensor-based semantics for CCG. In Proceedings of the EACL 2014
Type Theory and Natural Language Semantics Workshop (TTNLS), Gothen-
burg, Sweden.

Christopher D Manning and Hinrich Schütze. 1999. Foundations of Statis-
tical Natural Language Processing. MIT press.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008.
Introduction to information retrieval. Cambridge University Press.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven J. Bethard, and David McClosky. 2014. The Stanford CoreNLP
natural language processing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics (ACL 2014): System
Demonstrations, pages 55–60, Baltimore, Maryland.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
2013. Distributed representations of words and phrases and their composi-
tionality. In Neural Information Processing Systems (NIPS 2013).

Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Matthew
Purver. 2014. Evaluating neural word representations in tensor-based com-
positional settings. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2014).

George A Miller. 1995. WordNet: a lexical database for English. Communi-
cations of the ACM, 38(11):39–41.

Thomas P Minka. 2000. Old and new matrix algebra useful for
statistics. http://research.microsoft.com/en-us/um/people/minka/

papers/matrix/minka-matrix.pdf.

Guido Minnen, John Carroll, and Darren Pearce. 2001. Applied morpholog-
ical processing of English. Natural Language Engineering, 7(03):207–223.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based models of semantic
composition. In Proceedings of the 46th Annual Meeting of the Assocation for
Computational Linguistics: Human Language Technologies (ACL-08: HLT),
Columbus, Ohio.

Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models
of semantics. Cognitive Science, 34(8):1388–1429.

65

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning word embeddings
efficiently with noise-contrastive estimation. Advances in Neural Information
Processing Systems, 26:2265–2273.

Richard Montague. 1970. Universal grammar. Theoria, 36(3):373–398.

Richard Montague. 1974. The proper treatment of quantification in ordinary
English. In Formal Philosophy, pages 247–270. Yale University Press.

Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural
network language model. In Proceedings of the 10th International Workshop
on Artificial Intelligence and Statistics (AISTATS 2005), Barbados.

Yoshiki Niwa and Yoshihiko Nitta. 1994. Co-occurrence vectors from cor-
pora vs. distance vectors from dictionaries. In Proceedings of the 15th Inter-
national Conference on Computational Linguistics (COLING 1994), Kyoto,
Japan.

Sebastian Padó and Mirella Lapata. 2007. Dependency-based construction
of semantic space models. Computational Linguistics, 33(2):161–199.

Denis Paperno, Nghia The Pham, and Marco Baroni. 2014. A practical and
linguistically-motivated approach to compositional distributional semantics.
In Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2014), Baltimore, Maryland.

Barbara Partee. 1984. Compositionality. Varieties of Formal Semantics,
3:281–311.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014.
GloVe: Global vectors for word representation. In Proceedings of the 2014
Conference on Empiricial Methods in Natural Language Processing (EMNLP
2014), Doha, Qatar.

Tamara Polajnar and Stephen Clark. 2014. Improving distributional seman-
tic vectors through context selection and normalisation. In Proceedings of
the 14th Conference of the European Chapter of the Association for Compu-
tational Linguistics (EACL 2014), Gothenburg, Sweden.

Tamara Polajnar, Luana Fagarasan, and Stephen Clark. 2014a. Reducing
dimensions of tensors in type-driven distributional semantics. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2014), Doha, Qatar.

Tamara Polajnar, Laura Rimell, and Stephen Clark. 2014b. Using sentence

66

plausibility to learn the semantics of transitive verbs. In Proceedings of the
NIPS Workshop on Learning Semantics, Montreal, Quebec.

Tamara Polajnar, Laura Rimell, and Stephen Clark. 2015. Learning verb
tensors with contextual sentence spaces. Under review.

Xin Rong. 2014. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738.

Hinrich Schütze. 1998. Automatic word sense discrimination. Computational
Linguistics, 24(1):97–124.

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. 2011.
Parsing natural scenes and natural language with recursive neural networks.
In Proceedings of the 28th International Conference on Machine Learning
(ICML 2011), Bellevue, Washington.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng.
2012. Semantic Compositionality Through Recursive Matrix-Vector Spaces.
In Proceedings of the 2012 Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning (EMNLP-
CoNLL 2012), Jeju Island, Korea.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D
Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment treebank. In Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2013), Seattle, Washington.

Mark Steedman. 2000. The Syntactic Process. MIT Press, Cambridge, MA.

Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267–
288.

Peter D Turney and Patrick Pantel. 2010. From frequency to meaning:
Vector space models of semantics. Journal of Artificial Intelligence Research,
37(1):141–188.

Eva Maria Vecchi, Marco Baroni, and Roberto Zamparelli. 2011. (Linear)
maps of the impossible: capturing semantic anomalies in distributional space.
In Proceedings of the Workshop on Distributional Semantics and Composi-
tionality (DISCo-11), Portland, Oregon.

Fabio M Zanzotto and Lorenzo Dell’arciprete. 2012. Distributed tree kernels.

67

In Proceedings of the 29th International Conference on Machine Learning
(ICML 2012), Edinburgh, Scotland.

Matthew D Zeiler. 2012. ADADELTA: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701.

Luke S. Zettlemoyer and Michael Collins. 2005. Learning to map sentences to
logical form: Structured classification with probabilistic categorial grammars.
In Proceedings of the 21st Conference on Uncertainty in AI (UAI 2005),
Edinburgh, Scotland.

68

