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pour batterbackground remove pancakebackground

Task: {add egg, add flour, …, pour batter, remove pancake}

Actions:

Video:

Action Segmentation in Video

make pancakes: 

Narration: hey folks here welcome to my kitchen … pour a nice-sized amount … change the angle to show … and take it out

Challenges: visual diversity, noisy narration, varied task structure



How little supervision can we get away with?



Training Without Segment Labels

pour batterbackground𝑎𝑎

make pancakes:   [add egg, add flour, …, 
pour batter, remove pancake]

Weak-supervision for 𝑎𝑎:
‣ Likely ordering of the actions
‣ Time-aligned narration

𝑥𝑥Video 
features:

hey folks here welcome to my kitchen… pour a nice-sized amount…

Actions:

{add egg, add flour, …, 
pour batter, remove pancake}

Discriminative: max
𝜃𝜃,𝑎𝑎

𝑝𝑝𝜃𝜃(𝑎𝑎|𝑥𝑥) [Alayrac et al. 2016, 
Zhukov et al. 2019]

Generative: max
𝜃𝜃

�
𝑎𝑎

𝑝𝑝𝜃𝜃(𝑎𝑎, 𝑥𝑥) [Richard et al. 2018, 
Sener and Yao 2018]



How little supervision can we get away with?
Define a model that allows flexible training.



Semi-Markov Model

…

Actions

Video



𝑝𝑝 𝑠𝑠, 𝑙𝑙, 𝑥𝑥 = �
𝑘𝑘

𝑝𝑝 𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘−1)𝑝𝑝 len 𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘 �
𝑡𝑡

𝑝𝑝 𝑥𝑥𝑡𝑡 𝑙𝑙𝑡𝑡)

Semi-Markov Model

s1 s2 sk…

…
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𝑝𝑝 𝑠𝑠, 𝑙𝑙, 𝑥𝑥 = �
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Semi-Markov Model

l1 l2 l4 l5 lt lt+1

s1 s2 sk…

…

…l3

pour batterbackground remove pancake

tabular Poisson Gaussian

Segments, s:

Labels, l:
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Semi-Markov Model

x1 x2 x3 x4 x5 xt xt+1

l1 l2 l4 l5 lt lt+1

s1 s2 sk…

…

…

…

l3

𝑝𝑝 𝑠𝑠, 𝑙𝑙, 𝑥𝑥 = �
𝑘𝑘

𝑝𝑝 𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘−1)𝑝𝑝 len 𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘 �
𝑡𝑡

𝑝𝑝 𝑥𝑥𝑡𝑡 𝑙𝑙𝑡𝑡)

pour batterbackground remove pancake

tabular Poisson Gaussian

Segments, s:

Labels, l:

Features, x:

Actions

Video



CrossTask Dataset [Zhukov et al. 2019]

‣ 2,700 instructional YouTube videos, with transcribed narration

‣ 18 household tasks, e.g. cooking, changing a tire, assembling furniture

‣ Features from ConvNets trained on other related tasks
• Action recognition [Carreira and Zisserman 2017; Kay et al. 2017]

• Object classification [He et al. 2016; Russakovsky et al. 2015]

• Audio classification [Simonyan and Zisserman 2015; Abu-El-Haija et al. 2016]



Evaluation

Ground Truth:

Timestep Accuracy:  5/7
Actions Recovered:  1/2

Timestep Accuracy:  4/7
Actions Recovered:  2/2

Two main metrics from past work:
‣ Timestep accuracy (1-second intervals) [Sener and Yao 2018, Richard et al. 2018, inter alia]

‣ Action recovery (with one timestep per action) [Alayrac et al. 2016, Zhukov et al. 2019]



How little supervision can we get away with?
First, compare models in a supervised setting.



Supervised Training
Discriminative:

𝑝𝑝 𝑎𝑎|𝑥𝑥
Generative:
𝑝𝑝 𝑎𝑎, 𝑥𝑥

Unstructured:
Independent 
classifier at each 
time-step

Structured:
Semi-Markov model

𝑎𝑎

𝑥𝑥

𝑎𝑎

𝑥𝑥

𝑎𝑎

𝑥𝑥

𝑎𝑎

𝑥𝑥
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How little supervision can we get away with?
Train the structured, generative model without labels.



Training without Segment Labels

𝑝𝑝(𝑥𝑥) = �
𝑎𝑎1:𝑇𝑇

�
𝑡𝑡

𝑝𝑝(𝑎𝑎𝑡𝑡|𝑎𝑎𝑡𝑡−1) 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑎𝑎𝑡𝑡)
𝑎𝑎

𝑥𝑥

Use a typical ordering of steps for each task, e.g. add flour, add sugar, … [Zhukov et al.]

Constrain 𝑝𝑝(𝑎𝑎𝑡𝑡|𝑎𝑎𝑡𝑡−1) to enforce this ordering over segments in all videos for the task

‣ Ordering Supervision

Use label—narration similarity and time alignment to constrain labels [Zhukov et al.]

In training, constrain the sum over label assignments ∑𝑎𝑎1:𝑇𝑇

‣ Narration Supervision

Maximize log 𝑝𝑝(𝑥𝑥) (gradient-based soft EM [Eisner 2016])



Training without Segment Labels
Task: make pancakes

Semi-Markov 
+Order +Narr.

Ground truth

Zhukov et al.
(w/ Order & Narr) 

time (seconds)



Training without Segment Labels
Task: make pancakes

Semi-Markov 
+Order +Narr.

Ground truth

Semi-Markov,
no Order or Narr.

Zhukov et al.
(w/ Order & Narr.) 

time (seconds)



Training without Segment Labels
Task: make pancakes

Ground truth

Semi-Markov 
w/ Order & Narr.

Zhukov et al.
(w/ Order & Narr) 

time (seconds)

Semi-Markov,
no Order or Narr.



Training without Segment Labels
Actions Recovered
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Effects of Supervision
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How little supervision can we get away with?

Weak supervision from narration
helps substantially!



Thank you!

QA Sessions:
Monday, July 6. 4B: Language Grounding-1. 18:00-19:00 UTC+0
Monday, July 6. 5B: Language Grounding-2. 21:00-22:00 UTC+0

github.com/dpfried/action-segmentation
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