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Task: Answer reranking

Open-domain community question answering (Yahoo! Answers)

Rank answers: community-selected answer should be highest.
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Bridging the lexical chasm

Limitations of lexical matching methods: short texts, different
vocabularies in questions and answers

Q: Where’s the best place in soho to go for breakfast?

A: Fernandez & Wells has good pancakes.

Bridge gap with direct associations between terms:

monolingual alignment model

semantic similarity from word embeddings
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Chaining direct evidence

Given lexical associations:

Q: Where’s the best place in soho to go for breakfast?

A: Fernandez & Wells has good pancakes.

breakfast → pancakes

Q: What goes well with pancakes?

A: hashbrowns and toast

pancakes → hashbrowns

Infer indirect, unseen associations:

breakfast → pancakes → hashbrowns

Q: Where should we go for breakfast?

A: Reegee’s has the best hashbrowns in town.
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Evidence chaining as graph traversal

Nodes are terms, edges are semantic associations

Multiple steps give indirect associations

breakfast

pancakes

waffles

flour

hashbrowns

cake

How to build the association graph?
first-order models: word embeddings, monolingual alignment

How to efficiently traverse it?
higher-order models: PageRank, conservative traversal

5



Evidence chaining as graph traversal

Nodes are terms, edges are semantic associations

Multiple steps give indirect associations

breakfast

pancakes

waffles

flour

hashbrowns

cake

How to build the association graph?

first-order models: word embeddings, monolingual alignment

How to efficiently traverse it?
higher-order models: PageRank, conservative traversal

5



Evidence chaining as graph traversal

Nodes are terms, edges are semantic associations

Multiple steps give indirect associations

breakfast

pancakes

waffles

flour

hashbrowns

cake

How to build the association graph?
first-order models: word embeddings, monolingual alignment

How to efficiently traverse it?
higher-order models: PageRank, conservative traversal

5



Evidence chaining as graph traversal

Nodes are terms, edges are semantic associations

Multiple steps give indirect associations

breakfast

pancakes

waffles

flour

hashbrowns

cake

How to build the association graph?
first-order models: word embeddings, monolingual alignment

How to efficiently traverse it?

higher-order models: PageRank, conservative traversal

5



Evidence chaining as graph traversal

Nodes are terms, edges are semantic associations

Multiple steps give indirect associations

breakfast

pancakes

waffles

flour

hashbrowns

cake

How to build the association graph?
first-order models: word embeddings, monolingual alignment

How to efficiently traverse it?
higher-order models: PageRank, conservative traversal

5



First-order embedding similarity

Word embeddings from skip-gram model (Gigaword corpus)

Use cosine similarity as a measure of lexical similarity

breakfast
hashbrowns

best

Filter words in Q and A and compute similarity scores:

Where we go for breakfastshould

Reegee's besthas the hashbrowns

min, max, and average pairwise cosine sim

go breakfast

best hashbrowns

+

+

composed cosine

sim
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First-order alignment

IBM Model 1: P(Question|Answer)

Decomposes over alignments into p(wordquestion|wordanswer )

Use vector p(·|word) as a distributed representation for word

breakfast
br
ea
kf
as
t

wa
ffl
es

pa
nc
ak
es

ha
sh
br
ow
ns

flo
ur
ca
ke

compare using Jensen Shannon distance (JSD)

Where we go for breakfastshould

Reegee's besthas the hashbrowns

min, max, and average pairwise JSD

go breakfast

best hashbrowns

+

+

composed JSD
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Modeling syntactic structures

Applying alignment and embedding models beyond words

Extract collapsed unlabelled dependencies:

be time, time the, time same, be country, country no, be should,

be business, business the, business concealing,

concealing history, history its

Alignment model: unordered (bag-of-dependencies)

Embedding model: skip-gram on depth-first traveral of
dependency graph

Both produce vector representations for the dependency pairs
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Higher-order models: Chaining direct evidence

breakfast

pancakes

waffles

flour

hashbrowns

cake

Edge weights are association strengths (from QA alignment
probabilities, or normalized embedding similarities)

P(hashbrowns|breakfast; 1 step) = 0
P(hashbrowns|breakfast; 2 steps) = (0.4 ∗ 0.2) + (0.6 ∗ 0.5)
P(hashbrowns|breakfast; 3 steps) = 0.4 ∗ 0.5 ∗ 0.5
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Random walks on graphs
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Adjacency Matrix, A

An: probabilities of paths of length n (like PageRank)

but long tail of association probabilities =⇒ semantic drift
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Cautious graph traversal

Average each node’s transition distribution with its k nearest
neighbors (weighted by transition probabilities):

k = 2:
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Produces a new set of second-order vectors. Can be iterated.

Like a PageRank iteration, but only nearest neighbors.
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Inputs to the higher-order method

Term alignment distributions
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Neural network embeddings

dNd1
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Nearest-neighbors given by
cosine similarity between
vectors
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Reranking model architecture
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Experiments

QA dataset:

Yahoo! Answers Community Question Answering Corpus

10,000 “How” QA pairs (5k train, 2.5k dev, 2.5k test)

Minimum 4 answers per question (average 9)

Lexical association data:

Alignment models: separate set of 100k Yahoo! QA pairs
IBM Model 1, GIZA++

Embedding models: Annotated Gigaword
skip-gram with hierarchical sampling

Higher-order Models:

Use k = 20 nearest neighbors (tuned on dev set, stable values)
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Results: higher-order models

Higher-order helps for sparse training data: dependency
embeddings and both types of alignment

Does not help for word embeddings

IR baseline: 19.6% Precision at 1 (P@1)

Word Alignment
Models P@1
Order 1 27.3
Order 1-2 29.0*
Order 1-3 30.5*
Order 1-4 29.6*

Word Embeddings
Models P@1
Order 1 30.7
Order 1-2 29.6
Order 1-3 30.2
Order 1-4 30.4

Dependency Alignment
Models P@1
Order 1 25.89
Order 1-2 28.81*
Order 1-3 29.41*

Dependency Embeddings
Models P@1
Order 1 30.85
Order 1-2 31.69*
Order 1-3 31.89*

*: significant (p < 0.05) increase over Order 1
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Results: combining representations

Aligment models complement embedding models

Syntactic dependencies complement words

IR baseline: 19.6% Precision at 1 (P@1)

Word Align. + Emb.
Models P@1
Order 1 30.85
Order 1-2 31.85*
Order 1-3 32.09*
Order 1-4 31.69

Dependency Align. + Emb.
Models P@1
Order 1 31.49
Order 1-2 32.85*
Order 1-3 32.77*

Word + Dependency: Align. + Emb.
Models P@1
Order 1 31.85
Order 1-2 32.89†

Order 1-3 33.01†

*: significant (p < 0.05) increase over Order 1

†: nearly significant (0.05 < p < 0.10) increase over Order 1
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Comparison to PageRank

Add small teleportation probabilities to word alignment matrix

Do power iteration (multiply matrix by itself)

Word Alignment
Models P@1 Memory Time
Order 1 27.3 75MB –
Order 1-2 29.0* 1.8GB 33 sec
Order 1-3 30.5* 9.7GB 4.5 min
Order 1-4 29.6* 19GB 8.6 min

PageRank
Models P@1 Memory Time
Order 1 27.1 41GB –
Order 1-2 31.01* 41GB 45.6 hrs
Order 1-3 29.89* 41GB 45.6 hrs
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Ablation experiments

IR baseline: 19.6% Precision at 1 (P@1)

1st Order Word Alignment
Features P@1 ∆ P@1
all features 27.33 –
− P(Question|Answer) 25.69 -6%
− max JSD 27.33 0%
− min JSD 23.57 -14%
− average JSD 25.41 -7%
− composite JSD 27.17 -1%

1st Order Word Embeddings
Features P@1 ∆ P@1
all features 30.69 –
− max cosine sim. 29.65 -3%
− min cosine sim. 29.69 -3%
− average cosine sim. 26.49 -14%
− composite cosine sim. 27.01 -12%
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Conclusions

Conservative graph-based lexical inference

Simple implementation, comparable performance to PageRank
but large memory and time savings

Toward robust, approximate inference for QA

Thanks!
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