Higher-order Lexical Semantic Models for Non-factoid Answer Rereanking

Daniel Fried¹, Peter Jansen¹, Gustave Hahn-Powell¹, Mihai Surdeanu¹, and Peter Clark²

> ¹University of Arizona ²Allen Institute for Artificial Intelligence

Task: Answer reranking

Open-domain community question answering (Yahoo! Answers)

1 0 👘 0

Comment

Limitations of lexical matching methods: short texts, different vocabularies in questions and answers

Q: Where's the best place in soho to go for breakfast? A: Fernandez & Wells has good pancakes. Limitations of lexical matching methods: short texts, different vocabularies in questions and answers

 $Q{:}\ \ensuremath{\mathbb{W}}\xspace$ where's the best place in soho to go for breakfast?

A: Fernandez & Wells has good pancakes.

Bridge gap with direct associations between terms:

- monolingual alignment model
- semantic similarity from word embeddings

Q: Where's the best place in soho to go for breakfast? A: Fernandez & Wells has good pancakes.

> Q: What goes well with pancakes? A: hashbrowns and toast

Q: Where's the best place in soho to go for breakfast? A: Fernandez & Wells has good pancakes.

> Q: What goes well with pancakes? A: hashbrowns and toast

Q: Where's the best place in soho to go for breakfast? A: Fernandez & Wells has good pancakes.

 $breakfast \rightarrow pancakes$

Q: What goes well with pancakes? A: hashbrowns and toast

 $pancakes \rightarrow hashbrowns$

Q: Where's the best place in soho to go for breakfast? A: Fernandez & Wells has good pancakes.

 $breakfast \rightarrow pancakes$

Q: What goes well with pancakes? A: hashbrowns and toast

 $pancakes \rightarrow hashbrowns$

• Infer indirect, unseen associations:

 $breakfast \rightarrow pancakes \rightarrow hashbrowns$

Q: Where's the best place in soho to go for breakfast? A: Fernandez & Wells has good pancakes.

 $breakfast \rightarrow pancakes$

Q: What goes well with pancakes? A: hashbrowns and toast

 $pancakes \rightarrow hashbrowns$

• Infer indirect, unseen associations:

 $breakfast \rightarrow pancakes \rightarrow hashbrowns$

Q: Where should we go for breakfast?

Q: Where's the best place in soho to go for breakfast? A: Fernandez & Wells has good pancakes.

 $breakfast \rightarrow pancakes$

Q: What goes well with pancakes? A: hashbrowns and toast

 $pancakes \rightarrow hashbrowns$

• Infer indirect, unseen associations:

 $breakfast \rightarrow pancakes \rightarrow hashbrowns$

Q: Where should we go for breakfast? A: Reegee's has the best hashbrowns in town.

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

• How to build the association graph?

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

 How to build the association graph? first-order models: word embeddings, monolingual alignment

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

- How to build the association graph? first-order models: word embeddings, monolingual alignment
- How to efficiently traverse it?

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

- How to build the association graph? first-order models: word embeddings, monolingual alignment
- How to efficiently traverse it? *higher-order models*: PageRank, conservative traversal

- Word embeddings from skip-gram model (Gigaword corpus)
- Use cosine similarity as a measure of lexical similarity

- Word embeddings from skip-gram model (Gigaword corpus)
- Use cosine similarity as a measure of lexical similarity

• Filter words in Q and A and compute similarity scores:

- Word embeddings from skip-gram model (Gigaword corpus)
- Use cosine similarity as a measure of lexical similarity

• Filter words in Q and A and compute similarity scores:

- Word embeddings from skip-gram model (Gigaword corpus)
- Use cosine similarity as a measure of lexical similarity

• Filter words in Q and A and compute similarity scores:

First-order alignment

- IBM Model 1: *P*(*Question*|*Answer*)
- Decomposes over alignments into $p(word_{question}|word_{answer})$

First-order alignment

- IBM Model 1: *P*(*Question*|*Answer*)
- Decomposes over alignments into $p(word_{question} | word_{answer})$
- Use vector $p(\cdot|word)$ as a distributed representation for *word*

First-order alignment

- IBM Model 1: *P*(*Question*|*Answer*)
- Decomposes over alignments into p(word_{question}|word_{answer})
- Use vector $p(\cdot|word)$ as a distributed representation for word

• compare using Jensen Shannon distance (JSD)

Where should we go for breakfast Reegee's has the best hashbrowns best + hashbrowns min, max, and average pairwise JSD composed JSD

- Applying alignment and embedding models beyond words
- Extract collapsed unlabelled dependencies:

- Applying alignment and embedding models beyond words
- Extract collapsed unlabelled dependencies:

- Applying alignment and embedding models beyond words
- Extract collapsed unlabelled dependencies:

- Alignment model: unordered (bag-of-dependencies)
- Embedding model: skip-gram on depth-first traveral of dependency graph

- Applying alignment and embedding models beyond words
- Extract collapsed unlabelled dependencies:

- Alignment model: unordered (bag-of-dependencies)
- Embedding model: skip-gram on depth-first traveral of dependency graph
- Both produce vector representations for the dependency pairs

Higher-order models: Chaining direct evidence

Higher-order models: Chaining direct evidence

 Edge weights are association strengths (from QA alignment probabilities, or normalized embedding similarities)

Higher-order models: Chaining direct evidence

 Edge weights are association strengths (from QA alignment probabilities, or normalized embedding similarities)

 $\begin{aligned} P(hashbrowns|breakfast; 1 \text{ step}) &= 0\\ P(hashbrowns|breakfast; 2 \text{ steps}) &= (0.4 * 0.2) + (0.6 * 0.5)\\ P(hashbrowns|breakfast; 3 \text{ steps}) &= 0.4 * 0.5 * 0.5 \end{aligned}$

Random walks on graphs

Random walks on graphs

- **A**^{*n*}: probabilities of paths of length *n* (like PageRank)
- ullet but long tail of association probabilities \implies semantic drift

- Average each node's transition distribution with its *k* nearest neighbors (weighted by transition probabilities):
- *k* = 2:

- Average each node's transition distribution with its *k* nearest neighbors (weighted by transition probabilities):
- k = 2: • breakfast waffles pancakes hashbrowns flour cake

- Average each node's transition distribution with its *k* nearest neighbors (weighted by transition probabilities):
- k = 2: • breakfast waffles pancakes hashbrowns flour cake

- Average each node's transition distribution with its *k* nearest neighbors (weighted by transition probabilities):
- k = 2: • breakfast waffles pancakes hashbrowns flour cake

Cautious graph traversal

• Average each node's transition distribution with its *k* nearest neighbors (weighted by transition probabilities):

Cautious graph traversal

• Average each node's transition distribution with its *k* nearest neighbors (weighted by transition probabilities):

- Produces a new set of second-order vectors. Can be iterated.
- Like a PageRank iteration, but only nearest neighbors.

Inputs to the higher-order method

Neural network embeddings

- Nearest-neighbors encoded in each vector as conditional probabilities
- Nearest-neighbors given by cosine similarity between vectors

Inputs to the higher-order method

Neural network embeddings

- Nearest-neighbors encoded in each vector as conditional probabilities
- Nearest-neighbors given by cosine similarity between vectors

Reranking model architecture

Experiments

QA dataset:

- Yahoo! Answers Community Question Answering Corpus
- 10,000 "How" QA pairs (5k train, 2.5k dev, 2.5k test)
- Minimum 4 answers per question (average 9)

Experiments

QA dataset:

- Yahoo! Answers Community Question Answering Corpus
- 10,000 "How" QA pairs (5k train, 2.5k dev, 2.5k test)
- Minimum 4 answers per question (average 9)

Lexical association data:

- Alignment models: separate set of 100k Yahoo! QA pairs IBM Model 1, GIZA++
- Embedding models: Annotated Gigaword skip-gram with hierarchical sampling

Experiments

QA dataset:

- Yahoo! Answers Community Question Answering Corpus
- 10,000 "How" QA pairs (5k train, 2.5k dev, 2.5k test)
- Minimum 4 answers per question (average 9)

Lexical association data:

- Alignment models: separate set of 100k Yahoo! QA pairs IBM Model 1, GIZA++
- Embedding models: Annotated Gigaword skip-gram with hierarchical sampling

Higher-order Models:

• Use k = 20 nearest neighbors (tuned on dev set, stable values)

Results: higher-order models

- Higher-order helps for sparse training data: dependency embeddings and both types of alignment
- Does not help for word embeddings

IR baseline: 19.6% Precision at 1 (P@1)

Word Alignment			Word Embeddings			
Models	P@1		Models		P@1	
Order 1	27.3		Order 1		30.7	
Order 1-2	29.0*		Order 1	-2	29.6	
Order 1-3	30.5*		Order 1	-3	30.2	
Order 1-4	29.6*		Order 1-	-4	30.4	
Dependency	Alignment	D	ependenc	y Em	nbeddin	gs
Models	P@1		Models	F	°@1	
Order 1	25.89	_	Order 1	3	0.85	_
Order 1-2	28.81*		Order 1-2	23	1.69*	
Order 1-3	29.41*		Order 1-3	3 3	1.89*	

*: significant (p < 0.05) increase over Order 1

Results: combining representations

- Aligment models complement embedding models
- Syntactic dependencies complement words

IR baseline: 19.6% Precision at 1 (P@1)

Word Align.	. + Emb.	Dependency AI	ign. + Emb.
Models	P@1	Models	P@1
Order 1	30.85	Order 1	31.49
Order 1-2	31.85*	Order 1-2	32.85*
Order 1-3	32.09*	Order 1-3	32.77*
Order 1-4	31.69		
W	ord + Dep	endency: Align. + Emb.	

u +	Dependency	y: Align. +	
	Models	P@1	
-	Order 1	31.85	
	Order 1-2	32.89 [†]	
	Order 1-3	33.01 [†]	

*: significant (p < 0.05) increase over Order 1

†: nearly significant (0.05) increase over Order 1

Comparison to PageRank

- Add small teleportation probabilities to word alignment matrix
- Do power iteration (multiply matrix by itself)

Comparison to PageRank

- Add small teleportation probabilities to word alignment matrix
- Do power iteration (multiply matrix by itself)

Word Align	iment		
Models	P@1	Memory	Time
Order 1	27.3	75MB	_
Order 1-2	29.0*	1.8GB	33 sec
Order 1-3	30.5*	9.7GB	4.5 min
Order 1-4	29.6*	19GB	8.6 min
PageRank			
Models	P@1	Memory	Time
Order 1	27.1	41GB	_
Order 1-2	31.01*	41GB	45.6 hrs
Order 1-3	29.89*	41GB	45.6 hrs

IR baseline: 19.6% Precision at 1 (P@1)

1st Order Word Alignment

Features	P@1	Δ Ρ@1
all features	27.33	-
- P(Question Answer)	25.69	-6%
— max JSD	27.33	0%
— min JSD	23.57	-14%
— average JSD	25.41	-7%
 composite JSD 	27.17	-1%

1st Order Word Embeddings

Features	P@1	Δ Ρ@1
all features	30.69	_
 max cosine sim. 	29.65	-3%
 min cosine sim. 	29.69	-3%
 average cosine sim. 	26.49	-14%
 composite cosine sim. 	27.01	-12%

- Conservative graph-based lexical inference
- Simple implementation, comparable performance to PageRank but large memory and time savings
- Toward robust, approximate inference for QA

- Conservative graph-based lexical inference
- Simple implementation, comparable performance to PageRank but large memory and time savings
- Toward robust, approximate inference for QA

Thanks!