Higher-order Lexical Semantic Models for Non-factoid Answer Rereanking

Daniel Fried ${ }^{1}$, Peter Jansen ${ }^{1}$, Gustave Hahn-Powell ${ }^{1}$, Mihai Surdeanu ${ }^{1}$, and Peter Clark ${ }^{2}$

${ }^{1}$ University of Arizona
${ }^{2}$ Allen Institute for Artificial Intelligence

Task: Answer reranking

Open-domain community question answering (Yahoo! Answers)

Where's the best place in soho to go for breakfast?
i want to go to a nice place where i can meet a friend for breakfast in soho, london, and have a reasonable breakfast not a stale croissant and bit of bread, nor fast food. any recommendations? personal recommendations preferred...

Update: this is going to be for about 0730, so definitely breakfast, not brunch or anything else.
\sum Follow $\star 5$ answers

Answers

Qest Answer: Flat White serves very good coffee, though I'm not sure what time they open.
http://www.london-eating.co.uk/7134.htm
Fernandez \& Wells on Beak Street is also good:
http://www.fernandezandwells.com/beak.ph.

Patisserie / boulangerie chain, Paul, has a branch on Old Compton Street, though I think they open at 8am: http://www.paul-uk.com/content/find-a-pa.

But why not treat yourself to breakfast at the Wolseley? It's frequently voted in the 'Best for Breakfast' lists in national papers, and they open at 7am:
http://www.thewolseley.com/Default.aspx
Enjoyl :)
The Elegant Epicure $\cdot 7$ years ago

http://www.patisserie-valerie.co.uk/loca..
adacam $\cdot 7$ years ago
100

Bridging the lexical chasm

Limitations of lexical matching methods: short texts, different vocabularies in questions and answers

Q: Where's the best place in soho to go for breakfast?
A: Fernandez \& Wells has good pancakes.

Bridging the lexical chasm

Limitations of lexical matching methods: short texts, different vocabularies in questions and answers

Q: Where's the best place in soho to go for breakfast?
A: Fernandez \& Wells has good pancakes.
Bridge gap with direct associations between terms:

- monolingual alignment model
- semantic similarity from word embeddings

Chaining direct evidence

- Given lexical associations:

Q: Where's the best place in soho to go for breakfast?
A: Fernandez \& Wells has good pancakes.

Q: What goes well with pancakes?
A: hashbrowns and toast

Chaining direct evidence

- Given lexical associations:

Q: Where's the best place in soho to go for breakfast?
A: Fernandez \& Wells has good pancakes.

> Q: What goes well with pancakes?
> A: hashbrowns and toast

Chaining direct evidence

- Given lexical associations:

Q: Where's the best place in soho to go for breakfast?
A: Fernandez \& Wells has good pancakes.
breakfast \rightarrow pancakes
Q: What goes well with pancakes?
A: hashbrowns and toast pancakes \rightarrow hashbrowns

Chaining direct evidence

- Given lexical associations:

Q: Where's the best place in soho to go for breakfast?
A: Fernandez \& Wells has good pancakes.
breakfast \rightarrow pancakes
Q: What goes well with pancakes?
A: hashbrowns and toast pancakes \rightarrow hashbrowns

- Infer indirect, unseen associations:

$$
\text { breakfast } \rightarrow \text { pancakes } \rightarrow \text { hashbrowns }
$$

Chaining direct evidence

- Given lexical associations:

Q: Where's the best place in soho to go for breakfast?
A: Fernandez \& Wells has good pancakes.
breakfast \rightarrow pancakes
Q: What goes well with pancakes?
A: hashbrowns and toast pancakes \rightarrow hashbrowns

- Infer indirect, unseen associations:

$$
\begin{gathered}
\text { breakfast } \rightarrow \text { pancakes } \rightarrow \text { hashbrowns } \\
\text { Q: Where should we go for breakfast? }
\end{gathered}
$$

Chaining direct evidence

- Given lexical associations:

Q: Where's the best place in soho to go for breakfast?
A: Fernandez \& Wells has good pancakes.
breakfast \rightarrow pancakes
Q: What goes well with pancakes?
A: hashbrowns and toast pancakes \rightarrow hashbrowns

- Infer indirect, unseen associations:

$$
\text { breakfast } \rightarrow \text { pancakes } \rightarrow \text { hashbrowns }
$$

Q: Where should we go for breakfast?
A: Reegee's has the best hashbrowns in town.

Evidence chaining as graph traversal

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

Evidence chaining as graph traversal

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

- How to build the association graph?

Evidence chaining as graph traversal

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

- How to build the association graph?
first-order models: word embeddings, monolingual alignment

Evidence chaining as graph traversal

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

- How to build the association graph?
first-order models: word embeddings, monolingual alignment
- How to efficiently traverse it?

Evidence chaining as graph traversal

- Nodes are terms, edges are semantic associations
- Multiple steps give indirect associations

- How to build the association graph?
first-order models: word embeddings, monolingual alignment
- How to efficiently traverse it?
higher-order models: PageRank, conservative traversal

First-order embedding similarity

- Word embeddings from skip-gram model (Gigaword corpus)
- Use cosine similarity as a measure of lexical similarity

First-order embedding similarity

- Word embeddings from skip-gram model (Gigaword corpus)
- Use cosine similarity as a measure of lexical similarity

- Filter words in Q and A and compute similarity scores:

First-order embedding similarity

- Word embeddings from skip-gram model (Gigaword corpus)
- Use cosine similarity as a measure of lexical similarity

- Filter words in Q and A and compute similarity scores:
 min, max, and average pairwise cosine sim

First-order embedding similarity

- Word embeddings from skip-gram model (Gigaword corpus)
- Use cosine similarity as a measure of lexical similarity

- Filter words in Q and A and compute similarity scores:

First-order alignment

- IBM Model 1: P(Question|Answer)
- Decomposes over alignments into $p\left(\right.$ word $_{\text {question }} \mid$ word $\left._{\text {answer }}\right)$

First-order alignment

- IBM Model 1: P (Question \mid Answer)
- Decomposes over alignments into $p\left(\right.$ word $_{q u e s t i o n} \mid$ word $\left._{a n s w e r}\right)$
- Use vector $p(\cdot \mid$ word $)$ as a distributed representation for word

First-order alignment

- IBM Model 1: P(Question \mid Answer)
- Decomposes over alignments into $p\left(\right.$ word $_{q u e s t i o n} \mid$ word $\left._{a n s w e r}\right)$
- Use vector $p(\cdot \mid$ word $)$ as a distributed representation for word

- compare using Jensen Shannon distance (JSD)

Modeling syntactic structures

- Applying alignment and embedding models beyond words
- Extract collapsed unlabelled dependencies:

Modeling syntactic structures

- Applying alignment and embedding models beyond words
- Extract collapsed unlabelled dependencies:

Modeling syntactic structures

- Applying alignment and embedding models beyond words
- Extract collapsed unlabelled dependencies:

- Alignment model: unordered (bag-of-dependencies)
- Embedding model: skip-gram on depth-first traveral of dependency graph

Modeling syntactic structures

- Applying alignment and embedding models beyond words
- Extract collapsed unlabelled dependencies:

- Alignment model: unordered (bag-of-dependencies)
- Embedding model: skip-gram on depth-first traveral of dependency graph
- Both produce vector representations for the dependency pairs

Higher-order models: Chaining direct evidence

Higher-order models: Chaining direct evidence

- Edge weights are association strengths (from QA alignment probabilities, or normalized embedding similarities)

Higher-order models: Chaining direct evidence

- Edge weights are association strengths (from QA alignment probabilities, or normalized embedding similarities)
$P($ hashbrowns \mid breakfast; 1 step $)=0$
$P($ hashbrowns \mid breakfast; 2 steps $)=(0.4 * 0.2)+(0.6 * 0.5)$
$P($ hashbrowns \mid breakfast; 3 steps $)=0.4 * 0.5 * 0.5$

Random walks on graphs

Random walks on graphs

Random walks on graphs

- \mathbf{A}^{n} : probabilities of paths of length n (like PageRank)
- but long tail of association probabilities \Longrightarrow semantic drift

Cautious graph traversal

- Average each node's transition distribution with its k nearest neighbors (weighted by transition probabilities):
- $k=2$:

Cautious graph traversal

- Average each node's transition distribution with its k nearest neighbors (weighted by transition probabilities):
- $k=2$:

Cautious graph traversal

- Average each node's transition distribution with its k nearest neighbors (weighted by transition probabilities):
- $k=2$:

Cautious graph traversal

- Average each node's transition distribution with its k nearest neighbors (weighted by transition probabilities):
- $k=2$:

Cautious graph traversal

- Average each node's transition distribution with its k nearest neighbors (weighted by transition probabilities):
- $k=2$:

Cautious graph traversal

- Average each node's transition distribution with its k nearest neighbors (weighted by transition probabilities):
- $k=2$:

- Produces a new set of second-order vectors. Can be iterated.
- Like a PageRank iteration, but only nearest neighbors.

Inputs to the higher-order method

Term alignment distributions

- Nearest-neighbors encoded in each vector as conditional probabilities

Neural network embeddings

- Nearest-neighbors given by cosine similarity between vectors

Inputs to the higher-order method

Term alignment distributions

Neural network embeddings

- Nearest-neighbors encoded in each vector as conditional probabilities
- Nearest-neighbors given by cosine similarity between vectors

Reranking model architecture

Experiments

QA dataset:

- Yahoo! Answers Community Question Answering Corpus
- 10,000 "How" QA pairs (5k train, 2.5k dev, 2.5k test)
- Minimum 4 answers per question (average 9)

Experiments

QA dataset:

- Yahoo! Answers Community Question Answering Corpus
- 10,000 "How" QA pairs (5k train, 2.5k dev, 2.5k test)
- Minimum 4 answers per question (average 9)

Lexical association data:

- Alignment models: separate set of 100k Yahoo! QA pairs IBM Model 1, GIZA++
- Embedding models: Annotated Gigaword skip-gram with hierarchical sampling

Experiments

QA dataset:

- Yahoo! Answers Community Question Answering Corpus
- 10,000 "How" QA pairs (5k train, 2.5k dev, 2.5k test)
- Minimum 4 answers per question (average 9)

Lexical association data:

- Alignment models: separate set of 100k Yahoo! QA pairs IBM Model 1, GIZA++
- Embedding models: Annotated Gigaword skip-gram with hierarchical sampling
Higher-order Models:
- Use $k=20$ nearest neighbors (tuned on dev set, stable values)

Results: higher-order models

- Higher-order helps for sparse training data: dependency embeddings and both types of alignment
- Does not help for word embeddings

IR baseline: 19.6\% Precision at 1 (P@1)

Word Alignment	
Models	P@1
Order 1	27.3
Order 1-2	29.0^{*}
Order 1-3	$\mathbf{3 0 . 5}$
Order 1-4	29.6^{*}
Dependency	Alignment
Models	P@1
Order 1	25.89
Order 1-2	28.81^{*}
Order 1-3	29.41^{*}

Word Embeddings	
Models	P@1
Order 1	$\mathbf{3 0 . 7}$
Order 1-2	29.6
Order 1-3	30.2
Order 1-4	30.4

Dependency Embeddings

Models	$\mathrm{P@}$ 1
Order 1	30.85
Order 1-2	31.69^{*}
Order 1-3	31.89*

*: significant ($p<0.05$) increase over Order 1

Results: combining representations

- Aligment models complement embedding models
- Syntactic dependencies complement words

IR baseline: 19.6% Precision at 1 (P@1)

Word Align. Models	$\begin{aligned} & + \text { Emb. } \\ & \text { P@1 } \end{aligned}$	Dependency Models	$\underset{\text { P@1 }}{\text { gn. }+E ~}$
Order 1	30.85	Order 1	31.49
Order 1-2	31.85*	Order 1-2	32.85*
Order 1-3	32.09*	Order 1-3	32.77*
Order 1-4	31.69		
$\begin{gathered} \text { Word + Dependency: Align. }+ \text { Emb. } \\ \text { Models P@1 } \end{gathered}$			
Order 1			
Order 1-2 32.89 ${ }^{\dagger}$			
Order 1-3 33.01 ${ }^{\dagger}$			

*: significant ($p<0.05$) increase over Order 1
\dagger : nearly significant $(0.05<p<0.10)$ increase over Order 1

Comparison to PageRank

- Add small teleportation probabilities to word alignment matrix
- Do power iteration (multiply matrix by itself)

Comparison to PageRank

- Add small teleportation probabilities to word alignment matrix
- Do power iteration (multiply matrix by itself)

Word Alignment			
Models	P@1	Memory	Time
Order 1	27.3	75 MB	-
Order 1-2	29.0^{*}	1.8 GB	33 sec
Order 1-3	30.5^{*}	9.7 GB	4.5 min
Order 1-4	29.6^{*}	19 GB	8.6 min
PageRank			
Models	P@1	Memory	Time
Order 1	27.1	41 GB	-
Order 1-2	31.01^{*}	41 GB	45.6 hrs
Order 1-3	29.89^{*}	41 GB	45.6 hrs

Ablation experiments

IR baseline: 19.6% Precision at 1 (P@1)

1st Order Word Alignment		
Features	P@1	$\Delta \mathrm{P@1}$
all features	27.33	-
$-P($ Question \mid Answer $)$	25.69	-6%
- max JSD	27.33	0%
- min JSD	23.57	-14%
- average JSD	25.41	-7%
- composite JSD	27.17	-1%

1st Order Word Embeddings

Features	$\mathrm{PQ1}$	$\Delta \mathrm{PQ}$
all features	30.69	-
- max cosine sim.	29.65	-3%
- min cosine sim.	29.69	-3%
- average cosine sim.	26.49	-14%
- composite cosine sim.	27.01	-12%

Conclusions

- Conservative graph-based lexical inference
- Simple implementation, comparable performance to PageRank but large memory and time savings
- Toward robust, approximate inference for QA

Conclusions

- Conservative graph-based lexical inference
- Simple implementation, comparable performance to PageRank but large memory and time savings
- Toward robust, approximate inference for QA

Thanks!

