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Cross-Domain Transfer

But Coleco bounced back with the introduction of the 
Cabbage Patch dolls, whose sales hit $600 million in 
1985.

Penn Treebank

Genia

English Web 
Treebank

Several of the heterogeneous clinical manifestations of 
systemic lupus erythematosus have been associated 
with specific autoantibodies.

Where can I get morcillas in tampa bay, I will like the 
Argentinian type, but I will to try another please?
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Methodology

Non-neural:
• Berkeley [Petrov and Klein 2007]

• BLLIP [Charniak and Johnson 2005]

• ZPar (Chinese) [Zhang and Clark 2011]

Neural:
• Self-Attentive Chart [Stern et al. 2017; Kitaev and Klein 2018]

• In-Order Recurrent Neural Network Grammars (RNNG) 
[Dyer et al. 2016; Kuncoro et al. 2017; Liu and Zhang 2017]



Methodology

Train Test out-of-domain

English
Newswire
(PTB WSJ)

Literature 
(Brown)

Biomedical 
(Genia)

Web newsgroups, 
reviews, questions

(EWT)

Chinese
Newswire
(CTB v5)

TV News
(CTB v8)

Web forums
(CTB v8)

Blogs
(CTB v8)

Zero-shot generalization setup:
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Neural vs. Non-Neural Generalization
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Effects of Pre-Trained Representations
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Structured Decoding?

We wanted more structure

BERT

Condition on sentence only Also condition on predicted structure

Unstructured
Self-Attentive Chart Parser
[Stern et al. 2017, Kitaev and Klein 2018]

?

We wanted more structure

?

BERT

VP

S

NP

Structured
In-Order RNNG

[Dyer et al. 2016, Liu and Zhang 2017]
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Structure Helps More Out-of-Domain
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Structure Helps with Larger Spans

F1 by minimum span length, on English Web
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Conclusions

Neural and non-neural parsers transfer similarly.

Pre-training helps across domains.

Structure helps in domain transfer, longer spans, and whole parses.



Thank you!

Code and models:

Chart + BERT:
In-Order RNNG + BERT: github.com/dpfried/rnng-bert

parser.kitaev.io



High Accuracy Parsers Benefit NLP Systems

Syntactic parses can improve system performance, even for neural models

[Roth and Lapata 2016; Andreas et al. 2016; Aharoni and Goldberg 2017; 
Strubell et al. 2018; Swayamdipta et al. 2018; Hale et al. 2018; 
Kuncoro et al. 2018; Kim et al. 2019; He et al. 2019]

Input 
Text

Output

Parsed Text
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Structure Helps with Larger Spans

F1 by minimum span length, on Genia corpus



Effects of Pre-Trained Representations
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