Improving Neural Parsing by Disentangling Model Combination and Reranking Effects

Daniel Fried*, Mitchell Stern* and Dan Klein UC Berkeley

Top-down generative models

Top-down generative models

Top-down generative models

(S

Top-down generative models

(S (NP

Top-down generative models

(S (NP The

Top-down generative models

(S (NP The man

Top-down generative models

(S (NP The man)

Top-down generative models

(S (NP The man) (VP

Top-down generative models

(S (NP The man) (VP had (NP an idea)) .)

Top-down generative models

(S (NP The man) (VP had (NP an idea)) .)
$\mathrm{G}_{\text {LSTM }}$ [Parsing as Language Modeling, Choe and Charniak, 2016]

Top-down generative models

(S (NP The man) (VP had (NP an idea)) .)
$\mathrm{G}_{\text {LSTM }}$ [Parsing as Language Modeling, Choe and Charniak, 2016]
$\mathrm{G}_{\text {RNNG }}$ [Recurrent Neural Network Grammars, Dyer et al. 2016]

Generative models as rerankers

Generative models as rerankers

base parser
generative neural model

Generative models as rerankers

base parser
generative neural model

$\mathrm{B} \longrightarrow \mathrm{G}$

$$
y \sim p_{B}(y \mid x)
$$

Generative models as rerankers

base parser

$$
y \sim p_{B}(y \mid x)
$$

generative neural model

Generative models as rerankers

base parser
generative neural model

Generative models as rerankers

base parser generative neural model

F1 on Penn Tree Bank

Generative models as rerankers

base parser generative neural model

F1 on Penn Tree Bank

Choe and
Charniak 2016
89.7

Charniak parser
92.6

LSTM language model
($\mathbf{G}_{\text {LSTM }}$)

Generative models as rerankers

base parser

generative neural model

F1 on Penn Tree Bank

B: Necessary evil, or secret sauce?

base parser
generative neural model
(B)

B: Necessary evil, or secret sauce?

base parser generative neural model

Should we try to do away with B?

B: Necessary evil, or secret sauce?

base parser generative neural model

Should we try to do away with B?

No, better to combine B and G more explicitly

B: Necessary evil, or secret sauce?

base parser generative neural model

Should we try to do away with B?

No, better to combine B and G more explicitly 93.9 F1 on PTB; 94.7 semi-supervised

Using standard beam search for G

| True | | |
| :--- | :--- | :--- | :--- |
| Parse | $(\mathrm{S}$ | The \quad man |

Beam

Using standard beam search for G

True
Parse
P
(SP
The

Beam

Using standard beam search for G

| True | |
| :--- | :--- | :--- | :--- |
| Parse | $(\mathrm{S}$ The \quad man |

Using standard beam search for G

| True | |
| :--- | :--- | :--- | :--- |
| Parse | (NP The man |

Beam $|$| $(S$ | $\rightarrow(N P$ |
| :--- | :--- |
| $(V P$ | $\rightarrow(N P$ |
| $(P P$ | $\rightarrow(N P$ |

Using standard beam search for G

| True | |
| :--- | :--- | :--- | :--- |
| Parse | (NP The man |

Using standard beam search for G

| True | |
| :--- | :--- | :--- | :--- |
| Parse | (NP The man |

Using standard beam search for G

Beam Size 100
$\mathrm{G}_{\text {RNNG }} \quad 29.1$ F1
$\mathrm{G}_{\text {LSTM }} \quad$ 27.4 F1

Standard beam search in G fails

Word generation is lexicalized:

Word-synchronous beam search

w_{0}

(S
[Roark 2001; Titov and Henderson 2010; Charniak 2010; Buys and Blunsom 2015]

Word-synchronous beam search

[Roark 2001; Titov and Henderson 2010; Charniak 2010; Buys and Blunsom 2015]

Word-synchronous beam search

[Roark 2001; Titov and Henderson 2010; Charniak 2010; Buys and Blunsom 2015]

Word-synchronous beam search

200
300
400
500
600
700
800
900
1000

Word-synchronous beam search

Finding model combination effects

Finding model combination effects

Finding model combination effects

Add G's search proposal to candidate list:

Finding model combination effects

Add G's search proposal to candidate list:

$$
G \cup B \longrightarrow G
$$

Finding model combination effects

Add G's search proposal to candidate list:

$$
G \cup B \longrightarrow G
$$

Finding model combination effects

Add G's search proposal to candidate list:

$$
G \cup B \longrightarrow G
$$

Finding model combination effects

F1 on PTB

Finding model combination effects

F1 on PTB

Reranking shows implicit model combination

B hides model errors in G

Making model combination explicit

Can we do better by simply combining model scores?

$$
\begin{aligned}
& \mathrm{B} \longrightarrow \mathrm{G} \\
& \mathrm{G} \cup \boxed{\mathrm{~B}} \longrightarrow \mathrm{G} \\
& \log p_{G}(x, y)
\end{aligned}
$$

Making model combination explicit

Can we do better by simply combining model scores?

$$
\begin{aligned}
B & \longrightarrow G+B \\
G \cup B & \longrightarrow G+B
\end{aligned}
$$

$\log p_{G}(x, y)$

Making model combination explicit

Can we do better by simply combining model scores?

$$
\begin{aligned}
& \mathrm{B} \longrightarrow \mathrm{G}+\mathrm{B} \\
& \mathrm{G} \cup \mathrm{~B} \longrightarrow \mathrm{G}+\mathrm{B} \\
& \lambda \log p_{G}(x, y)+(1-\lambda) \log p_{\boldsymbol{B}}(y \mid x)
\end{aligned}
$$

Making model combination explicit

F1 on PTB

score with G

Making model combination explicit

■ score with G + Bscore with G

F1 on PTB

Explicit score combination prevents errors

Comparison to past work

F1 on PTB

Comparison to past work

F1 on PTB
92.6

Choe \& Charniak

Comparison to past work

F1 on PTB

Comparison to past work

F1 on PTB

Comparison to past work

F1 on PTB

Comparison to past work

F1 on PTB

Comparison to past work

F1 on PTB

93.8 add silver data	93.3		
		93.6	add $\mathrm{G}_{\text {LSTM }}$
			$\stackrel{93.5}{\mathrm{G}_{\mathrm{RNNG}} \cup \mathrm{~B} \rightarrow \mathrm{G}_{\mathrm{RNNG}}+\mathrm{B}}$
92.6			
Choe \& Charniak 2016	Dyer et al. 2016	Kuncoro et al. 2017	Ours

Comparison to past work

F1 on PTB

			94.7 add silver data
93.8	93.3	93.6	$\begin{gathered} 93.9 \\ \text { add } G_{\text {LSTM }} \end{gathered}$
			$\begin{gathered} 93.5 \\ \mathrm{G}_{\mathrm{RNNG}} \cup \mathrm{~B} \rightarrow \mathrm{G}_{\mathrm{RNNG}}+\mathrm{B} \end{gathered}$
92.6			
Choe \& Charniak 2016	Dyer et al. 2016	Kuncoro et al. 2017	Ours

Conclusion

Search procedure for G

Conclusion

Search procedure for G
(more effective version forthcoming: Stern et al., EMNLP 2017)

Conclusion

Search procedure for G
(more effective version forthcoming: Stern et al., EMNLP 2017)
Found model combination effects in $B \longrightarrow G$

Conclusion

Search procedure for G
(more effective version forthcoming: Stern et al., EMNLP 2017)
Found model combination effects in $B \longrightarrow G$

Large improvements from simple, explicit score combination:

$$
B \rightarrow G+B
$$

Thanks!

