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Vision & Language Navigation (VLN) Task

Given visual observations and
a language instruction, take
actions to navigate to the
described target location:

go down the second hallway on the left,

enter the bedroom and stop by the mirror ~ Room-to-Room KEg
dataset for VLN [1]

Room-to-Room (R2R) dataset[1]: real images + discrete locations

Visual features are not helping agents generalize!

Surprisingly, we find that state-of-the-art models do not
benefit from their visual inputs in new environments.

Compare agents with and without visual features using two
state-of-the-art architectures: Speaker-Follower [2] and Self-
Monitoring [3], that use pre-trained ResNet features:

=

Agents with ResNet visual features Agents without visual features

(only route structure)

Agents without vision (relying just on discrete route structure)
are comparable or better in new, Unseen, environments:

model training visual success rate |success rate on
architecture approach features | on Seen envs. | Unseen envs.

_ (none) 29.7 31.7
student-forcing
Speaker-Follower ResNet 53.3 29.0
[2] | (none) 34.1 35.2
teacher-forcing
ResNet 40.4 29.0
_ (none) 36.1 39.7
student-forcing
Self-Monitoring ResNet 62.8 40.5
[3]* , (none) 34.3 32.2
teacher-forcing
ResNet 44.0 32.8

(* Self-Monitoring results are based on our implementation; teacher-forcing:
sampling actions from shortest paths to the goal; student-forcing: sampling
actions from the agent’s prediction)

Will higher-level visual features generalize better?

Sometimes: using object-based visual features generalizes better
than using ResNet features in one model, and generalizes
comparably in a second model.

Object detections from Faster R-CNN [4], trained on Visual
Genome:

couch stairs

door

Represent the scene with object detection results, replacing or
combining with ResNet visual features:

model . success rate success rate
. visual features
architecture oh Seen envs. | on Unseen envs.

1 (none) 34.1 35.2
2 Speaker-Follower ResNet 53.3 29.0
3 [2] objects 38.5 33.5
4 ResNet + objects 47.8 39.8
5 (none) 36.1 39.7
6 Self-Monitoring ResNet 62.8 40.5
7 [3] objects 48.8 41.6
8 ResNet + objects 59.2 39.5
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Vision does help if the model is structured carefully
Best overall results from a mixture-of-experts:

> Ensemble a visual agent (Object or ResNet) and a non-visual
agent: better than ensembling two agents of the same
modality (both visual or both non-visual)

> Objects and ResNet features are also complementary
> Further benefits from jointly training agents in the ensemble
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architecture under | . .. success rate | success rate on
Self-Monitoring [3] on Seen envs. | Unseen envs.

9 (no vis, no vis) 36.8 41.0

10 (ResNet, ResNet) 62.8 43.5

11 _ (objects, objects) 49.2 45.2

12 ml)r:g;eelzf 2 (ResNet+objects, ResNet+objects) 63.5 42.2

13 (ResNet, no vis) 63.4 46.9

14 (objects, no vis) 44.9 43.4

15 (ResNet+objects, no vis) 60.2 46.4

16 mixture of 3 (ResNet, objects, no vis) 60.0 49.5

models
17 o o (ResNet, no vis) 63.1 48.3
joint training _ _
18 (ResNet, objects, no vis) 61.6 51.9
Discussion

> State-of-the-art models have trouble with generalizable visual
perception (consistent with [5])

>  Higher-level visual features from a pre-trained object detector
sometimes generalize better than lower-level ResNet features

> Structuring the agent to encourage it to ground into each
modality helps, even by simply ensembling visual- and non-
visual models

take a right out of the room ...
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enter through the sliding door ...

R

blue: a non-visual agent’s action red: a visual agent’s action
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