
Contextual Communication
in Programming

Daniel Fried

Today’s Question

Are bigger models the solution
for AI-assisted programming?

Posing This Question in 2012…

Natural languages like English are rich, complex, and powerful. We begin with the
conjecture that most software is also natural, in the sense that it is created by
humans at work, with all the attendant constraints and limitations—and thus, like
natural language, it is also likely to be repetitive and predictable. We then proceed
to ask whether a) code can be usefully modeled by statistical language models and
b) such models can be leveraged to support software engineers.

[ICSE 2012; Most Influential Paper 2022]

Posing This Question in 2012…

▸ n-gram models trained on ~25 million lines of code

▸ Substantial improvements to Eclipse’s auto-
complete

▸ But, 3-4 orders of magnitude less data than modern
neural models

[ICSE 2012; Most Influential Paper 2022]

… and now

[Compiled from Chen et al. 2021, Xu et al. 2021, Li et al. 2021, Fried et al. 2022, Nijkamp et al. 2022, Chowdhery et al. 2022]

Function pass rate on a Python synthesis dataset [Chen et al. 2021] by data & model scale:

Today’s Question

Are bigger models the solution
for AI-assisted programming?

part of

^

YES

Programming as Communication

We begin with the conjecture that most software… is created by humans at work,
with all the attendant constraints and limitations
communicating with the compiler, other developers, and themselves,
and thus, like natural language,
it is also likely to be repetitive and predictable.
writing software is a form of contextual and interactive communication.
We then proceed to ask whether a) code can be usefully modeled by statistical
language models and b) such models can be leveraged to support software
engineers.

[VSCode Live Share Demo, 2020]

https://www.youtube.com/watch?v=A2ceblXTBBc&t=180s

Communicating with Multiple Modalities

Natural
Language

Edits to
Code

Tests &
Execution

Deictic
(Pointing /

Highlighting)

As Inputs

Partial
Code

As Outputs

[Shi et al. 2022]

[Wallace et al.,
in progress]

[Fried &
Aghajanyan et
al., 2022]

…

[Fried &
Aghajanyan et
al., 2022]

[Fried &
Aghajanyan et
al., 2022]

Modality Choice
[Lin et al., 2022]

Communicating with Multiple Modalities

Natural
Language

Edits to
Code

Tests &
Execution

Deictic
(Pointing /

Highlighting)

As Inputs

Partial
Code

As Outputs

[Shi et al. 2022]

[Wallace et al.,
in progress]

[Fried &
Aghajanyan et
al., 2022]

…

[Fried &
Aghajanyan et
al., 2022]

[Fried &
Aghajanyan et
al., 2022]

Modality Choice
[Lin et al., 2022]

Neural Code Model Objectives

“Causal” (L-to-R)

def minimize_in_graph(build_loss_fn, num_steps=200, optimizer=None):
""" Minimize a loss function using gradient.
Args:

build_loss_fn: a function that returns a loss tensor for a mini-batch of examples.
num_steps: number of gradient descent steps to perform.
optimizer: an optimizer to use when minimizing the loss function. If None, will use Adam

"""
optimizer = tf.compat.v1.train.AdamOptimizer(0.1) if optimizer is None else optimizer
minimize_op = tf.compat.v1.while_loop(

cond=lambda step: step < num_steps,
body=train_loop_body,
loop_vars=[tf.constant(0)], return_same_structure=True)[0]

return minimize_op

Masked Infilling Causal Masking

[Donahue+ 2020, Aghajanyan+
2022, ours, Bavarian+ 2022]

[e.g. BERT, CodeBERT][e.g. GPT-*, Codex]

Prefix

Target

Suffix

InCoder: Code Generation and Infilling

[Fried*, Aghajanyan* et al., 2022]

InCoder: Code Generation and Infilling
▸ Data
▹ 600K permissively-licensed repositories

from GitHub & GitLab
▹ StackOverflow: questions, answers,

comments

▸ Models
▹ Standard transformer LM
▹ 1B model: ~1 week on 128 GPUs
▹ 6B model: ~3 weeks on 240 GPUs

InCoder: Code Generation and Infilling

[Fried*, Aghajanyan* et al., 2022]

Also usable as a left-to-right generation model with no apparent loss in performance [see also Bavarian et al. 2022]

Evaluation
▸ Zero-shot evaluation on realistic code infilling tasks
▸ Compare the model in three different modes to evaluate benefits of suffix context

Left-to-Right Single Causal MaskingLeft-to-Right Rerank

Doesn’t use suffix Only uses suffix
when reranking

Uses suffix when
generating

Baselines Ours

Evaluation

Evaluation

Demo

Model Weights & Interactive Demo: huggingface.co/facebook/incoder-1B

huggingface.co/facebook/incoder-1B

Communicating with Multiple Modalities

NL
Instructions

Edits to
Code

Tests &
Execution

Deictic
(Pointing /

Highlighting)

As Inputs

Partial
Code

As Outputs

[Shi et al. 2022]

[Wallace et al.,
in progress]

[Fried &
Aghajanyan et
al., 2022]

…

[Fried &
Aghajanyan et
al., 2022]

[Fried &
Aghajanyan et
al., 2022]

Modality Choice
[Lin et al., 2022]

Using Test Inputs

def longest(strings: List[str]) -> Optional[str]:
""" Out of list of strings, return the longest one.
Return the first one in case of multiple strings of
the same length. Return None if the list is empty."""

[Shi et al. 2022. See also AlphaCode, Li et al. 2022]

longest([]) == ___
longest(['x', 'y', 'z']) == ___
longest(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == ___

Test Inputs:Description:

Minimum Bayes Risk with Execution:

Generate
Functions

Execute on
Test Inputs

== None
== ‘z’
== ‘kkkk’

== None
== ‘x’
== ‘zzzz’

Cluster by Outputs

Other Features of Communication

▸ Communicative cost
▹ Copilot outputs can be hard to understand [Vaithilingam et al. 2022]
▹ Would a user rather type a comment or edit code?

▸ Resolving uncertainty
▹ Disambiguate by prompting with test inputs [Zhong et al. 2022]
▹ How to convey uncertainty to the user & build trust?

▸ Adaptation
▹ Acceleration vs exploration modes for using Copilot [Barke et al. 2022]
▹ API preferences, functional vs imperative, design patterns, documentation style …

Armen
Aghajanyan

Anca
Dragan

Marjan
Ghazvininejad

Dan
Klein

Mike
Lewis

Jessy
Lin

Freda
Shi

Eric
Wallace

Sida
Wang

Scott
Yih

Luke
Zettlemoyer

Ruiqi
Zhong

Collaborators

Thanks!
dfried@cs.cmu.edu
dpfried.github.io

Backup Slides

Scale and Performance

… and now

Details

▸ Remove duplicate files using exact match on alphanumeric token sequences
▸ Tokenization: retrain byte-level BPE, modified to allow merging across spaces
▸ e.g. import numpy as np is a single token
▹ 40% reduction in token count compared to GPT-2's tokenizer
▸ Longer effective contexts & more efficient training
▸ But, less compute spent in training may affect performance

▸ Meta-data conditioning and prediction
▸ <| file source=github stars=high filename=setup.py ext=.py |>
▸ Attributes can appear at beginning of the file (conditioning) or end (prediction)

Function completion

Function completion

