Contextual Communication
In Programming

Daniel Fried

Language
m M et(] m— Technologies
Institute

Today’s Question

Are bigger models the solution
for Al-assisted programming?

Posing This Question in 2012...

On the Naturalness of Software

Abram Hindle, Earl Barr, Mark Gabel, Zhendong Su, Prem Devanbu
[ICSE 2012; Most Influential Paper 2022]

Natural languages like English are rich, complex, and powerful. We begin with the
conjecture that most software is also natural, in the sense that it is created by
humans at work, with all the attendant constraints and limitations—and thus, like
natural language, it is also likely to be repetitive and predictable. We then proceed
to ask whether a) code can be usefully modeled by statistical language models and
b) such models can be leveraged to support software engineers.

Posing This Question in 2012...

On the Naturalness of Software

Abram Hindle, Earl Barr, Mark Gabel, Zhendong Su, Prem Devanbu

» n-gram models trained on ~25 million lines of code

» Substantial improvements to Eclipse’s auto-
complete

» But, 3-4 orders of magnitude less data than modern
neural models

Cross Entropy (10-Fold

[ICSE 2012; Most Influential Paper 2022]

=

Order of N-Grams

... ahd now

Function pass rate on a Python synthesis dataset [Chen et al. 2021] by data & model scale:

N

10
o 7%
S
o
(©
Q 6%
R
< 10
>
o ©12% 15%
100 0 1 2
10 10 10

Model Parameters (Billions)
[Compiled from Chen et al. 2021, Xu et al. 2021, Li et al. 2021, Fried et al. 2022, Nijkamp et al. 2022, Chowdhery et al. 2022]

Today’s Question

part of
Are bigger modeIsAthe solution

for Al-assisted programming?

YES

Programming as Communication

We begin with the conjecture that most software... is created by humans at work,

and thus, like natural language,

We then proceed to ask whether a) code can be usefully modeled by statistical
language models and b) such models can be leveraged to support software
engineers.

https://www.youtube.com/watch?v=A2ceblXTBBc&t=180s

Communicating with Multiple Modalities

As Inputs

As Outputs

Natural

Language

[Fried &
Aghajanyan et
al., 2022]

[Fried &
Aghajanyan et
al., 2022]

Partial Tests & Edits to (P[(zienl’fﬂ; /
Code Execution Code ellfelng]
[Fried &
Aghajanyan et [Shi et al. 2022]
al., 2022]

[Wallace et al.,
in progress]

!

Modality Choice
[Lin et al., 2022]

Communicating with Multiple Modalities

As Inputs

As Outputs

Natural

Language

[Fried &
Aghajanyan et
al., 2022]

[Fried &
Aghajanyan et
al., 2022]

Partial Tests & Edits to (P[(zienl’fﬂfg /
Code Execution Code ellfelng]
[Fried &
Aghajanyan et [Shi et al. 2022]
al., 2022]

[Wallace et al.,
in progress]

!

Modality Choice
[Lin et al., 2022]

Neural Code Model Objectives

Prefix

num_stepns=200. optimizer=None):

def minimize in_graph(build loss _fn
""" Minimize a loss function using gradient.

Args:
a function that returns a loss tensor for a mini-batch of examples. Target

build _loss_fn:
num_steps: number of gradient descent steps to perform.
If None, will use Adam

optimizer: an optimizer to use when minimizing the loss function.

optimizer = tf.compat.vl.train.AdamOptimizer(0®.1) if optimizer is None else optimizer

minimize op = tf.compat.vl.while loop(
cond=1lambda step: step < num_steps, .
body=train_loop_body, SUff'X
loop_vars=[tf.constant(0)],

return minimize_op

return_same_structure=True) [0O]

“Causal” (L-to-R) Masked Infilling Causal Masking

[Donahue+ 2020, Aghajanyan+

[e.g. BERT, CodeBERT]
2022, ours, Bavarian+ 2022]

[e.g. GPT-*, Codex]

InCoder: Code Generation and Infilling

Training

Original Document

Masked Document

with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():

word_counts[word]
else:
word_counts[word]
return word_counts

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""

if word in word counts:

+= 1

=1

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
<MASK:©> in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts
<MASK:0> word_counts = {}
for line in f:
for word in line.split():
if word <EOM>

[Fried*, Aghajanyan™ et al., 2022]

InCoder: Code Generation and Infilling

U1
o

» Data

> 600K permissively-licensed repositories
from GitHub & GitLab

Total File Size (GB)

= N w N

o o o o o
javascript I

> StackOverflow: questions, answers, | MELESsEnn
comments 5 g_:amggsazg—
» Models £
> Standard transformer LM @i:
> 1B model: ~1 week on 128 GPUs %14—
> 6B model: ~3 weeks on 240 GPUs Eiz
% 8 -

1 I I I I
0.2 0.4 0.6 0.8 1.0
Fraction of Training Data Seen

InCoder: Code Generation and Infilling

Zero-shot Inference

Docstring Generation

Multi-Region Infilling

def count_words(filename: str) -> Dict[str, int]:

Counts the number of occurrences of each word in the given file.

:param filename: The name of the file to count.

:return: A dictionary mapping words to the number of occurrences.

with open(filename, 'r') as f:
word _counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts

from collections import Counter

def word_count(file_name):
"""Count the number of occurrences of each word in the file."""
words = []
with open(file_name) as file:
for line in file:
words.append(line.strip())
return Counter (words)

Also usable as a left-to-right generation model with no apparent loss in performance [see also Bavarian et al. 2022]

[Fried*, Aghajanyan™ et al., 2022]

Evaluation

» Zero-shot evaluation on realistic code infilling tasks

» Compare the model in three different modes to evaluate benefits of suffix context

Baselines Ours
Left-to-Right Single Left-to-Right Rerank Causal Masking
Doesn’t use suffix Only uses suffix Uses suffix when

when reranking generating

Evaluation

Docstring Generation

def count words(filename: str) -> Dict[str, int]:

Counts the number of occurrences of each word in the given file.

:param filename: The name of the file to count.

:return: A dictionary mapping words to the number of occurrences.

with open(filename, 'r') as f:
word _counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word _counts[word] =1
return word_counts

Method BLEU
Ours: L-R single 16.05
Ours: L-R reranking 17.14
Ours: Causal-masked infilling 18.27
RoBERTa (Finetuned) 18.14
CodeBERT (Finetuned) 19.06
PLBART (Finetuned) 19.30
CodeT5 (Finetuned) 20.36

Evaluation

Type Inference

def count words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word _counts[word] += 1
else:
word counts[word] =1
return word_counts

Method F1

Ours: Left-to-right single 30.8
Ours: Left-to-right reranking 33.3
Ours: Causal-masked infilling 59.2
TypeWriter (Supervised) 48.3

Demo

Num Tokens: () ' 64

Temperature: @ > 0.1
Extend [Add <infill> mask | Infily

3

Syntax: | Python

v

Model Weights & Interactive Demo: huggingface.co/facebook/incoder-1B

huggingface.co/facebook/incoder-1B

Communicating with Multiple Modalities

: : Deictic
NL Partial Tests & Edits to .
Instructions Code Execution Code o g
Highlighting)
[Fried & [Fried &
As Inputs Aghajanyan et Aghajanyan et [Shi et al. 2022]
al., 2022] al., 2022]
[Fried &
As Outputs Aghajanyan et [Wallace et al.,
al., 2022] in progress]
\ J

!

Modality Choice
[Lin et al., 2022]

Using Test Inputs

Description: Test Inputs:
def longest(strings: List[str]) -> Optional[str]: longest([]) == __
""" Qut of list of strings, return the longest one. longest(['x"', 'y', 'z']1) ==
Return the first one in case of multiple strings of longest(['x"', 'yyy', 'zzzz', ‘'www', 'kkkk', 'abc']l) =
the same length. Return None if the list is empty."""

Minimum Bayes Risk with Execution:
Cluster by Outputs

== None
== ‘Z’
== ‘kkkk
Generate Execute on
Functions Test Inputs
> >
- —
== None
== ‘X’
== ‘zz777

[Shi et al. 2022. See also AlphaCode, Li et al. 2022]

Other Features of Communication

> Copilot outputs can be hard to understand [Vaithilingam et al. 2022]

> Would a user rather type a comment or edit code?

» Communicative cost ’

» Resolving uncertainty

> Disambiguate by prompting with test inputs [Zhong et al. 2022]

> How to convey uncertainty to the user & build trust?

» Adaptation

> Acceleration vs exploration modes for using Copilot [Barke et al. 2022]

> API preferences, functional vs imperative, design patterns, documentation style ...

Collaborators

Armen Marjan
Aghajanyan Dragan Ghazvininejad

Scott Luke
Yih Zettlemoyer

Eric
Wallace

Thanks!

dfried@cs.cmu.edu
dpfried.github.io

Backup Slides

Scale and Performance

Model Size Python Other Other Code Infill? HE HE HE MBPP
(B) Code(GB) Code(GB) (GB) License " @1 @l0 @100 @1
Released
CodeParrot [61] 1.5 50 None None —_ 4.0 8.7 17.9 —_—
PolyCoder [68] 2.7 16 238 None —_ 5.6 9.8 17.7 —
GPT-]J [63, 18] 6 6 90 730 —_— 16 1 207 —_—
INCODER-6.7B 6.7 S>2 107 57 Permissive v 152 278 47.0 194
GPT-NeoX [14] 20 6 90 730 — 154 256 41.2 —_—
CodeGen-Multi [46] 6.1 62 375 1200 —_— 18.2 28.7 449 —
CodeGen-Mono [46] 6.1 279 375 1200 —_ 26.1 423 65.8 —_
CodeGen-Mono [46] 16.1 279 375 1200 —_ 293 499 75.0 —_
Unreleased
LaMDA [10, 60, 21] 137 None None 23l e 14.0 e 47.3 14.8
AlphaCode [44] 1.1 54 660 None —_ 17.1 28.2 45.3 —
Codex-12B [18] 12 180 None >570 — 28.8 46.8 12.3 o
PalLM-Coder [21] 540 ~20 ~200 ~4000 Permissive 36.0 — 88.4 47.0

... ahd now

-
o
N

-—

Python Data (GB)
o

10
10

.ZodeGen-Mono

(codex-12B

DAlphaCodd@SGoagGen-Mul

© PolyCoder
O GPT-J)GPT-NeoX
10’ 10°

Model Parameters (Billions)

‘T’aLM-Coder

Details

» Remove duplicate files using exact match on alphanumeric token sequences
» Tokenization: retrain byte-level BPE, modified to allow merging across spaces
» e.g. import numpy as np is a single token
> 40% reduction in token count compared to GPT-2's tokenizer
» Longer effective contexts & more efficient training
» But, less compute spent in training may affect performance
» Meta-data conditioning and prediction
» <| file source=github stars=high filename=setup.py ext=.py |>
» Attributes can appear at beginning of the file (conditioning) or end (prediction)

Function completion

Single-Line Infilling
0.8

0.7 - _—

0.6

0.5 A
0.4

Pass Rate

0.341 —— CMInfilling
0.2 g T L'R Single
—— L-R Reranking

0.1+

| I I
0.0 0.2 0.4 0.6 0.8
Fraction of Lines in Right Context

def count_words(filename): def count_words(filename):
"""Count the number of occurrences of each word in the file"' "nncount the number of occurrences of each word in the file"""
words = {} words = {}
with open(filename, 'r') as file: with open(filename, 'r') as file:
for line in file: for line in file:
line = line.lower().stripQ line = line.lower().stripQ
for word in line.split(): for word in line.split(Q):
if word not in words: if word not in words:
words[word] = @ words[word] = @

words[word] += 1 words[word] += 1
return words return words

Function completion

Single-Line Infilling

0.8
0.7

/

0.6
0.5 A
0.4

Pass Rate

0.341 —— CM Infilling

—— L-R Single
—— L-R Reranking

0.2 -

0.1+

|
0.0 0.2

I I
0.4 0.6 0.8

Fraction of Lines in Right Context

def count_words(filename):
"""Count the number of occurrences of each word in the file"
words = {}
with open(filename, 'r') as file:
for line in file:
line = line.lower().stripQ
for word in line.split():
if word not in words:
words[word] = @
words[word] += 1
return words

def count_word;(filename):

Rate

%))

Pas

"""Count the number of occurrences of each word in the file"""

words = {}
with open(filename, 'r') as file:
for line in file:
line = line.lower().stripQ)
for word in line.split():
if word not in words:
words[word] = @
words[word] += 1
return words

0.7 1
0.6
0.5
0.4 1
0.3
0.2

0.1~

Multi-Line Infilling

—— CM Infilling
—— L-R Single
—— L-R Reranking

T~

0.0

I | |
0.2 0.4 0.6 0.8

Fraction of Lines in Right Context

def count_words(filename):
"""Count the number of occurrences of each word in the file"""
words = {}
with open(filename, 'r') as file:
for line in file:
| line = line.lower().strip()
for word in line.split():
if word not in words:
words[word] = @
words[word] += 1
return words

