
InCoder, SantaCoder, and StarCoder:
Findings from Training Code LLMs

Daniel Fried, with many others
from Meta AI and the BigCode project

Are bigger models the solution
for AI-assisted programming?

Posing This Question in 2012…

Natural languages like English are rich, complex, and powerful. We begin with the
conjecture that most software is also natural, in the sense that it is created by
humans at work, with all the attendant constraints and limitations—and thus, like
natural language, it is also likely to be repetitive and predictable. We then proceed
to ask whether a) code can be usefully modeled by statistical language models and
b) such models can be leveraged to support software engineers.

[ICSE 2012; Most Influential Paper 2022]

Posing This Question in 2012…

▸ n-gram models trained on ~25 million lines of code

▸ Substantial improvements to Eclipse’s auto-
complete

▸ But, 3-4 orders of magnitude less data than modern
neural models

[ICSE 2012; Most Influential Paper 2022]

… and now

… and now

[Compiled from Chen et al. 2021, Xu et al. 2021, Li et al. 2021, Fried et al. 2022, Nijkamp et al. 2022, Chowdhery et al. 2022, Li et al. 2023]

Function pass rate on a Python docstring-to-function task [HumanEval, Chen et al. 2021]
by amount of Python data & model scale:

PaLM-Coder
34% StarCoder

CodeGen-Mono
Codex-12B [Chen et al. 2021]

Are bigger models the solution
for AI-assisted programming?

part of

^

YES

Outline

▸ InCoder
▹ Infilling and natural language data

▸ The Stack & SantaCoder
▹ Data filtering and model improvement experiments

▸ StarCoder
▹ More data: more languages, issues, commits, Jupyter…
▹ Scale

Outline

▸ InCoder
▹ Infilling and natural language data

▸ The Stack & SantaCoder
▹ Data filtering and model improvement experiments

▸ StarCoder
▹ More data: more languages, issues, commits, Jupyter…
▹ Scale

LLM Training Objectives

“Causal” (L-to-R)

def minimize_in_graph(build_loss_fn, num_steps=200, optimizer=None):
 """ Minimize a loss function using gradient.
 Args:
 build_loss_fn: a function that returns a loss tensor for a mini-batch of examples.
 num_steps: number of gradient descent steps to perform.
 optimizer: an optimizer to use when minimizing the loss function. If None, will use Adam
 """
 optimizer = tf.compat.v1.train.AdamOptimizer(0.1) if optimizer is None else optimizer
 minimize_op = tf.compat.v1.while_loop(
 cond=lambda step: step < num_steps,
 body=train_loop_body,
 loop_vars=[tf.constant(0)], return_same_structure=True)[0]
 return minimize_op

Masked Infilling “Causal Masking” /
Fill-in-the-Middle (FIM)

[Donahue+ 2020, Aghajanyan+
2022, ours, Bavarian+ 2022]

[e.g. BERT, CodeBERT][e.g. GPT-*, Codex]

Prefix

Target

Suffix

Causal Masking / FIM Objective

[Donahue et al. 2020, Aghajanyan et al. 2022, Fried et al. 2022, Bavarian et al. 2022]

Evaluation: HumanEval Benchmark

Constructed by authors of Codex paper; programming puzzle/simple
contest problems. Evaluated using unit tests.

Model Training
▸ Training Data
▹ 600K permissively-licensed repositories

from GitHub & GitLab. ~150GB total
▹ StackOverflow: questions, answers,

comments. ~50GB

▸ Models
▹ Standard transformer LM
▹ 1B model: ~1 week on 128 V100s
▹ 6B model: ~3 weeks on 240 V100s

Zero-Shot Software Tasks via Infilling

Evaluation
▸ Zero-shot evaluation on several software development-inspired code infilling tasks

(we’ll show two).
▸ Compare the model in three different modes to evaluate benefits of suffix context

Left-to-Right Single Causal MaskingLeft-to-Right Rerank

Doesn’t use suffix Only uses suffix
when reranking

Uses suffix when
generating

Baselines Ours

Evaluation: Function Completion

Constructed from HumanEval [Chen et al. 2021]

Fill in one or more lines of a function; evaluate with unit tests.

Evaluation: Docstring Generation

[CodeXGlue, Lu et al. 2021]

Evaluation: Return Type Prediction

[TypeWriter OSS, Pradel et al. 2020]

Ablations

▸ StackOverflow data improves performance
▸ Comparable performance from infilling and non-infilling

models

Demo

Demo: huggingface.co/spaces/facebook/incoder-demo

Outline

▸ InCoder
▹ Infilling and natural language data

▸ The Stack & SantaCoder
▹ Experiments with data filtering and

model improvements
▸ StarCoder
▹ More data: more languages, issues, commits, Jupyter…
▹ Scale

BigCode

The Stack: Dataset

[Kocetkov et al. 2022]

The Stack: Dataset

[Kocetkov et al. 2022]

The Stack: Python Models
▸ Possible to approximate Codex-12B performance with permissively licensed

data? Train 350M models on Python
▸ Deduplication always improves performance

(https://huggingface.co/blog/dedup)
▸ License filtering hurts, but there’s enough data available to match Chen et al.

2021

180 GB

Python Data

740 GB

191 GB

80 GB

Exact-dedup?

SantaCoder: Overview

▸ Preparation for a big run: explorations at 1B scale
▸ Data: The Stack
▸ Tokenizer: BPE following GPT-2 recipe; use a digit splitter
▸ Ablations
▹ Multi-query attention and infilling (FIM, Bavarian et al. 2022)
▹ Data filtering

LinearLinear

AttentionAttention Scaled dot-product attention

Linear LinearLinearLinear LinearLinearLinear

Q K V

Concat

Linear

Attention heads

Shared key, value
projection parameters
across heads

Shazeer, 2019

Multi-Query Attention
▸ Designed to reduce memory-bandwidth cost to speed up inference

SantaCoder: Model Ablations

▸ Infilling (FIM) and MQA “for cheap”

SantaCoder: Data Filtering Ablations
▸ Remove repos with < 5 stars

- Hurts substantially!

▸ Remove files with low (or very high) comment-to-code ratio
~ Mixed effects

▸ More aggressive near-duplicate filtering
+ Very slight improvements

▸ Remove files with low character-to-token ratios
 + Very slight improvements

Outline

▸ InCoder
▹ Infilling and natural language data

▸ The Stack & SantaCoder
▹ Experiments with data filtering

▸ StarCoder
▹ More data: more languages, issues,

commits, Jupyter…
▹ Scale

BigCode

We follow the natural distribution and sample data from 86 languages
proportionally to their volume. 800GB total. Lots of natural language (~20%)!

A Large-Scale Multilingual Model

C
7% C#

6%
C++
6%

Java
11%

JavaScript
8%

Markdown
10%

PHP
8%

Python
8%

Issues
7%

Commits
4%

78 other
languages

25%

GitHub Data

Issues (discussion threads) Commits and Commit Messages

Jupyter Notebooks

Flash Attention

→ up to 4x speedup over standard attention
→ scale sequence length up to 8192 tokens.

[Dao et al. 2022]

Models
▸ StarCoderBase
▹ 15.5B parameters, trained on 1T tokens (~3 epochs)
▸ This is much smaller than Chinchilla optimal, but we were

aiming for inference efficiency
▸Multiple epochs didn’t seem to hurt

▹ ~1 month on 512 80GB A100s
▹ Megatron-LM with BF16 and FlashAttention

▸ StarCoder
▹ Continued training on 35B tokens of Python (two epochs)

MultiPL-E

▸ Translations of the HumanEval
benchmark into other programming
languages.

▸ Together, StarCoderBase and
StarCoder outperform OpenAI’s code-
cushman-001 on HumanEval in 12
languages.

▸ Surprisingly, StarCoder outperforms
StarCoderBase on 9 languages in
addition to Python.

MultiPL-E translated HumanEval results

StarCoderBase: Performance Over Training

StarCoderBase: Performance By Data

▸ How correlated is code completion
performance for a language with the
amount of data available for a
language?

▸ Train model for 200B tokens (on all
languages). Evaluate on all languages,
getting a dot for each language.
Observe a strong correlation.

▸ Continue training, evaluate again at
400B tokens. The correlation remains
strong, and line shifts upward.

DS-1000: Practical data tasks requiring API use

Single-line code completion for three languages
(SantaCoder/InCoder benchmarks)

Python return-type prediction
(InCoder/TypeWriter benchmarks)

TypeScript type inference (TypeWeaver
benchmarks)

Python docstring generation
(CodeXGLUE / InCoder benchmark)

Evaluating Infilling

▸ Derived test data from GPL repositories on GitHub. GPL was excluded from training data.
▸ Demonstrates StarCoder can benefit from information within long files or repositories.
▸ Longer contexts provides noticeable decreases in perplexity.

Testing 8K Window: Perplexity with Long Contexts

- StarcoderBase performs
better with PAL than with
CoT

- Outperforms CodeGen-
16B and LLaMA-13B

(Raymond)

Non-Trivial Natural Language Abilities
▸ Surprisingly reasonable performance on some natural language reasoning tasks
▸ CodeGen < StarCoderBase < LLaMA

Reasoning Tasks in HELM

(Loubna) https://huggingface.co/spaces/HuggingFaceH4/starchat-playground

Chat Models via Continued Training
▸ StarChat-Beta: Continued training on Falcon English Web, the Pile, and

OpenAssistant Dataset

Programming as Communication

We begin with the conjecture that most software… is created by humans at work,
with all the attendant constraints and limitations
communicating with the compiler, other developers, and themselves,
and thus, like natural language,
it is also likely to be repetitive and predictable.
writing software is a form of contextual and interactive communication.
We then proceed to ask whether a) code can be usefully modeled by statistical
language models and b) such models can be leveraged to support software
engineers.

[VSCode Live Share Demo, 2020]

https://www.youtube.com/watch?v=A2ceblXTBBc&t=180s

Communicating with Multiple Modalities

Natural
Language

Edits to
Code

Tests &
Execution

Deictic
(Pointing /

Highlighting)

As Inputs

Partial
Code

As Outputs [Wallace et al.,
in progress]

…

Modality Choice
[Lin et al., 2022]

MBR-Exec
[Shi et al. 2022]

InCoder,
SantaCoder,
Starcoder

InCoder,
SantaCoder,
Starcoder

InCoder,
SantaCoder,
Starcoder

Communicating with Multiple Modalities

Natural
Language

Edits to
Code

Tests &
Execution

Deictic
(Pointing /

Highlighting)

As Inputs

Partial
Code

As Outputs

MBR-Exec
[Shi et al. 2022]

[Wallace et al.,
in progress]

InCoder,
SantaCoder,
Starcoder

…

Modality Choice
[Lin et al., 2022]

InCoder,
SantaCoder,
Starcoder

InCoder,
SantaCoder,
Starcoder

Using Test Inputs

def longest(strings: List[str]) -> Optional[str]:
 """ Out of list of strings, return the longest one.
 Return the first one in case of multiple strings of
 the same length. Return None if the list is empty."""

[Shi et al. 2022. See also AlphaCode, Li et al. 2022]

longest([]) == ___
longest(['x', 'y', 'z']) == ___
longest(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == ___

Test Inputs:Description:

Minimum Bayes Risk with Execution:

Generate
Functions

Execute on
Test Inputs

== None
== ‘z’
== ‘kkkk’

== None
== ‘x’
== ‘zzzz’

Cluster by Outputs

Other Features of Communication

▸ Communicative cost
▹ Copilot outputs can be hard to understand [Vaithilingam et al. 2022]
▹ Would a user rather type a comment or edit code?

▸ Resolving uncertainty
▹ Disambiguate by prompting with test inputs [Zhong et al. 2022]
▹ How to convey uncertainty to the user & build trust?

▸ Adaptation
▹ Acceleration vs exploration modes for using Copilot [Barke et al. 2022]
▹ API preferences, functional vs imperative, design patterns, documentation style …

Collaborators

BigCode

Raymond
Li

Harm de
Vries

Leandro
von Werra

Arjun
Guha

Louba Ben
Allal

Denis
Kocetkov

Armen
Aghajanyan

Mike
Lewis

Jessy
Lin

Freda
Shi

Eric
Wallace

Sida
Wang

Scott
Yih

Luke
Zettlemoyer

Ruiqi
Zhong

and ~60 others
from the BigCode

project!

