InCoder, SantaCoder, and StarCoder:
Findings from Training Code LLMs

Daniel Fried, with many others
from Meta Al and the BigCode project

Carnegie
Mellon

ON) Meta

University

Are bigger models the solution
for Al-assisted programming?

Posing This Question in 2012...

On the Naturalness of Software

Abram Hindle, Earl Barr, Mark Gabel, Zhendong Su, Prem Devanbu
[ICSE 2012; Most Influential Paper 2022]

Natural languages like English are rich, complex, and powerful. We begin with the
conjecture that most software is also natural, in the sense that it is created by
humans at work, with all the attendant constraints and limitations—and thus, like
natural language, it is also likely to be repetitive and predictable. We then proceed
to ask whether a) code can be usefully modeled by statistical language models and
b) such models can be leveraged to support software engineers.

Posing This Question in 2012...

On the Naturalness of Software

Abram Hindle, Earl Barr, Mark Gabel, Zhendong Su, Prem Devanbu

» n-gram models trained on ~25 million lines of code

» Substantial improvements to Eclipse’s auto-
complete

» But, 3-4 orders of magnitude less data than modern
neural models

Cross Entropy (10-Fold

[ICSE 2012; Most Influential Paper 2022]

=

Order of N-Grams

& Al pair programming is here.

75% more fulfilled 00

46%

code written

55% l

faster coding

Now available for
Keep flying with your favorite editor Q 0" bUSineSSGS

TR

... ahd now

Function pass rate on a Python docstring-to-function task [HumanEval, Chen et al. 2021]
by amount of Python data & model scale:
&6% CodeGen-Mono
‘9% Codex-12B [Chen et al. 2021]

N

10
(o)

s D @B,
O
8 ‘34% StarCoder
© ‘6% PaLM-Coder
Q ®6%
S
< 10
=
o ©12% O15%

100 0 1 2

10 10 10

Model Parameters (Billions)
[Compiled from Chen et al. 2021, Xu et al. 2021, Li et al. 2021, Fried et al. 2022, Nijkamp et al. 2022, Chowdhery et al. 2022, Li et al. 2023]

part of
Are bigger modeIsAthe solution

for Al-assisted programming?

YES

Outline

» InCoder
> Infilling and natural language data
» The Stack & SantaCoder
> Data filtering and model improvement experiments
» StarCoder
> More data: more languages, issues, commits, Jupyter...
> Scale

Outline

» InCoder
> Infilling and natural language data

N Meta

LLM Training Objectives

Prefix

num_stepns=200. optimizer=None):

def minimize in_graph(build loss_fn
""" Minimize a loss function using gradient.

Args:
a function that returns a loss tensor for a mini-batch of examples. Target

build _loss_fn:
num_steps: number of gradient descent steps to perform.
If None, will use Adam

optimizer: an optimizer to use when minimizing the loss function.

optimizer = tf.compat.vl.train.AdamOptimizer(0®.1) if optimizer is None else optimizer

minimize op = tf.compat.vl.while loop(
cond=1lambda step: step < num_steps, .
body=train_loop_body, SUff'X
loop_vars=[tf.constant(0)],

return minimize_op

return_same_structure=True) [0O]

“Causal” (L-to-R) Masked Infilling Fill-ci:r?:;ael-l\l\ﬂ?jlc;:re]g(Fl/l\/l)

[Donahue+ 2020, Aghajanyan+

[e.g. BERT, CodeBERT]
2022, ours, Bavarian+ 2022]

[e.g. GPT-*, Codex]

Causal Masking / FIM Objective

Training

Original Document

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts

[Donahue et al. 2020, Aghajanyan et al. 2022, Fried et al. 2022, Bavarian et al. 2022]

Evaluation: HumanEval Benchmark

Constructed by authors of Codex paper; programming puzzle/simple
contest problems. Evaluated using unit tests.

from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:

Check if in given list of numbers, are any two numbers closer to each other
than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for idx, elem in enumerate(numbers):
for idx2, elemZ2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False

Model Training

U1
o

» Training Data

540
> 600K permissively-licensed repositories &
from GitHub & GitLab. ~150GB total
> StackOverflow: questions, answers, e | T ST
comments. ~50GB CEEEULIFESISEINIIEGS
» Models g
> Standard transformer LM @i:
> 1B model: ~¥1 week on 128 V100s %14—
> 6B model: ~3 weeks on 240 V100s Eiz
::Ej 8

1 I I I I
0.2 0.4 0.6 0.8 1.0
Fraction of Training Data Seen

Zero-Shot Software Tasks via Infilling

Zero-shot Inference

Docstring Generation

Multi-Region Infilling

def count_words(filename: str) -> Dict[str, int]:

Counts the number of occurrences of each word in the given file.

:param filename: The name of the file to count.

with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1

return word_counts

:return: A dictionary mapping words to the number of occurrences.

from collections import Counter

def word count(file_name):
"""Count the number of occurrences of each word in the file.

words = []
with open(file_name) as file:

for line in file:
words.append(line.strip())

return Counter (words)

Evaluation

» Zero-shot evaluation on several software development-inspired code infilling tasks
(we’ll show two).

» Compare the model in three different modes to evaluate benefits of suffix context

Baselines Ours
Left-to-Right Single Left-to-Right Rerank Causal Masking
Doesn’t use suffix Only uses suffix Uses suffix when

when reranking generating

Evaluation: Function Completion

Fill in one or more lines of a function; evaluate with unit tests.

from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:

Check 1f in given list of numbers, are any two numbers closer to each other
than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5) Method Pass Rate Exact Match
False .

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) L-R smgle. 24.9 15.8
True L-R reranking 28.2 17.6

o CM infilling 38.6 20.6

for 1dx, elem in enumerate(numbers):
for idx2, elemZ in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False

Constructed from HumanEval [Chen et al. 2021]

Evaluation: Docstring Generation

def count words(filename: str) -> Dict[str, int]:

Counts the number of occurrences of each word in the given file.

:param filename: The name of the file to count.

:return: A dictionary mapping words to the number of occurrences.

with open(filename, 'r') as f:
word _counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] =1
return word_counts

Method BLEU
Ours: L-R single 16.05
Ours: L-R reranking 17.14

Ours: Causal-masked infilling 18.27

[CodeXGlue, Lu et al. 2021]

Evaluation: Return Type Prediction

Type Inference

def count words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word _counts[word] += 1
else:
word counts[word] =1
return word_counts

Method F1

Ours: Left-to-right single 30.8
Ours: Left-to-right reranking 33.3
Ours: Causal-masked infilling 59.2

TypeWriter (Supervised) 48.3

[TypeWriter OSS, Pradel et al. 2020]

Ablations

» StackOverflow data improves performance
» Comparable performance from infilling and non-infilling

models

" Size Obi Training Data Train HumanEval = MBPP
(B) J Data Size Tokens Pass@1 Pass@1

1) 6.7 CM multilang + SO 204 GB 52 B 15 19.4

2) 1.3 CM multilang + SO 204 GB 52 B 8 10.9

3) 1.3 LM multilang + SO 204 GB 52 B 6 8.9

4) 1.3 LM Python + SO 104 GB 25B 9 9.8

5 1.3 LM Python 49 GB 11B 5 6.1

Demo

Num Tokens: () ' 64

Temperature: @ © 01
Extend | Add <infill> mask | nil

3

Syntax: | Python v
i 5

2
3
4
5
6

Demo: huggingface.co/spaces/facebook/incoder-demo

Outline

» The Stack & SantaCoder

> Experiments with data filtering and
model improvements

BigCode

The Stack: Dataset

GH Archive Raw dataset

query . — git clone 137 M repos
> = > @ 52 B files

102 TB of data

220 M repo
names
selecting file
extensions
near- license V
deduplication filtering
< < @ 69 TB of data
2.9 TB of data 6.4 TB of data

[Kocetkov et al. 2022]

The Stack: Dataset

Raw dataset Permissive

Apache
2.0 BSD-3-Clause

Permissive license distribution of licenses used to filter the dataset:

MIT (67.7%) | Apache-2.0 (19.1%) | BSD-3-Clause (3.9%) | Unlicense (2.0%) |
CCO0-1.0 (1.5%) | BSD-2-Clause (1.2%) | CC-BY-4.0 (1.1%) | CC-BY-3.0 (0.7%) |
0BSD (0.4%) | RSA-MD (0.3%) | WTFPL (0.2%) | MIT-0 (0.2%) | Others (166) (2.2%)

[Kocetkov et al. 2022]

The Stack: Python Models

» Possible to approximate Codex-12B performance with permissively licensed
data? Train 350M models on Python

» Deduplication always improves performance
(https://huggingface.co/blog/dedup)

» License filtering hurts, but there’s enough data available to match Chen et al.
2021

Dataset Filtering pass@1 pass@10 pass@100 Python Data
Codex (300M) Exact-dedup? 13.17 20.17 36.27 180 GB
CodeGen (350M) unknown 12.76 23.11 35.19

Python all-license None 13.11 21.77 36.67 740 GB

Near-dedup 17.34 27.64 45.52
Python permissive-license None 10.99 15.94 27.21 191 GB
Near-dedup 12.89 22.26 36.01 80 GB

SantaCoder: Overview

» Preparation for a big run: explorations at 1B scale

» Data: The Stack

» Tokenizer: BPE following GPT-2 recipe; use a digit splitter

» Ablations
> Multi-query attention and infilling (FIM, Bavarian et al. 2022)
> Data filtering

Multi-Query Attention

» Designed to reduce memory-bandwidth cost to speed up inference

1

Vs

Linear

~

?

Concat

e —————

Shared key, value
projection parameters
across heads

Shazeer, 2019

SantaCoder: Model Ablations

» Infilling (FIM) and MQA “for cheap”

Language Attention FIM HumanEval MBPP
Multi Query Attention v 0.35 0.54
Java Multi Head Attention v 0.36 0.55
Multi Query Attention X 0.37 0.55
Multi Query Attention v 0.33 0.64
JavaScript Multi Head Attention v 0.37 0.67
Multi Query Attention X 0.37 0.65
Multi Query Attention v 0.36 0.67
Python Multi Head Attention v 0.38 0.70
Multi Query Attention X 0.39 0.68

Table 5: Pass @ 100 results for the architecture ablations on HumanEval and MBPP.

SantaCoder: Data Filtering Ablations

» Remove repos with < 5 stars
- Hurts substantially!

» Remove files with low (or very high) comment-to-code ratio
~ Mixed effects

» More aggressive near-duplicate filtering
+ Very slight improvements

» Remove files with low character-to-token ratios
+ Very slight improvements

Outline

» StarCoder

> More data: more languages, issues,
commits, Jupyter...

> Scale

BigCode

A Large-Scale Multilingual Model

We follow the natural distribution and sample data from 86 languages
proportionally to their volume. 800GB total. Lots of natural language (~20%)!

78 other
languages
25%

Java

Commits 11%

4%
Issues
7%
Python
8% Markdown

PHP 200
8% -

JavaScript
8%

GitHub Data

Issues (discussion threads)

<issue_start>title + USERID: comment
<issue_comment>USERID: comment ...
<eos>

Model input:

Commits and Commit Messages

Model input:

<commit_before>def fibonacci(n):<commit_msg>add type hints to
function<commit_after>def

Model output:

def fibonacci(n: int) -> list[int]:

<issue_start><issue_comment>username_@: I am trying to train a
text classifier based on BERT using ‘transformers‘ but I
get the error: ‘RuntimeError: CUDA Out of memory‘.<
issue_comment>

Model output:

username_1: Hi,

This is not an issue with transformers. You should look at your
GPU usage and see if you can free up some space before
training starts (or use smaller batch sizes).

Jupyter Notebooks

Model input:

<jupyter_text>Let’s test our ‘is_prime‘ function:<jupyter_code>
print(is_prime(3))

print(is_prime(4))

print(is_prime(29))

print(is_prime(33))<jupyter_output>

Model output:

True
False
True
False

Model input:

<jupyter_code>numbers = [1, 9, 8, 3, 27]
print([n*2 for n in numbers])<jupyter_output>

Model output:

[2, 18, 16, 6, 54]

Flash Attention

Outer Loop R
K:dxN .
Attention on GPT-2
Copy Block to SRAM
Q:Nxd . Outer Loop N V:NXd 15 ;I Matmul
= ST e e)
GPU . o
SRAM: 19 TB/s (20 MB) R | Dropout
] (e T =
HBM: 1.5 TB/ S i £10-
: 1. s (40 GB) = O | Copy o é10
= Gl on SRAM | 5 . §
ETT NI TTa DRAM: 12.8 GB/s ¢ i [2 S|F 5. Fused
(CPU DRAM) (>1TB) | 1K) Mask Kernel
| L : —
: . v : v Matmul
Memory Hierarchy with ke Outptitto ﬁBKA 0 -] atmu
Bandwidth & Memory Size sm(QKTV: N xd PyTorch FlashAttention
Inner Loop :

FlashAttention

— up to 4x speedup over standard attention
— scale sequence length up to 8192 tokens.

[Dao et al. 2022]

Models

» StarCoderBase
> 15.5B parameters, trained on 1T tokens (~3 epochs)

» This is much smaller than Chinchilla optimal, but we were
aiming for inference efficiency

» Multiple epochs didn’t seem to hurt
> ~1 month on 512 80GB A100s
> Megatron-LM with BF16 and FlashAttention
» StarCoder
> Continued training on 35B tokens of Python (two epochs)

MultiPL-E

» Translations of the HumanEval
benchmark into other programming
languages.

» Together, StarCoderBase and
StarCoder outperform OpenAl’s code-
cushman-001 on HumanEval in 12
languages.

» Surprisingly, StarCoder outperforms
StarCoderBase on 9 languages in
addition to Python.

Language code-cushman-001 StarCoder StarCoderBase
cpp 30.59 31.55 30.56
c-sharp 22.06 21.01 20.56
d 6.73 13.57 10.01
go 19.68 17.61 21.47
java 31.90 30.22 28.53
julia 1.54 23.02 21.09
javascript 31.27 30.79 31.70
lua 26.24 23.89 26.61
php 28.94 26.08 26.75
perl 19.29 17.34 16.32
python 30.71 33.57 30.35
r 10.99 15.50 10.18
ruby 28.63 1.24 17.25
racket 7.05 0.07 11.77
rust 25.22 21.84 24.46
scala 27.62 27.61 28.79
bash 11.74 10.46 11.02
swift 22.12 22.74 16.74
typescript 31.26 32.29 32.15

MultiPL-E translated HumanEval results

StarCoderBase: Performance Over Training

200B 400B 600B 800B 1000B
Training tokens

StarCoderBase: Performance By Data

» How correlated is code completion
performance for a language with the
amount of data available for a
language?

» Train model for 200B tokens (on all
languages). Evaluate on all languages,
getting a dot for each language.
Observe a strong correlation.

» Continue training, evaluate again at
400B tokens. The correlation remains
strong, and line shifts upward.

Pass@1 (%)

35

30

25 1

20 -

15 1

10

10t 100 10t 102
Size after dedup, GB

DS-1000: Practical data tasks requiring APl use

Here is a sample dataframe:

df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
I'd like to add inverses of each existing column to the dataframe and name
them based on existing column names with a prefix, e.g. inv_A is an inverse of
column A and so on.

The resulting dataframe should look like so:

result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/1,
1/2 /3 |8 =anviB=-N 11 /4781 /5 /6] 1)

Obviously there are redundant methods like doing this in a loop, but there
should exist much more pythonic ways of doing it ... [omitted for brevity]

Problem

<éode> Code Context

import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3],"B": [4, 5, 6]})
</code>

BEGIN SOLUTION
<code>

[insert]

</code>

END SOLUTION

<code>
print(result)
</code>

Reference Solution

[result = df.join(df.apply(lambda x: 1/x).add_prefix(“inv_"))]

. &
N > e \°
N & 3 4o e g o
Format Model W = ® N & c’i)e‘bo\ < Overall
Number of problems: 155 220 291 68 106 115 45 1,000

Completion InCoder-6B 28.3 4.4 3.1 4 2.8 2.8 3.8 7.4
Completion CodeGen-16B-Mono 31.7 10.9 34 7.0 9.0 10.8 15.2 11.7
Completion code-cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1
Completion StarCoderBase 47.0 211 10.1 19.5 21.7 27.0 20.5 23.8
Completion StarCoder 51.7 29.7 114 214 20.2 29.5 24.5 26.0

Evaluating Infilling

Model Java JavaScript Python
InCoder-6B 0.49 0.51 0.31
SantaCoder 0.62 0.60 0.44
StarCoder 0.73 0.74 0.62

Single-line code completion for three languages
(SantaCoder/InCoder benchmarks)

Packages type check
v Total %0
InCoder 30 128 23.4

StarCoderBase 49 128 38.3

TypeScript type inference (TypeWeaver
benchmarks)

Model BLEU
InCoder-6B 18.27
SantaCoder 19.74
StarCoderBase 21.38
StarCoder 21.99

Python docstring generation
(CodeXGLUE / InCoder benchmark)

Model Non-None F1 All F1
InCoder-6B 59.1 46.8
SantaCoder 66.9 78.5
StarCoderBase 77.4 86.6
StarCoder A | 86.4

Python return-type prediction
(InCoder/TypeWriter benchmarks)

Testing 8K Window: Perplexity with Long Contexts

Window Size Language

cpp c-sharp C go java javascript php r ruby rust
2K tokens 2.01 1.90 1.71 1.35 1.65 1.98 1.73 1.72 216 1.84
8K tokens 1.79 1.66 1.61 1.21 1.54 1.68 143 148 2.02 1.65

» Derived test data from GPL repositories on GitHub. GPL was excluded from training data.
» Demonstrates StarCoder can benefit from information within long files or repositories.

» Longer contexts provides noticeable decreases in perplexity.

Non-Trivial Natural Language Abilities

» Surprisingly reasonable performance on some natural language reasoning tasks
» CodeGen < StarCoderBase < LLaMA

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does
each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies

There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies

She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies

Final Answer: 6

Model Size GSMS8K CoT +majieie0 |GSMSK PAL-I_:ma j1@40
StarCoderBase 15.5B 8.4 — 21.5 31.2
CodeGen-Multi 16B 3.18 — 8.6 15.2
CodeGen-Mono 16B 2.6 — 13.1 22.4
7B 11.0 18.1 10.5 16.8
13B 17.8 29.3 16.9 28.5
LLaMA 33B 35.6 53.1 38.7 50.3
65B 50.9 69.7 — —

Reasoning Tasks in HELM

Synth.

Synth.

Model Size A?c PN Reason. Reason. bAbI Dyck GSMSK MATH 1}‘&%‘ LSAT Sﬁ;[g:)lr t
(AS) (NL)

code-davinci-002 175B 54.0 68.4 68.6 80.5 56.8 41.0 43.3 — —
text-davinci-003 175B 50.2 73.4 653 75.1 50.6 39.0 44.9 23.3 62.2
Luminous Supreme 70B 31.2 — 504 729 11.2 14.9 5.7 21.2 53.0
StarCoderBase 15.5B v 44.0 21.0 504 854 8.4 15.1 7.0 19.0 53.2
Cohere Command 52.4B 24.3 24.5 473 42.1 13.8 13.3 7.5 22.9 60.6
Beta

J1-Jumbo vl 178B 26.3 17.4 543 445 54 8.9 3.3 23.2 48.4
J1-Grande v2 beta 17B 28.6 13.9 470 61.7 9.6 12.7 6.8 19.1 56.2
code-cushman-001 12B 34.1 16.4 48.1 45.1 4.9 9.9 7.2 — —
OPT 175B v 22.5 24.8 50.7 494 4.0 6.5 2.6 22.0 53.2
GPT-NeoX 20B v 20.4 16.7 46.8 74.7 53 14.1 7.1 19.1 51.5
BLOOM 176B v 30.4 19.7 447 54.5 9.5 4.3 5.5 20.9 54.3
GLM 130B v 25.2 25.4 443 54.9 6.1 0 5.9 19.3 45.1
UL2 20B v 20.5 21.7 50.1 14.0 24 0 0 20.7 50.6
OPT 66B v 19.3 21.3 40.8 47.1 1.8 4.8 2.9 17.5 52.7
YalLM 100B v 5.6 6.1 346 63.3 0 0 0 2.3 48.4
T5 11B v 19.6 10.1 412 34.7 2.3 0 0 15.9 55.8

Chat Models via Continued Training

» StarChat-Beta: Continued training on Falcon English Web, the Pile, and
OpenAssistant Dataset

J Chat

Create a simple HTML website for a fictional company called "TechCoAl". Please make an HTML file that adheres to the following
specifications:

The webpage should have a title that says "TechCoAl - Welcome".

The background color of the webpage should be light blue (#E6F1F6).

The website should have a navigation menu with three links: "Home" "About" and "Contact ", these links should be displayed in dark
blue.

Include a paragraph of text that describes TechCoAl's mission and vision: " The mission of TechCoAl is to build the next generation of Al
models with responsible practices."

Finally, create a footer with the copyright information.

The footer should display the copyright symbol (©), the current year 2023, and "TechCoAl. All rights reserved."

Remember to follow these instructions precisely and ensure that the HTML code is properly structured and formatted.
Home About Us Contact us

<html lang="en"> I— Welcome To Tech Co Ai
<head>
<!-- Required meta tags --> We are building the Next Generation Of Al Models With Responsible
matn rharca+_"i+F_R"<
Practices.

https://huggingface.co/spaces/HuggingFaceH4/starchat-playground

© 2023 TechCoAi | All Rights Reserved

Programming as Communication

We begin with the conjecture that most software... is created by humans at work,

and thus, like natural language,

We then proceed to ask whether a) code can be usefully modeled by statistical
language models and b) such models can be leveraged to support software
engineers.

are Demo, 2020]

https://www.youtube.com/watch?v=A2ceblXTBBc&t=180s

Communicating with Multiple Modalities

As Inputs

As Outputs

Natural

Language

InCoder,
SantaCoder,
Starcoder

InCoder,
SantaCoder,
Starcoder

Partial
Code

InCoder,
SantaCoder,
Starcoder

Tests &

Execution

MBR-Exec
[Shi et al. 2022]

Edits to
Code

[Wallace et al.,
in progress]

Deictic

(Pointing /
Highlighting)

!

Modality Choice
[Lin et al., 2022]

Communicating with Multiple Modalities

As Inputs

As Outputs

Natural

Language

InCoder,
SantaCoder,
Starcoder

InCoder,
SantaCoder,
Starcoder

Partial
Code

InCoder,
SantaCoder,
Starcoder

Tests &

Execution

MBR-Exec
[Shi et al. 2022]

Edits to
Code

[Wallace et al.,
in progress]

Deictic

(Pointing /
Highlighting)

!

Modality Choice
[Lin et al., 2022]

Using Test Inputs

Description: Test Inputs:
def longest(strings: List[str]) -> Optional[str]: longest([]) == __
""" Qut of list of strings, return the longest one. longest(['x"', 'y', 'z']1) == ___
Return the first one in case of multiple strings of longest(['x"', 'yyy', 'zzzz', ‘'www', 'kkkk', 'abc']l) =
the same length. Return None if the list is empty."""

Minimum Bayes Risk with Execution:
Cluster by Outputs

== None
== ‘Z’
== ‘kkkk
Generate Execute on
Functions Test Inputs
> >
- —
== None
== ‘X’
== ‘zz777

[Shi et al. 2022. See also AlphaCode, Li et al. 2022]

Other Features of Communication

> Copilot outputs can be hard to understand [Vaithilingam et al. 2022]

> Would a user rather type a comment or edit code?

» Communicative cost ’

» Resolving uncertainty

> Disambiguate by prompting with test inputs [Zhong et al. 2022]

> How to convey uncertainty to the user & build trust?

» Adaptation

> Acceleration vs exploration modes for using Copilot [Barke et al. 2022]

> API preferences, functional vs imperative, design patterns, documentation style ...

Collaborators

Scott Luke
Yih Zettlemoyer

Eric
Wallace

Armen
Aghajanyan

and ~60 others
from the BigCode
project!

Raymond Louba Ben Denis Arjun Leandro
Li Allal Kocetkov Guha von Werra

Bigtode (OX) Meta

