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Abstract – We describe a new control method for vibrations-
based planar manipulation. We’ve developed a device – the
Universal Planar Manipulator (UPM) – based on a single,
horizontally-vibrating plate. Though minimalist in construction
(one moving part), the UPM can manipulate several parts on its
surface in parallel, simply using friction. Previously, we’ve shown
that a sequence of rigid plate rotations can be computed which
produces pre-specified part displacements. Here we present a new
method based on a special motion primitive – the “jet” – which
displaces a chosen part in a desired direction while keeping all
others still. A jet allows one to say: “c’mon part, do a local mo-
tion”. Parallel manipulation then reduces to a round-robin appli-
cation of jets. This technique is both faster and more robust than
the old rotations-based method. Experiments on parallel trajec-
tory following and part sorting are presented. With jets, the UPM
becomes a practical technology for applications such as part sin-
gulation, feeding, sorting, food handling, product displays, and
interactive devices such as active desks and toys.

1 Introduction

This paper is the culmination of our research on vibrations-
based planar part manipulation. The work is centered on
a device called the Universal Planar Manipulator (UPM),
show in Figure 1. The UPM is a rigid horizontal plate ac-
tuated in its own plane (3 degrees of freedom) by external
motors. As the plate vibrates rapidly, sliding friction causes
parts such as coins, bottles, etc., to displace in a controlled
manner.

The most interesting property of the UPM is its min-
imalism: despite its simple construction, the UPM can
manipulate a large number of parts in parallel. Namely,
given known locations ofN parts, andN independent dis-
placements desired for each part, a closed, rigid motion
of the plate can be computed which, once executed, dis-
places all parts as desired. This result owes to the fact
that, under Coulomb friction, distinct rigid rotations of the
plate produce part displacement fields which are linearly-
independent bases of the space of all possible part displace-
ments [1, 2]. Namely, given desired displacements, a sum
of (scaled) rigid plate rotations exists which produce them.

Figure 1: The Universal Planar Manipulator (UPM): generic ob-
jects placed on a flat plate can be manipulated independently via
vibrations/friction.

One problem is that a rigid body cannot execute a mo-
tion in the space of summed rigid rotations. Fortunately, the
sum space can be approximated by a sequence ofM�2N
rotations about known centersCj , j = 1; 2; � � � ;M , pro-
vided each rotation displaces parts by a small amount. This
was exploited in our original method [1]: given part posi-
tions and desired displacements, the system solved for ro-
tation durationskj , a process which required inverting a
matrix. Though linearly independent, rotations are not or-
thogonal: each rotation displaces all parts, resulting in a
cross-talk matrix with much off-diagonal energy. The end
result is that matrix inversion is ill-conditioned, so com-
puted durations are long, and part displacements are slow
and noisy. This was partly addressed by adding redundancy
to the linear system, i.e., more rotations per parallel update,
M�2N . This slows down execution and does not rule out
ill-conditioning.

The main contribution on this paper is to present a new
motion primitive – called thejet – which diagonalizes the
inversion process, so that the solving step is robust and ex-
ecution is significantly sped up. A jet is a force field “fo-
cused” on a single part, which can be told do move while
keeping all others still. Parallel manipulation then reduces
to applying a jet to each part in sequence. Because the jet’s
action is local to a part, execution time is proportional to
the number of parts being moved, irrespective of how many



currently sit on the plate. In the previous method,N parts
required at least2N rotations, even if just a single part was
being displaced.

The jet idea is supported by a complete characteriza-
tion of the feeding forces produced when plate motion is
a sum of two sinusoids. We derive specific conditions un-
der which two sinusoids produce maximal or no feeding
forces, based purely on their relative phase and frequency.
With this theory, we are able to pick the components of
plate motion which generate optimally-focused (as-local-
as-possible) jets.

1.1 Related Work

The bowl feeder [3] is the canonical example of a
vibrations-based manipulation device. Though stark in its
simplicity, it is not a programmable device: its function is
tied to part shape and its own internal track design. With the
UPM, we attempt to preserve simplicity while allowing for
programmable operation. Vibrations-based devices have
been applied to sensorless manipulation: plate vibrations
(non-rigid) produce force fields with local minima which
automatically orient and/or localize various objects [4, 5].
This is impossible with the UPM since a force field pro-
duced by a rigid motion has zero divergence [1]. We use
vision to provide the necessary sensory feedback. An ac-
tive area of research has beendistributed manipulation: is
complex manipulation feasible with a large array of sim-
ple actuators? Many devices have been proposed, spanning
both micro- and macro-scale applications, with or without
sensors [2]. We have explored the complementary ques-
tion of “how little is enough”, the UPM being an extreme
case: can a device with a single moving actuator be used to
independently manipulate a large number of parts?

This paper is organized as follows: In Section 2 we de-
scribe the jet, our new local force field. In Section 3, the
main parts of the UPM prototype are explained. Experi-
ments using jet fields are presented in Section 4. In Sec-
tion 5 we present a characterization of feeding forces with
two harmonics. Conclusions are presented in Section 6.

2 The Jet as a Local Force Field

A new closed motion ofS is described which integrates to
a local force field called a jet. Local in the sense that it is
only non-zero in the vicinity of a single part, and oriented
along the part’s desired motion.

Let thexy plane coincide with the horizontal plateS. S
executes aclosedmotion lastingT seconds. “Closed” in
the sense that at the end of the motion (timeT ) the surface
returns to its initial position. Letv(P; t) denote the instan-
taneous velocity at a pointP in S. Consider a part of mass

m lying at pointP onS. Assume the part’s speed is negli-
gible with respect tov(P; t). Assume plate motion is such
that friction is always of thesliding type [6]. The part will
perceive an instantaneous frictional forcef(P; t) of fixed
value�mg in the direction ofv(P; t), where�; g are the
constant of sliding friction and the acceleration of gravity,
respectively:

f(P; t) = �mg
v(P; t)

jjv(P; t)jj
(1)

Note: if v = �x(t) is along a single direction, e.g.,x, the
above reduces to�mg sgn[�x(t)]. From Equation (1) ob-
tain the frictional force�f applied to the partaveragedover
the entire motion:

�f(P) =
�mg

T

Z T

0

v(P; t)

jjv(P; t)jj
dt (2)

Consider a 1d translational vibrationv(t) of S alongd =
(dx; dy), the feeding direction. �f will be non-zero ifv(t)
is time-asymmetric, i.e., its positive and negative (alongd)
portions have different durations [7]. Av(t) with few sinu-
soidal components is desirable since it avoids resonances in
the mechanical system. Non-zero�f requires at least two si-
nusoids, since a single sine is time-symmetric. Corollary 1
in Section 5 states that the velocity profile:

v(t) = d[cos(t)� cos(2t)] (3)

delivers the maximum possible force�mg=3 in the feeding
direction over all choices of frequencies and phases for two
sinusoids. To the above 1d motion, consider superimposing
a sinusoidal rotation about a pointC, namely:

v(P; t) = d[cos(t)� cos(2t)]+
2jdj

�
sin

�
2

3
t

�
(P�C)?

(4)
Where� is a scaling constant for the rotation component.
This motion is closed with periodT = 6�. NearC the
rotation component vanishes, and Equation (4) reduces to
Equation (3). At large radii fromC, the rotation compo-
nent (i.e., tangential velocities) dominates. Since this sig-
nal is time-symmetric, it will produce zero feeding forces.
At distance� fromC, the rotational and translational wave-
forms have equal peak values. So parameter� can be set to
control the rate of decay from maximum feeding force at
C to zero at infinity. The larger the�, the more the field’s
active zone is “focused” (i.e., concentrated) onC.

We chosesin(2t=3) for the rotational component so as
to produce zero feeding forces with either component of
Equation (3). This helps in creating “destructive inter-
ference” (in the feeding force sense) anywhere but in the
vicinity of C. We now refer to the results derived in Sec-
tion 5. First,sin(2t=3) is non-feeding withcos(2t) because
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their frequencies are at a 1:3 ratio. Because both these num-
bers are odd,�f = 0, Lemma 1. Second,sin(2t=3) is non-
feeding withcos(t) because though their frequencies are
at a 2:3 ratio (this is potentially feeding, Lemma 3), their
phases are such that both waveforms have at least one co-
inciding root (att = 3�=2), so�f = 0, Corollary 2.

Other possible choices for the rotation component are
sin(t) + cos(t), sin(2t), and so on to higher frequencies.
We opted for going below the feeding fundamental since
for a given motor power, higher peak rotational velocities
(/ �) are feasible, yielding better-focused fields.

By plugging Equation (4) into the average force field in-
tegral, Equation (2), we obtain an average force field which
is “local” to C, as shown in Figure 2. We call this primi-
tive a “jet”, since it resembles a field of the same name in
fluid mechanics. Under a jet field, only a part atC will
experience any feeding force at all.

Figure 2: The jet force field: a feeding velocitŷy[cos(t) �
cos(2t)] superimposed to a rotationsin(2t=3)=� about the origin.
Frictional forces are represented by scaled arrows. The dotted cir-
cle – a measure of the jet’s focus – has radius2�.

A straightforward step is to compute controls (forces and
torques) which will position and orient the jet at will. Paral-
lel manipulation then reduces to applying jets to individual
parts, in round-robin fashion: for each part (i) track coin
positionsPi; i = 1; 2; � � � ; N using vision; (ii) get desired
displacementsdi from task; (iii) apply a jet field focused
onPi and oriented alongdi.

Because local fields are nearly orthogonal (little cross
talk), the solving step is direct (no matrix inversion re-
quired). While parts away from the jet’s center do flow a
bit (the field is small but non-zero there), this can be easily
corrected with vision feedback. Jet-based manipulation is
also much more scalable: if a subgroup ofN0 parts needs
to be manipulated within a group ofN parts onlyN0�N

jets are needed. In the old method, this required at least2N
rotations [1].

3 UPM Details

A block diagram of our prototype appears in Figure 3. Its
various parts are explained next.

The plate itself is a 16”x16” tile of honeycomb material.
Honeycomb is both cheap and has a very large stiffness-
by-density ratio [8], i.e., vertical oscillations of the plate
are kept to a minimum. The plate is constrained to move in
its own plane by four vertical nylon rods supporting each
of the plate’s corners. This bearingless, flexure system is
ideal since plate oscillations are of just a few millimeters.

Four voice coils (delivering up to 50 lbf each) actuate
the plate in two differential pairs, alongx andy. Each can
apply either a force or a torque to the plate, depending on
whether input signals are in- or out-of-phase, respectively.

For calibration purposes, two 2-axis accelerometers are
installed at opposite corners of the plate. Prior to an experi-
ment, the plate is run through a battery of standard motions;
accelerometer data is used to compensate for distortions.

A camera is mounted over the plate and feeds color
NTSC back to the controlling PC. This is used to locate the
table’s edges and track moving parts (“visual” feedback).

An interface board containing two micro-controller
chips manages both the sampling of accelerometer signals
and the generation of four phase-precise analog signals to
the motors. A consumer-grade audio amplifier boosts the
four analog signals to power levels required by each motor.
To synthesize a jet, the PC downloads appropriate wave-
form parameters to the interface board. The PC commands
the the board to issue a pulse (a few cycles) of the four ana-
log waveforms, causing the plate to vibrate and the parts
to displace. Parts’ positions are re-tracked, and the process
repeats.

The jet waveform, Equation (4), injects three frequencies
into the plate, call themf , 2f , and2f=3. We found that
f = 35Hz avoided any natural resonances of the system,
while allowing for large peak velocities with the existing
motors (large peak velocities promote both strong feeding
forces and good jet focusing).

4 Experiments

Parallel manipulation under the new method is demon-
strated in two experiments. First, we attempt to move three
pennies along the same bowtie curve, Figure 4. In this
6-dof system, pennies have to reorganize themselves in a
clearly non-rigid way as they traverse the curve. The con-
troller ensures pennies remain equidistant from each other
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Figure 3: Block diagram of the UPM. Three parts (dark disks)
are shown on the surface of the plate. The plate is actuated by
four external voice coils (linear motors), organized in pairsX1X2

andY1Y2. Two 2-axis accelerometers acc1 and acc2 are installed
at opposite corners of the plate. A PC is connected to an inter-
face board via a parallel port. The PC passes to the board mo-
tion parameters (phases, amplitudes, frequencies) for four inde-
pendent analog signals. The board generates four signals with
phase-precision. The signals are amplified by an audio amplifier
and then fed to the four motors. The accelerometer signals (four
in total) are sampled at the interface board and passed back to the
PC for calibration purposes.

as they move along the curve. For each update of the three
coins, the system applies three jets, each centered at a spe-
cific coin. To speed up execution, a jet is executed in paral-
lel with part tracking and motion computation for the next
part (jet execution is the bottleneck). Snapshots of the ex-
periment are shown in Figure 5

A second experiment involves the sorting of 8 plas-
tic poker chips (a 16-dof system) based on color, Fig-
ure 6. Light and dark chips need to go to opposite sides
of the UPM. An automatic labelling of part color is done
by the vision system. The control loops involves apply-
ing jets to each individual part in the appropriate direc-
tion, round-robin. A better approach would include mo-
tion planning (e.g., using potential fields) but here the
controller simply pushes chips to the appropriate side.
Videos of these experiments can be found on the web at:
www.cs.berkeley.edu/�dreznik/UPM2000/

Manipulation with the UPM is not restricted to disk-
shaped objects. As shown in Figure 1, this device can ma-
nipulate generic objects such as tools, bottles, etc. Because
force scales with weight, objects with different weights will
move at similar speeds, provided they have similar friction
coefficients with the plate.

Figure 4: Bowtie experiment as viewed from the overhead cam-
era. Three pennies and the intended bowtie curve are shown.

Figure 5: Snapshots of motion along the bowtie curve. Each snap-
shot combines 3 consecutive frames in “stop motion”. Arrows la-
bel part motion across frames. Parts complete a loop around the
bowtie in about a minute.

5 Part Feeding with two Sinusoids

In this Section, we characterize the frictional forces pro-
duced by plate motion made up to two sinusoids. The less
mathematically inclined should skip the details and simply
review the lemmas, theorem, and corollaries.

Consider a flat horizontal surfaceS; let thexy-plane lie
on its surface, with thez-axis pointing upwards, opposite
to gravity. Consider a rigid vibration ofS alongx, with
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Figure 6: The sorting experiment: eight plastic poker chips (4
dark/blue, and 4 light/red) initially scattered randomly over the
device (top) are sorted by color to opposite sides of the plate. In
the last frame, one of the light chips has fallen the right edge of
the table. All chips get sorted in about 30 seconds.

velocity�(t) of the form:

�(t) = sin(f1t) + b sin[f2(t� ')] (5)

Parametersb and' are relative amplitude and phase be-
tween the components.t and' are given in radians. We
consider the case off2=f1 rational, f2�f1. Let n2=n1
be the reduced fractional representation off2=f1 in terms
of two relatively prime integers [9]n2; n1, with n2�n1,
gcd(n1; n2) = 1. Without loss of generality, we normalize
�(t)’s period to2� by writing:

�(t) = sin(n1t) + b sin[n2(t� ')] (6)

Consider a partP lying on S with negligible velocity
�p(t)�=0, i.e.,S’s velocity relative toP is simply�(t). We
use Coulomb friction in sliding mode [6] as our model: the
forceS applied toP is (i) in the direction of�(t), and (ii)
of constant magnitude�mg, where�;m; g symbolize the

frictional constant, the part’s mass, and the acceleration of
gravity, respectively. Then the average frictional force�f
applied toP per cycle is:

�f =
�mg

2�

Z 2�

0

sgn[�(t)]dt (7)

wheresgn[u] is the sign function, defined as1; u�0, and
�1 otherwise.

Lemma 1. If bothn1 andn2 are odd then�f = 0, for any
choice ofb; '.

Proof. A sinewave has the symmetrysin(nt) =
� sin[n(t� �)]; 8t, providedn is odd. When bothn1 and
n2 are odd, each of Equation (6)’s harmonics will display
this type of symmetry, and thus�(t) = ��(t � �), i.e.,
sgn[�(t)] integrates to zero in[0; 2�).

Lemma 2. For any choice ofn1; n2; b, a phase' exists
which causes�f = 0, for anyb.

Proof. Choose' = 0: �(t) is a sum of two pure sines, i.e.,
it is an odd function with symmetry�(t) = ��(�t). So
Equation (7) integrates to zero.

Lemma 3. If one ofn1; n2 is even1 then �f 6=0 for someb; '.

Proof. First we choose a phase which gives feeding,
namely we adjust' so that the positive peak of then1 si-
nusoid aligns with the negative peak ofn2, allowing �(t)
to be written from Equation (6) as:

�(t) = cos(n1t)� b cos(n2t) (8)

Now rewrite Equation (8) as the following product (using
standard trig identities):

�(t) = 2 sin

�
�t

2

�
sin

�
�t

2

�
(9)

where� = n2 � n1 and � = n2 + n1. Because ex-
actly one ofn1; n2 is even, both�; � are odd. It is
also true that�; � are relatively prime sincegcd(�; �) =
gcd(� � �; �) = gcd(2n2; �) = gcd(�; 2n1). Therefore
gcd(�; �) is also a divisor of2n2 and2n1 and therefore of
2 gcd(n1; n2) = 2. But it can’t be two since� and� are
odd. Thusgcd(�; �) = 1.

Since� and� are relatively prime, their least common
multiple – thelcm– is given by their product:

lcm(�; �) = �� = n22 � n21 (10)

1They can’t both be even since they’re relatively prime.
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�(t) has a root whenever either of Equation 9’s factors is
zero, i.e.,t is a multiple of either2�=� or 2�=�. Equiv-
alently, the roots of�(t) may only occur at “grid points”
tk = 2k�=(��), k = 0; 1; � � � ; ��. Define open intervals
�k = (tk�1; tk), k = 1; 2; � � � ; ��, each of equal length
2�=(��). Within each�k, �(t) has no roots, i.e., it is of
constant sign. So the integral in Equation (7) becomes the
following discrete sum:

�f =
�mg

��

��X
k=1

sgn[�(�k)] (11)

We note the quantity�� is odd, since it is the product of
two odd numbers, i.e., Equation (11) is a sum of an odd
number of�1’s. An imbalance must exist in this sum, and
therefore�f 6=0.

Because�f is a continuous function ofb; ', property �f 6=0
holds true within an open neighborhood ofb = 1 and the'
chosen to render�(t) of the form of Equation (8).

The previous result is illustrated in Figure 7 for the case
wheren1 = 2 andn2 = 5. The sign imbalance in this
example is exactly one�k , which turns out to be the maxi-
mum possible imbalance, explained next.

−+ + − − − + − + + + − − + − − − + + ++

10 11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 7 8 9

Figure 7: Sign imbalance for the case n1 = 2 and n2 = 5,
i.e., � = 3, � = 7. �(t) = cos(2t) � cos(5t) is plotted as a
solid curve over the [0; 2�) interval. Its two factors: sin(3

2
t), and

sin( 7
2
t), are plotted as dashed curves. lcm(�; �) = �� = 21

yields the number of equal-length sub-intervals of [0; 2�] which
preserve the sign of �(t); in the above, intervals are numbered and
identified with a “+” or “ -” , according to � ’s sign in that interval.
Because �� is odd, the number of positive- and negative-sign in-
tervals must differ: above one counts 11 positive vs. 10 negative
intervals. This implies �f 6=0.

Theorem 1. Consider a surface velocity of the form:

�(t) = cos(n1t)� cos[n2(t�  )] (12)

wheren2 > n1 are relatively prime, and exactly one is
even.  = 0 yields the maximum possible average force
�f = �mg=(n22 � n21). In general, �f is a triangular wave-
form on , taking the following form:

�f =
�mg

n22 � n21
4(n1n2 ) (13)

where4(t) is a unit-amplitude, triangular waveform of pe-
riod 2�:

4(t) =

�
1� 2jtj=�; jtj < �
4(jtj � 2�); otherwise

Proof. First, using trigonometric product formulae, rewrite
Equation (12) as the product:

�(t) = sin
h�
2
(t�  1)

i
sin

�
�

2
(t�  2)

�
(14)

 1 =
n2

n2 � n1
 (15)

 2 =
n2

n2 + n1
 (16)

where �; � are defined as in Equation (9). With the substi-
tution t! t�  1 obtain:

�	(t) = 2h�(t)h�(t�	) (17)

where hn(t) stands for sin(nt=2), and 	 =  2 �  1 is
obtained from Equations (15) and (16):

	 =
�2n1n2
n22 � n21

 (18)

Equation (17) has roots when either factor is zero, i.e., t is
a multiple of either 2�=� or 2�=�. Let a time t for which
both factors vanish be called a common root.

Case 1. 	 = 0

By inspection, t = 0 is a common root, and no others
may exist in [0; 2�), as this would imply two non-negative
integers k1 < � and k2 < � exist such that 2�k1=� =
2�k2=�, i.e., k1� = k2�. Because gcd(�; �) = 1, this
is impossible. Notice that 	 = 0 implies  = 0, Equa-
tion (18). Lemma 3 tells us that for  = 0, �f 6=0. Call this
non-zero average force �f0. In general, we will use �f	 to
denote the average force for the phase 	 defined above.

Case 2. 0 < 	 < 2�
��

In this range there are no common roots since none of
h�(t � 	)’s roots fall on integral multiples of 2�=(��).
Let rk = 2k�=� denote the kth root of h�(t). Define �
intervals �k:

�k = (rk ; rk +	) k = 0; 1; � � �� � 1

The �k represent the “sweep” of the zeros of h� as 	 varies.
Notice that for t in one of the �k, the signs of the shifted
waveform �	(t) and the unshifted �(t) will be different,
while they will be the same for t outside those intervals.
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By a slight abuse of notation, let sgn(�k) denote the sign
of �	(t) in the interval �k. Since �(t) and �	(t) differ ex-
actly in the �k, the net feeding force will be changed by ex-
actly their contributions. In other words, from equation (7),
we get that:

Remark 1. The change in feeding force is the sum of
changes due to the intervals�k, or:

�f	 = �f0 +
�mg

2�
2	

��1X
k=0

sgn(�k)

where 	 is included because it is the length of every inter-
val �k , and thus equal to the magnitude of the integral of the
sign function over the �k; and 2 is included because each
interval of length 	 contributes by its own sign, but also by
reducing the integral of regions of the opposite sign.

We complete the proof by showing that only �0 con-
tributes to the sum. The rest cancel each other in symmetric
pairs.

Now h�(t) is symmetric in the interval [0; 2�], i.e.,
h�(t) = h�(2� � t), and in particular, h�(rk) =
h�(r��k). Furthermore, because h�(t) has no roots within
the �k ’s, we can infer:

sgn[h�(�k)] = sgn[h�(���k)]; 8k > 0 (19)

h�(t) is also symmetric in [0; 2�], but more importantly, its
derivative is anti-symmetric. That is, h0�(t) = �h0�(2��t).
This implies that h�(t)’s zero-crossings at rk and r��k are
in opposite directions, and thus:

sgn[h�(�k)] = � sgn[h�(���k)];8k > 0 (20)

Since sgn(�k) = sgn[h�(�k)] sgn[h�(�k)], the last two
equations tell us that

sgn[�k] = � sgn[���k];8k > 0 (21)

For � ranging from 0; : : : ; � � 1, this means that only �0
is missing a partner of opposite sign. All the other terms
cancel and we have shown that only �0 contributes to the
sum in remark 1. Since sgn[�0] = �1, remark 1 simplifies
to:

Remark 2. The change in feeding force with	 is due en-
tirely to �0, and is equal to:

�f	 = �f0 �
�mg

�
	 (22)

These concepts are illustrated in figure 8.

Case 3. 	 = 2�=(��)

Remark 3. At 	 = 2�=(��) a new common roottk =
2k�=�� is generated at somek, which is unique in the
ranget 2 [0; 2�].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ψ

η η

η η
η

0

1 2

3 4

h (t)

h (t)

*

5

3

h (t −    )
5

Figure 8: Force cancellation for � = 3, and � = 5 (15 constant-
sign intervals). The two solid curves are h3(t) = sin(3t=2) and
h5(t) = sin(5t=2). The dashed curve is h5(t � 	), where 	
is �=(��), i.e., half a basic interval. The �k intervals appear
shaded above (resp. below) the x-axis depending on the sign of
h�(t)h�(t�	). Each �k cancels with ���k, with the exception
of �0; so the canceling pairs are (�1; �4), (�2; �3). As 	 ap-
proaches a full interval’s length, a new common root is generated
at the end of the 10th interval, marked with a “*” .

To show this let t0 = t��=(2�). So �(t0) has period ��
and the roots of h�(t0) [resp. h�(t0)] are on integers t =
k1�; k1 = 0; 1; � � � ; � [resp. t = k2�; k2 = 0; 1; � � � ; �].
Conveniently, h�(t � 2�=��) becomes h�(t0 � 1), so we
need to show that h�(t0) has a root exactly one unit above
a root of h�(t0), i.e., a unique pair k1; k2 exists such that
k1� = k2�+ 1.

Because � and � are co-prime, this is exactly Bézout’s
relation [9], which guarantees that a unique solution pair
(k1; k2) exists modulo ��. For example, if � = 3, � = 5,
k1 = 2 and k2 = 3 is the unique solution, i.e., the common
root corresponding to a unit shift occurs at t 0 = k1� = 10,
Figure 8.

Remark 4. At	 = 2�=(��), �	(t) is identical to�(t) up
to a sign flip and a shift by the common roottk, i.e.:

�(2�=��)(t) = ��(t� tk)

This is true because the factors h�(t) and h�(t�2�=��)
are sinusoids. When shifted by a multiple of their root sep-
aration, sinusoids are identical up to a sign change. When
a product of two sinusoids is shifted by a common root, the
resulting function is also identical up to a sign change.

Equation (22) tells us that at 	 = 2�=��, �f	 =
�f0 � 2�mg=��, a non-zero change. Remark 4 tells us that
�	(t) = ��(t � tk) and therefore �f	 = � �f0. But since
there is a finite change, we cannot have �f	 = �f0, so we
must have �f	 = � �f0. Their difference is 2�mg=��, and
so

�f0 =
�mg

��
=

�mg

n22 � n21
(23)

We can re-apply this argument to the next interval of 	 2
[2�=(��); 4�=(��)] and we would see a change in �f in
the opposite direction back to the original �f0. Within each
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interval, �f	 varies linearly with 	, and so it generates a
triangular waveform.

From Equation (18) we see that 	 = 2�=(��) =
2�=(n22 �n

2
1) corresponds to ' = ��=(n1n2). Therefore,

for ' 2 (0; 2�), �f(') will hit � �f0 2n1n2 times. Because
the change in �f is linear on 	; ', Equation (22), and be-
cause the peaks alternate, �f(') must also be a triangular
waveform whose period is 2� divided by half the number
of peaks, i.e., its period is 2�=(n1n2), and of amplitude
given by the peak value, Equation (23).

The shape of �f as a function of' for various n1; n2 com-
binations is illustrated in Figure 9.

(2,3)

(1,2)

(1,4)

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 ππ/2 3π/2 2π

Figure 9: Plot of �f=(�mg) versus  for (n1; n2) =
f(1; 2); (2; 3); (1; 4)g. The points plotted were obtained through
numeric integration. As predicted, the function is a triangular
waveform of period 2�=(n1n2) and of amplitude 1=(n22 � n21).

Corollary 1. The choicen1 = 1,n2 = 2, and = 0 yields
the highest possible�f = �mg=3.

Proof. At  = 0, the triangular waveform is at a peak. We
know n2�n1 + 1. Therefore the denominator of �f is:

n22 � n21 � (n1 + 1)2 � n21 = 2n1 + 1

And this bound is attained (i.e., �f is maximized) when
n2 = n1 + 1; the global minimum of this expression (and
the global maximum of �f) occurs when n1 = 1 andn2 = 2,
yielding �f = �mg=3.

In practice, we typically use �(t) = cos(t) � cos(2t)=2
(b = 1=2); though this yields �f�=0:24�mg (lower than the
b = 1 case) it also yields a higher equilibrium velocity.2

Corollary 2. A sum of harmonicsn1, n2 (exactly one of
which is odd) produces zero (resp. maximum) feeding force
if they have at least one root (resp. peak) aligned.

Proof. When at least one root (resp. peak) is aligned, the
sum waveform is equivalent (modulo a phase shift and a
sign flip) to a sum of pure sines (resp. cosines), which
yields zero (resp. maximum) feeding force, Lemma 2 (resp.
Theorem 1).

2The part’s equilibrium velocity �p is such that sgn[�(t) � �p] inte-
grates to zero in 2�.

6 Conclusion

A new local motion primitive called the “ jet” has been de-
scribed which makes parallel manipulation with the UPM
fast and robust, overcoming many of the shortcomings
present in a previous method. Optimum jet components
were chosen based on a complete characterization of feed-
ing forces when plate motion is a sum of two sinusoids.
Due to its mechanical simplicity, the UPM is an attractive
technology for existing industrial applications such as part
feeding, sorting, singulation, etc. The “open face” nature
of its workspace suggests interesting applications in novel
areas such as product display, interactive toys, and active
desks. Future work with the UPM includes manipulation of
generic objects such as tools, and bottles. This will require
both more sophisticated vision software and the ability to
rotate parts, e.g., by applying localized force couples.
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