
OPTVIEW: A New Approach for Examining Optimized Code

Caroline Tice

cmtice@cs.berkeley.edu

University of California, Berkeley

Susan L. Graham

graham@cs.berkeley.edu

University of California, Berkeley

Abstract

The task of mapping between source programs and ma-
chine code, once the code has been optimized and trans-
formed by a compiler is often di�cult. Yet there are
many instances, such as debugging optimized code or
attributing performance analysis data to source lines,
when it is useful or necessary to understand at the
source level what is occurring in the binary. The stan-
dard approach has been for tools to attempt to map di-
rectly from the optimized binary to the original source.
Such mappings are often fragile, and sometimes inac-
curate or misleading. We suggest an alternative ap-
proach. Rather than mapping directly between the orig-
inal source and the binary, we create a modi�ed version
of the source program, still recognizable, but updated
to re
ect some of the e�ects of optimizations, thus facil-
itating mapping from the binary. We have implemented
a tool, Optview, to demonstrate and test these ideas.

1 Introduction

It is the job of compilers to translate programs. A
compiler takes a program written in one language, and
outputs a semantically equivalent program written in
a di�erent language. Some compilers perform a sim-
ple, straight translation from one language to the other,
while others, in addition to translating, perform vari-
ous optimizing transformations, resulting in a more ef-
�cient �nal program. Although the optimized program
exhibits the behavior expected of the original program,
its machine instructions rarely correspond directly to
the original program statements. This creates di�cul-
ties for debugging and analysis applications that have
to reconcile these two di�erent programs. Such applica-

tions often have useful and pertinent information about
the optimized program which they attempt to convey
to the programmer in terms of the original program.
Unfortunately it is frequently the case that the trans-
formed program is so far removed from the original that
there is no transparent mapping between them, thus
leading to confusing or inaccurate results.

Much work in debugging has been done to attempt
to create exact mappings from the optimized machine
instructions to original source statements ([1, 3, 6, 7,
11, 12]). Transparent debugging of optimized code, us-
ing such mappings, breaks under certain not uncommon
conditions, at which point the debuggers fall back on
the \truthful" behavior, telling the user the debugger
cannot do or �nd what the user wants. This is less than
ideal from the user's point of view.

We have been investigating the problem of under-
standing optimized code in terms of the original pro-
gram, and we have concluded the wrong question is
being asked. The question up to now has been how
to exhibit a transparent mapping between the original
and the transformed programs. A better question is
how can we explain the correspondences between the
transformed program and the original program. A �ne-
grained mapping directly back to the original source
program may not be necessary. Rather it may su�ce to
derive a modi�ed version of the original program, rec-
ognizable and understandable by someone familiar with
the original program. This modi�ed program would
correspond more closely to the optimized binary, thus
allowing for a more straightforward, robust, and correct
mapping mechanism.

There are many tasks for which it would be useful
to see such modi�ed source code. For instance it would
be of interest to programmers who want to understand
how the optimizer transforms their programs. Perfor-
mance data resulting from dynamic program analyses
could be more accurately attributed using the modi�ed
source code. Compiler writers who are debugging the
optimizer might �nd it useful to see the optimizations

re
ected at the source level. Programmers who are de-
bugging optimized code may also �nd it useful to see the
modi�ed source code. Finally modi�ed source code can
be used as a teaching tool in computer classes studying
compiler optimizations and program transformations.

To test our ideas we have built a tool, Optview,
which generates such modi�ed versions of original pro-
grams. Optview takes C programs as input. It works
closely with the compiler, and outputs C programsmod-
i�ed to show the e�ects of various optimizations.

The rest of this paper is organized as follows. In Sec-
tion 2 we give a more detailed explanation of what we
mean by modi�ed source code. Section 3 discusses some
of the decisions involved in designing a tool to gener-
ate modi�ed source code. Section 4 describes Optview
in detail. Section 5 discusses some related work and in
Section 6 we present our conclusions.

2 Explanation of Modi�ed Source Code

Although the phrase \modi�ed source code" could be
applied to source code that has undergone any set of
modi�cations, our concern is primarily with user-visible
structural changes. The relevant modi�cations are ob-
tained by applying a series of transformations to a pro-
gram. These transformations can include reordering
the code, rewriting expressions, replacing language con-
structs with di�erent but equivalent constructs, dupli-
cating code, or deleting code. Since the transforma-
tions that are applied to the original program to obtain
the modi�ed source code re
ect the optimizations per-
formed by the compiler, the modi�ed source code is a
partially optimized version of the source program.

To make the transformations visible, the original
source language may be extended by pseudocode, and
commentsmay be inserted into the modi�ed source code
for explanatory purposes. If pseudocode is used in the
modi�ed source, that code will not be compilable. Since
its purpose is to convey information, serving as an inter-
mediary between the original source code and the target
code, non-compilability is not a problem. In our work
on C, we have not found a need for pseudocode. The
greatest di�culty in creating modi�ed code that com-
piles has been to get the types and declarations correct.

A natural question at this point is why not use re-
verse engineering techniques to obtain an optimized source
program directly from the optimized binary [2, 4, 9, 10].
The reason for not doing so is that the new program
must be recognizable and understandable by someone
familiar with the original program. Due to the loss of
some types of control
ow data, as well as the nature
of certain optimizations such as software pipelining and
loop optimizations, code generated by reverse engineer-

ing is likely to be unfamiliar and hard to comprehend.
If the user cannot understand how the modi�ed code
relates to the original program, then the user will have
di�culty in determining what meaning and signi�cance
to attach to it or how to use it. By starting from the
original program and gradually transforming it we can
retain all the parts of the original program that were not
involved in the compiler optimization process, such as
comments, declarations, or pre-compiler directives, as
well as high level constructs such as structured control

ow statements, which get lost in the compilation pro-
cess. By keeping these features of the original program,
the modi�ed source code is more easily recognizable.
Also, by starting from the original program, irrelevant
information about the optimizations can be suppressed.
Using reverse engineering, one has no such option.

Not all optimizations can be expressed at the source
level, nor is it desirable to do so. Fine-grained instruc-
tion scheduling is an example of such an optimization.
Another example is register allocation and spilling. If
the modi�ed source code were required to express all the
e�ects of all optimizations, assuming that were possible,
the �nal result would be very similar to the assembly
code, thus defeating the purpose of using the source
language. This raises two important questions: which
optimizations should be considered when deriving the
modi�ed source code, and how can the e�ects of these
optimizations be re
ected in the source language. First
we will address the choice of optimizations. Showing
the e�ects of optimizations is discussed in Section 3.

When deciding which optimizations to re
ect in the
modi�ed source code, one should keep in mind its pur-
pose. The modi�ed source code shows the user what is
happening in the binary, but at the source level. The
user wants to know which source statements are exe-
cuting and when they are executing. The user needs
an accurate idea of which variables exist at any given
time and what values they contain. Users need not
see low level machine speci�c optimizations. Therefore
the optimizations of interest are those that visibly af-
fect source code constructs, namely those that elimi-
nate source code, move source statements, or change
the form of source statements (e.g. altering expres-
sions to use di�erent constants, variables, or opera-
tors). One needs to be careful in considering optimiza-
tions that change the form of source statements. Some
changes, such as replacing multiplication with register
shifts, are probably not relevant, while others, such as
using a di�erent constant or variable in an expression,
are. The optimizations that we have focused on initially
in Optview are code motion, coarse-grained instruction
scheduling, common subexpression elimination, partial
redundancy elimination, copy propagation, and dead
code elimination.

There are two basic requirements the modi�ed source
code must meet in order to be useful:

� It must be recognizable and understandable by
someone familiar with the original program.

� It must correspond closely enough to the optimized
binary to allow for a consistent and meaningful
mapping between the two.

These two requirements are in direct con
ict with each
other. One of the di�cult and interesting research is-
sues is to �nd an appropriate balance between them.
The more one modi�es the original program to corre-
spond to the binary, the less recognizable and under-
standable it is likely to become. One can imagine a
continuum of transformed programs. At one end of the
continuum is the original source code, and at the other
end is a program obtained by reverse engineering the
optimized binary. Our concept of modi�ed source code
falls somewhere between the two { the exact point on
the continuum will vary depending on the intended use
and audience for the modi�ed program. If writing a
tool for debugging optimizers, for example, one might
focus more on close correspondence to the optimized bi-
nary, at the expense of recognizability. For indicating
performance data, it might be more appropriate for the
modi�ed code to remain closer to the original source.

3 Generating Modi�ed Source Code

During the optimization process, the source program is
�rst translated to an internal form, and then portions
of the internal representation are moved, duplicated,
separated, eliminated, or altered. In order that the
modi�ed source code be recognizable to someone famil-
iar with the original program, fragments of the original
program are used as much as possible to construct the
modi�ed source code. The modi�ed source code may
contain original source statements that have been re-
ordered, modi�ed slightly, or split apart. It may also
contain new statements inserted to make particular op-
timization e�ects explicit. It might contain fragments of
pseudocode designed to explain important optimization
e�ects which cannot be adequately described using con-
structs in the source language. In addition, the modi�ed
source code must indicate original source statements
that have been eliminated.

3.1 Reordering source statements

An essential requirement for the modi�ed source code
is that the order in which statements occur accurately
re
ect the order in which the statements will be exe-
cuted. This in turn requires knowledge about how the

(a) Original Code

num = y; /* num == y */

i = 3 * num - 17; /* i == 3 * y - 17 */

num++; /* num == y + 1 */

(b) After Reordering (Wrong)

num = y; /* num == y */

num++; /* num == y + 1 */

i = 3 * num - 17; /* i == 3 * (y + 1) - 17 */

/* == 3 * y - 14 */

(c) Reordered & Updated (Correct)

num = y; /* num == y */

num++; /* num == y + 1 */

i = 3 * num - 20; /* i == 3 * y - 17 */

Figure 1: Reordering & Updating Code

compiler rearranged the statements and some mecha-
nism for identifying source statements in the optimized
internal representation. In Optview we introduce key

instructions for this purpose (see Section 4.1). The com-
piler tags key instructions in the binary for each source
statement that was not eliminated. The order in which
these key instructions occur in the binary then deter-
mines the order in which their corresponding source
statements should occur in the modi�ed source code.

3.2 Modifying source statements

To show the e�ects of certain optimizations, or to pre-
serve the semantics of the program, some original source
statements may need to be modi�ed. Figure 1a shows
a few lines of code from a source program. After these
lines have completed executing, the variable i should
contain the value of \3 * y - 17" and the variable num
should contain the value of \y + 1". During the op-
timization process, the order of these calculations was
changed, as shown in Figure 1b. To preserve the seman-
tics of the original program it is necessary to change the
constant from 17 to 20, to account for the fact that num
is now incremented before the value of i is calculated.
Figure 1c shows the correctly updated code.

3.3 Inserting new code

There are transformations such as common subexpres-
sion elimination for which new statements must be added
to the source code to illustrate the optimization. For
example, an assignment statement might be inserted at
the point where the subexpression is evaluated, assign-
ing the subexpression to a newly generated variable.

This new variable then can be substituted throughout
the modi�ed source wherever the original subexpression
evaluation is eliminated by the compiler.

3.4 Eliminating source code

A standard feature in most optimizing compilers is elim-
ination of dead code. The modi�ed source code must
make clear which source statements were eliminated by
the compiler. There are many ways to do that. The
particular representation chosen is immaterial so long
as it conveys the information to the user.

3.5 Splitting apart statements

High-level, powerful source languages often contain sin-
gle constructs that embody multiple pieces of function-
ality. The optimizer may scatter the functionally sep-
arate pieces of such a construct widely throughout the
optimized binary. Since the task at hand requires that
the modi�ed source code accurately re
ect the location
and order in which these functional events occur in the
binary, it becomes necessary for the modi�ed source
code to split apart these constructs. A simple example
should clarify this point. Figure 2a shows a common
C construct, the for statement. The for statement
header contains three parts: the initialization state-
ments, the loop test, and the increment statements. In
order to allow the modi�ed code enough
exibility to
mirror the order of events in the binary, such a con-
struct needs to be rewritten as simpler constructs, each
embodying a single piece of functionality. Figure 2b
shows the same for loop, rewritten as multiple C state-
ments. The modi�cation allows these various state-
ments to be moved and reordered as necessary in the
modi�ed source code. When designing a tool to gener-
ate modi�ed source code for a particular language, one
needs to carefully consider which language constructs
need to be broken down and split apart in this manner.
Ideally whenever such a multifunctional construct needs
to be rewritten, the source language will contain simpler
constructs which can be used for this purpose. If that is
not the case, pseudocode can be used to represent the
pieces of functionality that need to be separated. Fig-
ure 2c shows the same for statement split apart and
represented with pseudocode.

3.6 Creating pseudocode

Earlier we suggested augmenting the original source lan-
guage with pseudocode when generating the modi�ed
source code. For the sake of simplicity and comprehen-
sibility, the creation of pseudocode should be kept to
a minimum. However there are situations in which it

may be necessary. For example to show strength re-
duction in FORTRAN, one would need a mechanism
for representing pointers. While some versions of FOR-
TRAN support extensions that allow for the represen-
tation of pointers, others do not. An appropriate use
of pseudocode would be to show pointer references in
FORTRAN in this case. We do not advocate ad hoc
creation of pseudocode. Rather when designing the tool
to generate modi�ed source code one should be able to
identify and design the pseudocode that will be needed,
by carefully considering the constructs of the source lan-
guage and the optimization e�ects to be shown.

3.7 Presentation

The �nal issue to be considered when designing a tool
to generate modi�ed source code is the interface that
will be used to present the modi�ed source code to the
user. How will the modi�ed source code be presented
so as to make its correspondence and relation to the
original program clear? There are many possible solu-
tions to this question. Probably a graphical interface,
using some combination of windows, colors, icons, and
layered e�ects may be best. As with all the other de-
sign decisions, the most appropriate choice will depend
heavily on the intended task and audience.

4 Optview

Optview is the prototype tool we have implemented to
demonstrate and test our ideas. It generates modi�ed
source code for optimized C programs. Optview is writ-
ten to work with the Mongoose 7.2 C compiler, an ag-
gressively optimizing commercial compiler developed by
Silicon Graphics, Inc. (SGI).

The task we had in mind when we designed Optview
was debugging optimized code, and the intended audi-
ence were applications programmers who may not know
much about compiler optimizations. Hence the opti-
mizations we focus on are those whose e�ects would be
most visible to someone stepping through code or exam-
ining variables: code motion, code reordering (coarse-
grained instruction scheduling), common subexpression
elimination, copy propagation, partial redundancy elim-
ination, dead code elimination and constant folding.

4.1 Key Instructions

Optview generates the modi�ed source by reusing and
modifying original source program fragments, based on
the optimized target code. Determining the order in
which the source statements will be executed becomes
complicated after optimization, as there is no longer

for (current = list;

current;

current = current->next) {

...

}

(a) Original Statement

current = list;

while (current) {

...

current = current->next;

}

(b) Using C Constructs

current <-- list;

loopwhile (current) do

...

current <-- current->next;

od

(c) Using Pseudocode

Figure 2: Rewriting for statements.

a clear concept of individual source statements in the
target code. They have been broken up, duplicated, re-
combined, and interleaved, making it di�cult to state
where one statement ends and another begins. In order
to deal with this problem we introduce the notion of
key instructions. By key instruction, we mean the sin-
gle low level instruction that most closely matches the
semantics associated with a given statement type. For
example, the key instruction for an assignment state-
ment is the one that stores the assignment value either
to the variable's location in memory, or to a register
(if the write to memory has been eliminated). The key
instruction for a function call is the jump to the code
for that function. Key functionality is not a completely
new concept. It is closely related to the idea of seman-
tic breakpoints [1, 6, 12]. Not all language statements
have a single easily identi�able key instructions. Some
control
ow constructs have multiple key instructions.

Most types of language statements have an easily
identi�able corresponding key instruction (for instance,
the conditional branch used for a conditional statement).
This is not true for assignment statements. Depend-
ing on the calculation involved in the assignment, there
can be multiple store instructions associated with the
source statement. Since the instructions do not refer-
ence variables by name it is often di�cult to determine
which one stores to the variable on the left hand side of
the source assignment. To complicate matters further,
the write to memory may have been eliminated, so the
key \store" instruction might be an operator instruction
whose destination register will contain the value of in-
terest. For these reasons the only way to accurately de-
termine the key instruction for assignment statements is
to track the key assignment instructions from the front
end of the compiler, all the way through the optimiza-
tions to the instruction generation phase. We modi�ed
the front end of the compiler to
ag, for each assign-
ment statement in the source program, the intermediate
representation statement that stores the value. As the
intermediate representation goes through various opti-
mizations, transformations, and lowering stages, this

ag is tracked and updated appropriately, and passed to
the assembly code. The key instructions for the other
statements are uniquely determined by the nature of

the statement. At the point where the modi�ed source
code is generated, the order of these key instructions is
used to determine the new order for the source state-
ments. Using key instructions allows us to accurately
re
ect the e�ects of code motion and code reordering.

In languages other than C there may be language
constructs, such as a vector assignment statement, that
allow a single assignment statement to assign to multi-
ple components on the left hand side of the statement.
Such language constructs often can be split apart and
rewritten as simpler constructs with statements assign-
ing to single locations on the left hand side. Similarly,
a C statement such as \a = b = c = 0;" should be
rewritten as three separate assignment statements.

4.2 Rewriting Multi-functional Constructs

We identi�ed four source language constructs in C which
inherently embody multiple pieces of functionality that
need to be split apart: for statements, conditional ex-
pressions, increment/decrement operators (++/--) em-
bedded within other statements, and initialized declara-
tions. All of these constructs allow for multiple assign-
ments to variables within a single statement. Optview
obtains information from the compiler about all such
constructs contained in the original source program,
and rewrites them in a simple manner. For statements
are rewritten as while loops, with the loop initializa-
tions before the loop, and the loop increments inserted
at the end of the loop body. Increment and decrement
operators that are embedded within other statements
are pulled out of the statements in question and writ-
ten as separate statements, either before or after the
containing statements, as appropriate. Initialization as-
signments are removed from variable declarations and
inserted just prior to the next statement. Finally, as-
signment statements that have conditional expressions
on the right hand side are rewritten as if-then-else
statements. These changes permit much greater
exi-
bility for rearranging and modifying these assignments
as needed to re
ect the optimizations.

The front end of the compiler writes a data �le used
by Optview to identify the source lines that contain the
constructs that need to be rewritten. As the modi�ed

Original Source Code

c = 2 * y + 3;

a = 5 + 2 * y;

b = (4 + 2 * y - 1) / z;

Modified Source Code

cse_var_1 = 2 * y;

cse_var_2 = cse_var_1 + 3;

c = cse_var_2;

a = 5 + cse_var_1;

b = cse_var_2 / z;

Figure 3: CSE in Optview

source is generated, those lines are parsed to �nd and
update the text that needs to be rewritten or moved.
Our tool takes advantage of the fact that the inputmust

be syntactically correct when it is called. This allows
us to use a relatively simple parsing strategy.

4.3 Collecting Optimization Information

To accurately re
ect the e�ects of optimizations such
as common subexpression elimination (CSE), partial
redundancy elimination (PRE), and copy propagation,
Optview needs to know precisely what the compiler did.
We modi�ed the compiler to collect information about
these optimizations and write it to a �le which Optview
later uses to re
ect these optimizations in the modi�ed
source code. The informationOptview requires includes
the location where assignment statements are inserted;
the left- and right-hand sides of these assignment state-
ments; the location of source statements requiring sub-
stitutions; which assignment statement is relevant for
each substitution; and which expressions were propa-
gated to which statements. Optview must also deter-
mine whether the expressions involved in these opti-
mizations came from the original source program, since
only optimized source expressions are shown.

Once it has collected all the necessary information
about the optimizations performed by the compiler, Opt-
view modi�es the source code to make the e�ects of CSE
and PRE explicit, as shown in Figures 3 and 4. First it
inserts a new assignment statement assigning the \com-
mon" expression to a new temporary variable. Next it
replaces the relevant expression or subexpression in the
appropriate statements with the new temporary vari-
able. Although these new variables are not part of the
original program, our expectation is that, if properly
annotated, they will not be too confusing to the user.

One di�culty we encountered when implementing
this part of Optview is that the \common" subexpres-
sions generated by the compiler are in a canonicalized
form, whereas the subexpression in the source state-
ment where the substitution is to be performed is not.
The solution we used is to pass the intermediate rep-
resentation for the original source statement through a

Original Source Code

if (...) {

a = x;

y = a + b;

} else {

a = y;

}

z = a + b;

Modified Source Code

if (...) {

a = x;

cse_var_1 = a + b;

y = cse_var_1;

} else {

a = y;

cse_var_1 = a + b;

}

z = cse_var_1;

Figure 4: PRE in Optview

tool that outputs the text in the same canonical form
used by the compiler.1 Once both the source text and
the compiler optimization data are in canonical form,
the substitution becomes relatively simple.

Optview handles copy propagation (CPP) di�erently.
CPP is an optimization that enables CSE and other op-
timizations. Thus the compiler applies CPP before ap-
plying many other optimizations. However the e�ects
of CPP are often transitory, as a later optimization that
was enabled by CPP may completely overwrite or elim-
inate the propagated expressions. Our solution to this
problem has two parts. First we keep track (via the
data gathered by the compiler) of every source state-
ment to which an expression was propagated, as well as
the exact propagated expression. After all of the other
optimization e�ects have been re
ected in the modi�ed
source code, Optview goes through and checks each re-
sulting source line to which an expression was propa-
gated. A comment is added to the end of each line stat-
ing that copy propagation occurred there. If the origi-
nal variable still exists in the source statement, Optview
replaces it with the propagated expression.

4.4 Summary of Compiler Modi�cations

We have modi�ed the Mongoose C compiler to create
two small data �les for use by Optview. The front end
of the compiler creates a data �le in which it records
general location and parse information for the source
language constructs that will need to be rewritten. The
back end of the compiler creates a data �le in which
it records information about the optimizations it per-
forms. Currently the information in this �le pertains to
partial redundancy elimination, copy propagation and
common subexpression elimination.

In addition to creating these data �les we modi�ed
the compiler mechanism for keeping track of the original

1The canonicalized text is obtained from an existing tool that

translates pieces of internal representation to C.

source code positions, making it more accurate and giv-
ing it a �ner granularity; and we modi�ed the compiler
to
ag key instructions for assignment statements in
the intermediate representation. Finally, we modi�ed
the compiler so that immediately prior to outputting
the assembly and/or binary code, it invokes Optview to
generate the modi�ed source code.

4.5 The Structure of Optview

Optview �rst reads in the original source �le, and stores
the text and some additional information for each source
line in an array, one entry per source line. It labels each
source line as being white space, a comment, a dec-
laration, a pre-processor directive, or executable code.
Next Optview rewrites for loop headers, conditional
expressions, increment or decrement operators that are
embedded within other statements, and initialized dec-
larations, as explained in Section 4.2, using the data �le
created by the front end of the compiler.

Once these source statements have been rewritten,
Optview uses the data �le written by the back end
to make PRE and CSE transformations explicit in the
source code, as explained earlier. The next step is to
determine the new order in which statements should
appear. The new order is determined from the order
of instructions in the target code as follows. For each
source statement that has corresponding instructions
in the target code, a key instruction is identi�ed. If
the source statement is an assignment statement, then
this instruction is the key instruction that was
agged
throughout the compiler. If the source statement is a
function call, the key instruction is the jump instruc-
tion. Otherwise the last instruction for the source state-
ment is the key instruction for that statement. Once
every source statement has a key instruction associated
with it, the order of these key instructions in the target
code becomes the new order for the source statements in
the modi�ed source code. Any source line in the origi-
nal program which contains executable code, and which
does not have any associated instructions in the target
code is determined to be dead code that was eliminated,
and is indicated as such. After dead code elimination,
Optview goes through the modi�ed source code and an-
notates or updates statements at which copy propaga-
tion occurred (see Section 4.3 for details).

Recall that after reordering the source statements,
some expressions must be modi�ed to maintain seman-
tic equivalence to the original program (see Figure 1).
Optview uses a simple algorithm based on code motion
to determine which expressions to update. Using an ex-
isting SGI tool, it translates the intermediate represen-
tation for those expressions back into source code. Since
the intermediate code has already been optimized by

 int
 int

 }

}
 return

int
{

 while
{

 main ()

i, j, k;
num1, num2;

(i < num1)
 i++;
 num1--;

i = 45 * num2;

foo (num1);
foo (i);

k = cse_var_76;
foo (k);

 0;

i = 0;
cse_var_76 = (num2 * 15);
j = cse_var_76;

foo (j);

int
{
 int
 int

 for
 {

 }

 return
}

main ()

 i, j, k;
 num1, num2;

j = 15 * num2;
num1--;

k = 15 * num2;
i = 3 * k;
num2++;

foo (j);

foo (i);
foo (k);

foo (num1);

0;

Original Source Code Modified Source Code

(i = 0; i < num1; i++)

num2++; /* DEAD CODE */

Figure 5: Optview Output in Simple GUI

the compiler, this generates correctly updated source.

4.6 The User Interface

We are exploring alternative graphical user interfaces
for presenting to the user the modi�ed source code gen-
erated by Optview. The choice of a user interface has
great impact on the user's ability to understand the
modi�ed source code. The interface is critical for show-
ing the relationship between the original program and
the modi�ed source code. Some possibilities we have
considered include graying out dead code; drawing lines
with arrows in the \margins" to indicate which lines
have moved and from where; highlighting altered con-
stants or expressions in a di�erent color; allowing the
user to undo and re-do certain optimization e�ects dy-
namically. Another aid to understanding the modi�ed
code would be to use a vertically split screen with the
original code on one side and the modi�ed code on
other. Whenever a line is is highlighted or selected
in one window, the corresponding line(s) in the other
window are automatically highlighted.

The question of how to visualize optimized code has
been considered in other work ([3, 5]). As yet there
has not been an entirely satisfactory solution. Figure
5 shows an example of some C code, both the original
source and the modi�ed code that is generated by our
tool, as it might look with a nice GUI.

5 Related Work

There are two previous attempts to convey the e�ects
of optimizations explicitly to programmers. The de-
signers of the Convex debugger for optimized code [3],
created an extremely �ne-grained, accurate mapping
between the optimized binary and the original source.
The debugger then used a combination of highlighting
and code animation (in the original source) to show the
user exactly what was happening in the binary. There
are several problems with this approach. Since a lot
of information is conveyed to the user via code anima-
tion during single stepping of the program, if the user
sets a breakpoint and runs the program to that break-
point it is not always clear which statements around the
breakpoint have or have not executed, nor which values
variables should have. Also, unless the user knows a lot
about optimizations already, it can be more confusing
than informative to see highlighting jump around all
over the code. Cool describes the design of a system to
make instruction scheduling apparent in a VLIW ma-
chine [5]. Cool focussed entirely on this single optimiza-
tion, and never actually implemented his design.

Some of the work done by Optview is reminiscent
of term rewriting systems (TRSs) and could possibly
be done using such a framework [8]. In particular,
rewriting multifunctional language constructs in sim-
pler terms, as well as applying CSE, PRE, and copy
propagation e�ects could all be done using such a sys-
tem. The tracking of key instructions throughout the
compiler also has a lot in common with this work, but
unless the compiler was written with such a system in
mind, modifying it to propagate key instructions in this
manner would require too much work. TRSs would not
be applicable to some transformations we do, such as
reordering statements based on the location of key in-
structions in the machine code.

6 Conclusion

We have presented a new approach for displaying the
e�ects of compiler optimizations at the source level, and
have summarized some of its potential uses. We have
described Optview, a tool that we have implemented
to experiment with this approach, and have discussed
in detail many of the issues, both at a conceptual level
and in the design of Optview. We have shown that it is
possible to create a tool that explicitly shows the e�ects
of many common optimizations at the source level, for
a highly aggressive optimizing compiler.

There is still work to be done with Optview. We
intend to add information about high-level loop trans-
formations and function call inlining to the modi�ed
source code. We also plan to enhance the user interface

with many graphical interface techniques. Our initial
investigations indicate that the modi�ed source code is
recognizable and understandable. We will continue to
investigate the viability of this approach, and the uses
of modi�ed source code, especially for debugging.

References

[1] A. Adl-Tabatabai, \Source Level Debugging of
Globally Optimized Code", Ph.D. Dissertation,
Carnegie-Mellon University, May 1996.

[2] P. Breuer and J. Bowen, \Decompilation: The
Enumeration of Types and Grammars", in ACM

Transactions on Programming Languages and Sys-

tems, Vol. 16, No. 5, Sept. 1994.

[3] G. Brooks, G. Hansen, and S. Simmons, \A New
Approach to Debugging Optimized Code", Pro-

ceedings of the 1992 PLDI Conference, 1992

[4] C. Cifuentes and K. Gough, \Decompilation of
Binary Programs", Technical Report FIT-TR-94-
03, Faculty of Information Technology, Queensland
University of Technology, Australia, April 1994.

[5] L. Cool, \Debugging VLIW Code After Instruction
Scheduling", M.S. Thesis, Oregon Graduate Insti-
tute of Science and Technology, July 1992

[6] M. Copperman, \Debugging Optimized Code with-
out Being Misled", Ph.D. Dissertation, University
of California, Santa Cruz, May 1994

[7] D. Coutant, S. Meloy, and M. Ruscetta, \DOC: A
Practical Approach to Source-Level Debugging of
Globally Optimized Code", In Proceedings of the

1988 PLDI Conference, 1988

[8] A. van Deursen, P. Klint, F. Tip, \Origin Track-
ing", Journal of Symbolic Computation 15, 1993

[9] D. Jackson and E. Rollins, \A New Model of Pro-
gram Dependences for Reverse Engineering", in
Proceedings of the 1994 ACM SIGSOFT Confer-

ence, December 1994.

[10] R. Sites, A. Cherno�, M. Kirk, M. Marks, and S.
Robinson, \Binary Translation", Communications

of the ACM, Vol. 36, No. 2, February 1993.

[11] R. Wismueller, \Debugging of Globally Optimized
Programs Using Data Flow Analysis", In Proceed-

ings of the 1994 PLDI Conference, 1994.

[12] P. Zellweger, \High Level Debugging of Optimized
Code", Ph.D. Dissertation, University of Califor-
nia, Berkeley, May 1984.

