
Mathematics and Algorithms for Computer Algebra

Part 1 c© 1992 Dr Francis J. Wright – CBPF, Rio de Janeiro

July 9, 2003

Abstract

This course will be mainly mathematics, some computer science
and a little computing. Little or no essential use will be made of
actual computer languages, although I may occasionally use Pascal, C,
Lisp or REDUCE for concrete examples. The aim of the course is to
provide an entry into the current research literature, but not to present
the most recent research results.

The first half of the course (taught by me) will deal with basic math-
ematics and algorithms for computer algebra, primarily at the level of
arithmetic and elementary abstract algebra, including an introduction
to GCDs and the solution of univariate polynomial equations. This
leads into the second half of the course (taught by Dr Jim Skea) on
the more advanced problems of polynomial factorization, indefinite in-
tegration, multivariate polynomial equations, etc.

The first week provides an introduction to the computing aspects
of computer algebra, and contains almost no mathematics. It is in-
tended to show how the later theory can be implemented for practical
computation. The second week provides a rapid but superficial survey
of the abstract algebra that is most important for computer algebra.
The next five weeks will build on this abstract basis to do some more
concrete mathematics in more details, referring back to the basis es-
tablished in the first two weeks as necessary.

At the end of each set of notes will be exercises, one (or more) of
which will be assessed.

1

1: Introduction to Computer Algebra

1 Data types and tasks of computer algebra (CA)

We primarily want to compute with expressions such as

23x2 + 4y − sin(2z/3)
15xy(1 + z)

.

But let us start more simply, with just

23.

What is this? Conventional notation is horribly ambiguous. It could be

• an integer,

• a rational,

• a real,

• a complex,

• an integer modulo some m > 23.

Does it matter? Yes, for two reasons:-

1. The operations defined on a set, or (loosely) the results of applying
operations to elements of a set, depend on the set, e.g. over the integers
23/15 is not defined, whereas over the reals it is.

2. It affects the computational representation, because it is possible to
represent any (finite) element of a discrete (i.e. countable) set explicitly
and exactly, e.g. an integer or rational, but not a general element of a
continuous (i.e. uncountable) set, e.g. an irrational real, which can be
represented only either implicitly (i.e. symbolically) or approximately.

I will call an approximate representation of a continuous set a rounded rep-
resentation – usually it will be a floating-point approximation of a real.

2

It is useful to identify the following hierarchy of data types for CA:-

0: Number domains (or coefficient domains)

integers - Gaussian (complex) integers

rationals - Gaussian (complex) rationals

rounded
reals

- rounded complex

?

-

The geometry of the above and next figures shows the logical rela-
tionships among the domains, whereas the arrows indicate the likely
relationship among their representations in practice.

The above can all be explicitly represented. Implicit symbolic rep-
resentations of algebraic and transcendental irrational reals are also
important, e.g.

√
2 and e. However, whilst these logically have the

status of domain elements, they may in practice be represented as
functions and variables (respectively).

At any point in a computation the number domain should be fixed
and uniform (which may require type conversions).

1: Polynomials and rational functions Based on any specified number
domain, the next level of structure is this:-

multivariate
polynomials

(“multinomials”)

multivariate
rational functions

univariate
rational functions

univariate
polynomials

any number domain

-

-

�
�

�	

@
@
@R

?

3

2: Arbitrary scalar expressions The next level of structure is to allow
functional forms, i.e. function applications that are not evaluated but
remain in the symbolic form

function(arguments).

The “function” is not allowed to be arithmetic, because that corre-
sponds to the “rational function” level (1) already discussed above.
The functional form has the status of a polynomial variable (or un-
known). [REDUCE calls variables and functional forms all kernels –
respectively simple and extended.] We have now reached the level of
structure of our initial example.

3: Structured data types The final level of the data hierarchy consists
of structured objects constructed from the above scalar data types,
such as sets, lists, equations, arrays, matrices, vectors, tensors. A list
is an ordered set with sequential access only (meaning that to access
any particular element it is necessary to step through all the elements
from the first until the required element is found). An array is an
ordered set with indexing that allows random access (meaning that
any element can be accessed directly and independently of the other
elements via its index).

Not all CA systems explicitly support all these structures, and they
may be represented internally in terms of each other; for example, in
REDUCE only lists and arrays are fundamental, and both sets and
matrices (!) are represented in terms of lists.

Note that sets, lists and arrays have no intrinsic properties other than
their structure, whereas matrices, vectors and tensors have various
additional arithmetic and algebraic properties.

The tasks of CA now follow naturally from the above data types, and
are to perform all operations defined on them, namely:

• arithmetic operations on number domains, polynomials, rational func-
tions and structured data types;

• symbolic operations of substitution (or equivalently composition), re-
grouping or reformatting, and accessing components;

• algebraic operations such as factorization, gcd computation, equation
solving;

4

• pseudo-analytic operations such as differentiation and integration;

• series summation, series expansion and manipulation;

• higher-level applications, such as geometry.

In this course we will not consider symbolic operations, which are more
computer science than mathematics, nor (much) the higher-level applica-
tions that require specialist knowledge of particular application areas.

2 The main CA systems: Maple, REDUCE, De-
rive, etc.

The main current general-purpose CA systems are Maple, REDUCE, De-
rive, Mathematica, Axiom and Macsyma. The oldest are Macsyma and
REDUCE, which both first appeared around 1970, and the newest are De-
rive and Mathematica, which appeared around 1990. Derive runs only on
MS-DOS machines; Maple and REDUCE run on many machines from fairly
modest modern MS-DOS machines upwards; the other systems require more
powerful machines. All but Derive provide a programming language that can
be used to extend the facilities of the basic system, which has led to useful
libraries of both developer- and user-supplied code.

All the systems support most of the scalar data types described above
and (possibly via library routines) also most of the structured types. They
also support most of the defined operations. They differ in the machines
they run on, their user interfaces, their support of graphical output, their nu-
merical capabilities, and their support for application areas (such as higher
transcendental or “special” functions).

REDUCE, Derive, Axiom and Macsyma are written essentially in dif-
ferent versions of Lisp; Maple and Mathematica are written essentially in
C. However, large parts of all the systems (except Derive) are written in
their own programming languages, but they all have some kernel written
in Lisp or C. [The most recent implementation of REDUCE uses Codemist
Standard Lisp (CSL), which is itself written in ANSI C, so REDUCE can be
considered to be implemented in C using Lisp internally as an intermediate
language.]

5

2.1 What computational facilities are required to support
computer algebra?

Clearly an underlying numerical capability to support the number domains,
plus a symbolic capability to support the textual nature of general algebraic
expressions, and flexible support for structured data. But probably the most
important capability is dynamic memory management.

When computing with just numbers it is usually possible to allow enough
memory for the largest likely number, and to reserve this memory for each of
the numbers that needs to be retained at the same time. But one algebraic
expression is generally much more complicated than just a number, and
so would take much more memory. Moreover, it is difficult to predict the
most complicated expression that can arise during the course of an algebraic
computation. As an example of how an apparently simple expression can
become much more complicated, consider

x10 − 1
x− 1

= x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1,

in which the result of performing the division has many more terms than
either the dividend or the divisor.

The only practical solution is to manage memory dynamically, i.e. from a
pool of available memory, allocate memory to store data as necessary during
the computation and return it to the pool when it is no longer needed.
Dynamically allocated memory must be accessed via pointers (i.e. dynamic
addresses).

C is a very good language for all these tasks, but it is fairly low level. Lisp
already provides all the essential facilities automatically. Hence it makes
sense to write an algebraic language processor (kernel) in C and implement
a CA system in that kernel language, or to use Lisp as the kernel language,
where the Lisp is implemented in C or some similar system language. The
details make little real practical difference.

[Note that CSL-REDUCE is the only CA system that provides full source
code, including the C code for the Lisp kernel.]

3 Data representations and their implementation

This section is based on REDUCE, but the essential ideas must apply to all
systems. However, whereas REDUCE uses Lisp lists as the basis for nearly
all its data structures, Maple uses hash tables, for example.

6

3.1 Integers

Computer hardware provides storage of, and arithmetic on, integers up to
some fixed size, typically 231 − 1. This size limit assumes a word size of 32
bits, where by “word” I mean here the largest amount of data that can be
processed in one step. Computation with integers having this size limit is
fast.

However, this limit is (much) too small for CA, because simple compu-
tations with expressions involving small numbers can easily produce very
large numbers. Consider expanding (x+1)100. The largest coefficient in the
binomial expansion is in the middle, and is 100C50 or

(
100
50

)
. This is

100!
50!50!

≈ 100100

50505050

(by a crude application of Stirling’s asymptotic formula for the factorial),
which evaluates to

(2× 50)100

50100
= 2100 ≈ 1030,

i.e. a number with about 30 decimal digits.
Hence it is necessary to use a multi-word representation, in which the

maximum capacity of each word (plus 1) corresponds to the base or radix.
Arithmetic in this representation must be performed word-by-word, analo-
gously to performing decimal arithmetic by hand.

For flexibility of memory management, the words of a multi-word integer
will not (generally) be contiguous as in an array, but will form a linked list ,
whose elements can each be anywhere in memory, thus:-

-- -LIST: -

-ARRAY:

This means that each component or memory cell must be more complicated
than just a word of data, and must contain both a data component and a
pointer to the next cell. In practice, a list cell will probably also contain a
tag component that indicates the type of data in the cell, thus:-

7

pointer

tag

DATA

-- pointer

tag

DATA

-

As a very practical side remark, the pointer might occupy one (long)
word of 32 bits and the integer data component might share a second (long)
word with the tag, thereby giving an integer radix of perhaps 24 bits. An
integer smaller than this radix is called a small integer, and can be processed
essentially in hardware with no list handling overhead, i.e. fast. REDUCE
uses such small integers explicitly wherever (a) it can, and (b) speed is
important, e.g. in some parts of the factorizer.

Philosophical side remark

Is the need for this non-binary arithmetic fundamental, or a consequence
of current computer architectures? In particular, one could imagine an
architecture without registers, in which arithmetic is performed directly in
main memory, and in which bits can be randomly accessed. But the problem
is that the bit-addressing overhead would grossly dominate the bit-data
content. Therefore, I conjecture that it will always be desirable to manage
memory in terms of groups of bits (which I will now loosely call “words”).

In particular, flexible dynamic memory allocation will probably always
function at the word level. Therefore, integers too large to fit into a single
word will always need to be represented by a sequence of words, which
implies using arithmetic with a radix > 2 (as well as binary arithmetic
within each word). Binary arithmetic is particularly simple and efficient, so
the larger the radix (within which binary arithmetic can be used) the better.

3.2 Other discrete number domains

Now that we have established a representation for the integers, it is easy
to represent both Gaussian (i.e. complex) integers and rationals as pairs of
integers, which in a Lisp-cell representation might look like this:-

8

J
J
Ĵ

denominator
or

imaginary part

�
Rational: numerator

or or
Gaussian: real part

?

Similarly, a complex rational is just a pair of rationals.

3.3 Rounded representation of reals

Conventional computing languages support an approximate representation
of real numbers within some specified limits using a fixed number of bits,
typically either one or two (long) words, i.e. 32 or 64 bits. In order to cap-
ture best the continuous and infinite nature of the set of real numbers the
representation, called floating-point, uses a fixed relative accuracy, which
corresponds to a fixed number of significant digits in a positional represen-
tation. Usually binary representation is used. A fixed number of the leading
(i.e. highest order) bits are stored together with a power of 2 representing
the overall magnitude, thus:-

R = I1 × 2I2 .

Thus the representation involves two (small) integers: the maximum size of
I1 determines the acccuracy of the representation and the maximum size of
I2 determines the maximum magnitude range.

This representation is often supported by the hardware, in which case
it is fast – probably as fast as integer arithmetic. Even if it is implemented
in software it is still fairly fast because it involves only bit manipulations of
one or two words.

CA systems normally support this “native” real representation (RE-
DUCE calls it “float mode” internally), but they also support an arbitrary
range, arbitrary precision version in which the two integers are the arbitrary
size integers discussed above (and the exponent base is probably 10 – RE-
DUCE calls this “bigfloat mode” internally). REDUCE (since version 3.4)
switches automatically between the two representations depending on the
required accuracy. Hence rounded real representation is essentially either a
single machine float or a pair of integers (again)!

[Note that in practice it is necessary to tag the various possible number-
pair representations to indicate what kinds of numbers they represent.]

9

3.4 Scalar expression representation

An algebraic expression is a heterogeneous object (its components are not all
of the same type) and so an appropriately flexible data structure is necessary
to represent it. Notice that even the nature of a fixed component of a
polynomial is not fixed, because we want to allow polynomial coefficients to
be numbers from any of the domains considered above or perhaps purely
symbolic, and we want to allow polynomial variables to be either identifiers
(variable names) or functional forms. An array would be too rigid. I will
consider one possibility, a representation based on a (simply) linked list,
esentially as used by REDUCE.

In this representation it is necessary only to establish a convention that
fixes the meaning of each pointer in the structure, and the type of data
pointed to need not be rigidly fixed. The physical pointer structure should
match the mathematical data structure.

The structure of a univariate polynomial can be defined as follows, where
“|” separates alternatives:-

poly = term + poly | number | nothing
term = coef× power

power = variabledegree

degree = positive integer

where “number” is any element of any allowed number domain, and

coef = number
variable = identifier

Note that the definition of poly(nomial) is recursive (i.e. poly is defined
partly in terms of itself), and hence it must have a non-recursive alternative
to terminate the recursion. The alternative of “nothing” is included so that
0 (the zero polynomial) need not be explicitly represented.

The mathematical structure translates immediately into the following
list structure:-

10

?

-

?

-

?

-

- - -· · ·

coef

degree

variable

poly

term

power

? ?

Each term has the same structure; I have shown only one term explicitly.
The “· · ·” at the poly level corresponds to the recursion in the definition.
This structure is a singly-linked list because there is only one path from the
root (poly) to any other point, and no way back! (It is also a binary tree,
since there are 2 links from each node.)

Note that this structure implies an ordering of the terms within a poly-
nomial, indicated by the arrows at the poly level. Normally this ordering
will be by decreasing degree. The components “term” and “poly” on the
right of the recursive definition of poly are called respectively the leading
term and reductum. The coefficient of the leading term is called the leading
coefficient.

It is easy to replace elements of this general polynomial structure by other
structures. Functional forms can be included by changing the definition of
variable to

variable = identifier | functional form

and a reasonable list representation of a functional form is

?

-- - -· · ·functional
form

? ?

function
identifier

first
argument

last
argument

11

Similarly, the definition of the polynomial coefficients can be changed to

coef = number | poly

which adds another form of recursion to the definition of polynomial. The
polynomials appearing at different levels can involve different variables,
thereby providing a representation for multivariate polynomials. Normally,
each variable in a multivariate polynomial representation would appear at
only one logical level in the structure. For example, this representation is
equivalent to writing the following bivariate polynomial in the form

5x2(y2 + 1) + 3x(y3 + 2y) + 7(y + 3).

The variable appearing at the “top level” in the structure, in this example
x, is called the main variable.

A rational function is represented as a pair of polynomials, where each
polynomial may have the general form discussed above, in exactly the same
way that a rational number is represented as a pair of integers.

Note that most of the representations defined so far are not unique, an
important topic to which we will return later.

3.5 Representation of structured (non-scalar) data

The elements of a non-scalar data type can be represented as above. Most of
the structured data types discussed earlier could reasonably be represented
as either linked lists or arrays, and for matrices, vectors and tensors repre-
sentation as arrays might seem most natural. However, the representation
needs to carry a tag to identify its type, so the structure is not completely
homogeneous even at the top level. REDUCE uses the following list repre-
sentation for matrices. The structure is a list of rows preceded by a tag (the
identifier MAT), where each row is a list of row elements, thus:-

12

?

-

?

-

?

--

- -· · ·

MAT (tag)

first
row

matrix

? ?

...
first

row element

last
row

last
row element

· · ·

The disadvantage of this representation is that elements cannot be randomly
accessed. When REDUCE needs to access a matrix element by its indices
(subscripts) it does so by stepping sequentially through the structure count-
ing elements as it goes! But fortunately many matrix operations can be
performed sequentially on the elements.

4 Sparse and dense representations

This topic concerns the representation of elements of a data structure that
are zero – whether they should be represented explicitly or simply omitted.
It applies to structures such as matrices and polynomials, and can be im-
portant in numerical computations with large matrices, but I will consider
only polynomials here.

The degree of a polynomial is the maximum of the degrees of its indi-
vidual terms, and a constant term is considered to have degree zero. (Occa-
sionally it is necessary to define the degree of the special constant zero to be
−∞, but for present purposes of representation we will regard zero the same
as any other constant, and give it a degree of zero.) A dense polynomial
of a particular degree is one in which all possible terms are present, i.e. the
coefficients of all terms of degree not greater than the degree of the polyno-
mial are non-zero; if a polynomial is not dense then it is sparse. However,
in common usage dense would be taken to mean that most of the possible
terms were present, whereas sparse would be taken to mean that very few

13

of the possible terms were present.
A sparse representation of a polynomial is one in which only the terms

with non-zero coefficients are represented explicitly, as in conventional math-
ematical notation, whereas a dense representation is one in which all terms
with degree less than or equal to that of the polynomial are represented
explicitly, e.g.

sparse: 25x5 + 1
dense: 25x5 + 0x4 + 0x3 + 0x2 + 0x + 1

When using a sparse representation it is necessary to store for each term
both its coefficient and its degree, whereas for a dense representation the
degree can be inferred from structural information. For example, the above
dense representation could be encoded simply as the list of coefficients

{1, 0, 0, 0, 0, 25}

where the position of the coefficient in the list, numbered from position 0
at its head, implicitly encodes the degree of the term. By contrast, a sparse
representation would need to be encoded as a list of coefficient-degree pairs,
such as

{ {25, 5}, {1, 0} }

Note that now the ordering of the pairs within the list is irrelevant (at
least as far as ambiguity is concerned, but see the discussion of canonical
representations below, although the ordering of the elements of each pair
is still significant). Of course, it is also necessary to store the name of the
polynomial variable somewhere, but this has no fundamental bearing on the
distinction between sparse and dense representation.

I have illustrated the above discussion with a univariate polynomial (i.e.
one with a single unknown), but it applies also to multivariate polynomials,
although then as we have already seen the details of possible representations
become more complicated. A sparse or dense representation is obviously
most efficient respectively for a sparse or dense polynomial. In practice, for
univariate polynomials it usually makes little difference, but multivariate
polynomials tend to be sparse, which therefore favours a sparse representa-
tion as the primary representation in a computer algebra system that will be
mainly handling multivariate polynomials. For some algebraic algorithms
one or other representation is significantly more efficient, but for others it
makes little difference.

14

REDUCE normally uses a sparse representation, for which the list rep-
resentation presented above is ideally suited, although it uses a different
dense representation in some special situations such as for Gröbner basis
computations (to be discussed in the second part of this course). A dense
representation is also called distributed or distributive.

5 Normal and canonical representations; simplifi-
cation

I remarked that the representations presented earlier were not defined so as
to be unique. For example, the polynomial representations could be either
dense or sparse, and we did not define the term ordering to be used. The
latter ambiguity corresponds to the two textual representations

x + 1 and 1 + x.

Although these two expressions are mathematically equal, their textual rep-
resentations as above are different.

A representation is called canonical if only one representation is used
for all mathematically equal expressions. The process of converting a given
expression into the correct internal representation is called simplification
and is performed by a simplifier. Theoretically, a simplifier is a function
or mapping; in a computer algebra system a simplifier is a section of code
(probably a large section consisting of a hierarchy of simplification proce-
dures). Simplification in REDUCE is performed automatically under the
control of global switches, whereas in most other CA systems it is not and
the user must explicitly call the desired simplification functions.

The advantage of using a canonical representation is that two expressions
can be compared for equality by simply comparing the data structures that
represent them, without using any mathematics at all. However, it is not
possible to design a canonical simplifier in all cases of interest: for example,
the infamous “constants problem” of how to check for algebraic relations
among transcendental field extensions remains unsolved. [For further details
see Davenport et al. and the first chapter in Buchberger et al.]

A weaker, but still very useful, representation is one that is not neces-
sarily canonical, but in which an expression that is equal to zero is always
represented canonically. Such a representation and a simplifier producing
it are called normal. Obviously, a canonical representation is necessarily
normal, but not vice versa.

15

[Referring forward to the mathematical structures to be described next
week, it is necessary to be working in an algebra that is (at least) an ad-
ditive monoid (which in practice in CA one always is) in order to be able
to define a normal representation. In such a monoid the only distinguished
element is the zero and, moreover, in a ring or field it is not permissible to
divide by zero, so it is always necessary to be able to reliably test whether
a value is zero. A normal representation on an additive group gives an al-
gorithm for testing equality by subtracting, so a canonical representation is
not necessary, although it allows more efficient equality testing.]

Simplifying the result of an algebraic calculation is an essential part of
the calculation; in fact, the calculation is the simplification of the data struc-
ture built using the various operators and functions as “constructors”. One
essential aim of simplification is to make full use of the unambiguous rules
for performing arithmetic on numbers. By this, I mean that a simplification
of the form

2 + 3 → 5

should always be performed. This implies that polynomial terms with the
same degrees should be grouped together and the resulting coefficients sim-
plified, and any operation called simplification can be expected to do this.
This operation alone, together with the requirement that a polynomial all
of whose coefficients are zero is represented by the number 0, is sufficient to
give a normal simplifier on univariate polynomials over the integers, which
is probably the simplest non-trivial domain of algebraic objects. This is
because a polynomial is zero if and only if all its coefficients are zero. The
nature of a polynomial simplifier will depend on whether a sparse or dense
representation is used. If a sparse representation is used then the zero poly-
nomial is automatically represented canonically (as nothing).

Note that the distinction between nothing and the number 0 can be
important. REDUCE represents the zero polynomial as the Lisp value NIL,
which is distinct from the number 0, and it is necessary for the simplifier
to convert between NIL and 0 when appropriate, depending on whether the
underlying domain is considered to be numbers or polynomials.

To make a polynomial representation canonical it is necessary to spec-
ify a dense or sparse representation (we will assume sparse unless dense is
explicitly stated), and to sort the terms using a specified ordering, as will
be discussed in the next section. It is also necessary to collect terms in
some way, the simplest being to multiplying out all products and powers
of expressions, which can then either be left ungrouped or regrouped into

16

the recursive multivariate representation used by REDUCE. Both represen-
tations are canonical. However, this expanded representation may be very
inefficient or inconvenient – for example, (x + 1)10 is a very much more suc-
cinct representation of a degree-10 polynomial than is its expanded form,
and it may be convenient to perform some parts of a calculation using a
non-canonical representation. An important alternative polynomial repre-
sentation (which is provided by REDUCE, for example) is in a form that is
fully factorized over the (possibly Gaussian or modular) integers, which is
also a canonical representation.

The canonical representation for a rational number is a pair of integers,
called the numerator and denominator, such that the denominator is strictly
positive and the numerator and denominator have no common factor. If
integers and rationals are to be mixed in one canonical representation then
it is necessary to either give all integers an explicit denominator of 1, or
to replace all rational representations having a denominator of 1 by integer
representations. REDUCE does the latter.

The generalization of this to a canonical representation for rational ex-
pressions is as a pair of polynomials, such that the leading term of the
denominator, in whatever polynomial representation is in use, is strictly
positive, and again any common factor is cancelled between numerator and
denominator. REDUCE always ensures that the denominator is “positive”,
but may not cancel all common factors (unless the switch GCD is turned on,
which by default it is not). Hence, by default the REDUCE representa-
tion of rational expressions is not strictly canonical, although it is normal,
because clearly if any factor of the numerator vanishes then so does the
whole numerator and every value trivially divides 0 so that the result sim-
plifies to 0/1, which is then simplified to the zero polynomial. The canonical
representation for an expression involving sums (or differences) of rational
expressions (and numbers) puts them over a common denominator, and
thereby produces a single rational expression.

Simplification of multivalued functions (of which the simplest example is
probably square roots) is a very difficult problem domain that has not been
satisfactorily resolved.

6 Term ordering: lexicographic, total degree

Beware that the literature on this subject is at best confusing, and at worst
inconsistent!

17

Whilst a CA system must choose a fixed polynomial term ordering to use
at any particular time, it clearly could be either ascending or descending,
which proves by counter-example that generally there is no unique choice
of canonical representation. The terms of a univariate polynomial can be
ordered only by their degree, and usually descending degree order is used
because it is found to be more convenient.

For multinomials (multivariate polynomials) is is not sufficient to order
terms by degree because there is no longer a unique degree, and they must
also be ordered by the variables in them – for example, it must be possible
to distinguish between x2y and xy2. Such terms have a degree with respect
to each variable, and also a total degree, which is the sum of the degrees
with respect to each variable.

The most obvious variable ordering is alphabetic. It is conventional to
sort “a” before “z”, and therefore to regard “a” as “more principal” than
“z”, which implies the ordering

a > b > c > . . . > x > y > z.

(If non-alphabetic characters are allowed then this ordering must be general-
ized, e.g. to follow the character encoding scheme, which on microcomputers
is normally ASCII. Generalised alphabetic ordering then implies ordering by
inverse ASCII code.) If multi-character variable identifiers are used, as is
common (and generally good practice) in computing, then the variable or-
dering can be on each successive character of the identifier, as used in a
dictionary. CA systems have a default variable ordering, but it is normally
possible to specify any desired ordering of particular variables instead, which
would probably also order them before all default-ordered variables. We will
assume some fixed ordering of variable identifiers – it does not matter pre-
cisely what it is.

It is now necessary to decide which ordering to apply first to terms:
ordering first by variable identifier and second by degree is usually called
lexicographic ordering ; ordering first by total degree and secondly by variable
identifier is usually called total degree ordering. Here is an example

lexicographic: x2 + 2xy + x + y2 + y + 1
total degree: (x2 + 2xy + y2) + (x + y) + 1,

where I have used alphabetic variable ordering. Note that it is conventional
to write polynomial terms in decreasing order.

18

Lexicographic ordering is so called because it corresponds (once again) to
dictionary ordering in which the juxtaposition within a “word” implies mul-
tiplication, powers are written as repeated products, and a missing variable
is equivalent to a factor of 1 and sorts after all variables, thus

a > b > c > . . . > x > y > z > 1 (meaning no variable).

This ordering then implies (by applying it recursively) that

xx > xy > x > yy > y > 1,

exactly as in a dictionary (apart from the 1) and exactly as in the lexico-
graphically ordered polynomial above.

The term “inverse lexicographic” is also used in the literature, which
simply means order lexicographically and then reverse. For a univariate
polynomial this just sorts by increasing degree. For the above bivariate
polynomial it gives

inverse lexicographic: 1 + y + y2 + x + 2xy + x2

total degree then inv lex: (y2 + 2xy + x2) + (y + x) + 1.

Inverse lexicographic ordering alone is not very convenient because it in-
volves increasing degree as for univariate polynomials, and total degree then
inv lex is identical to total degree then lex with the variable ordering y > x.
However, for polynomials with three or more variables total degree then
inverse lexicographic ordering is not related to total degree then lexico-
graphic ordering by simply changing the variable-name part of the ordering,
and can have some advantages. For example, the homogeneous polynomial
(x + y + z)3 when ordered using the lexicographic ordering x > y > z (the
ordering of 1 is irrelevant here) has the form

x3 + 3x2y + 3x2z + 3xy2 + 6xyz + 3xz2 + y3 + 3y2z + 3yz2 + z3,

whereas using the lexicographic ordering z > y > x and then reversing gives
the form

x3 + 3x2y + 3xy2 + y3 + 3x2z + 6xyz + 3y2z + 3xz2 + 3yz2 + z3,

which is different!
The details of polynomial representations become particularly important

when considering algorithms such as the Buchberger algorithm for construct-
ing a Gröbner basis for a set of polynomials, when the precise choice of term

19

ordering can have a huge effect on the running time of the algorithm. How-
ever, in general it is not known how to choose the best ordering. Note that
frequently in recent literature (and in the REDUCE Gröbner basis pack-
age) “lexicographic” is abbreviated to lex, “total degree then lexicographic”
is referred to as gradlex, and “total degree then inverse lexicographic” (as
originally used by Buchberger) is referred to as revgradlex.

The lexicographic ordering corresponds closely to the recursive repre-
sentation of multivariate polynomials that we discussed earlier, because it
corresponds to picking each variable in turn as a main variable and writing
the polynomial as a univariate polynomial with respect to that variable. If
the terms of the above bivariate polynomial example are grouped, without
changing their order, it has the recursive form

x2 + (2y + 1)x + (y2 + y + 1),

i.e. a polynomial in x whose coefficients are polynomials in y. This might
be called a lexicographic recursive representation.

Functional forms can easily be incorporated into the ordering scheme, for
example, by ordering them by function identifier, and ordering all functional
forms before all simple variables (as in REDUCE).

7 Introduction to complexity of algorithms

An algorithm is a description of a sequence of operations that are neces-
sary to perform some task. Usually, one algorithm can perform a class of
related tasks, where each task in the class is specified by some set of data
or parameters – for example, a single algorithm might add any pair of in-
tegers, where the two integers themselves are the parameters. The number
of operations performed by an algorithm is related to the time that will be
required, and is therefore called the time complexity of the algorithm. The
amount of intermediate data generated internally by an algorithm is related
to the amount of space that will be required, and is therefore called the
space complexity of the algorithm. Generally, these complexities depend on
the parameters. Unqualified use of the term “complexity” implies the time
complexity, because this is usually more significant.

There is usually more than one algorithm to perform a particular task,
in which case an analysis of complexities gives some guidance as to which
algorithm is better. However, the theoretical complexity of an algorithm is

20

not the same as its actual running time or memory requirement when imple-
mented on a particular computer, for several reasons. Different implementa-
tions of the same algorithm on the same computer can differ significantly in
their performance (depending, for example, on the implementation language
used, the competence of the programmer, etc), so let us assume the best pos-
sible implementation. Different computers run at very different speeds, so
absolute running times are not interesting when comparing algorithms or
implementations. More significantly, different computers perform different
operations at (relatively) different speeds; for example, one processor may
take (relatively) much longer than another to multiply rather than to add,
or to perform floating-point rather than integer arithmetic (especially if it
does not have floating-point hardware support).

When performing theoretical time-complexity analysis of an algorithm
it is usually assumed (probably without explicitly being stated) that there
is a set of basic operations that all take the same length of time to per-
form, and the analysis is in terms of the number of these basic operations.
For example, it might be decided that integer addition and subtraction take
relatively no time at all, and that integer multiplication and division take
about the same (much longer) time, and so the complexity of a problem
involving only integer arithmetic might be given as the total number of mul-
tiplications and divisions, without distinguishing them. These basic integer
operations would normally be for single-word integers, in terms of which the
complexity of performing arithmetic on the arbitrary size multi-word integer
representations that we discussed above can be analyzed, as we will do later
in this course.

Even when a set of basic operations are considered all to take equivalent
lengths of time, analysing the complexity of a non-trivial algorithm can still
be very difficult, and there are many important algorithms for which the
complexity has not been fully analysed. Usually, therefore, the worst case
is analysed, which sets an upper bound on the complexity, although more
detailed statistical analyses could be performed. Moreover, the analysis is
usually asymptotic with respect to the parameters, meaning that it gives
only the general behaviour of the complexity with respect to the complexity
or size of the input data as the latter becomes infinitely large. This is
reasonable because the complexity only really matters when it is large. Such
asymptotic analysis discards constants of proportionality, on the grounds
that an2 is infinitely greater than bn as n →∞ regardless of the values of a
and b, so the latter are not interesting. However, for small n the values of a
and b can be very significant, and it may well be that problems of practical

21

interest do not involve very large values of n.
Hence, whilst theoretical complexity analysis is useful, it must be inter-

preted with care, and is not a substitute for careful experimental analysis
of a careful implementation, which may give a very different picture. It is
(partly) for this reason that the algorithms that have the best theoretical
asymptotic behaviour are not always those that are actually implemented in
CA systems! The complexity of an algorithm is also referred to as its cost,
because they are related if one is actually paying for computing facilities!

Let us finish this section by putting the above remarks about asymptotic
analysis on a mathematical basis. The symbol “O”, meaning “of the order
of”, is used a lot in asymptotics, and roughly means “take the dominant
behaviour as something tends to infinity, and ignore constants”. More pre-
cisely, let f and g be real-valued functions defined on some ordered set S.
Then we say that

• f is dominated by g, written f � g or f = O(g), if there exists a
positive real number c and y ∈ S such that |f(x)| ≤ c|g(x)| for all
x ∈ S, x ≥ y, or

• f and g are codominant, written f ∼ g, if both f � g and g � f .

As an example, suppose an algorithm requires k operations, each of which
is executed in time cin

mi , 1 ≤ i ≤ k, where n is some parameter such as the
size of the input data. Then the time complexity of the whole algorithm is
O(nm), where m is the maximum of the mi, 1 ≤ i ≤ k, (i.e. m = maxk

i=1 mi).
If the time complexity of an algorithm is dominated by some fixed power

of the input data size n (as in the above example), which implies that the
actual complexity is (at worst) a polynomial function of n, then it is said to
be a polynomial-time algorithm. Otherwise it is said to be an exponential-
time algorithm, meaning that it has a complexity of the form O(mn) for
some positive real number m. A problem is “easy” if it can be solved using
a polynomial-time algorithm, whereas the time required for an exponential-
time algorithm increases so rapidly with the input data size that relatively
small problems can be unsolvable in practice, and will remain so! Note that

O(log n) ≺ O(n) ≺ O(n log n) ≺ O(n2) ≺ O(mn)∀m,

where here “≺” means “is strictly dominated by”.

22

8 Exercises

The order of the questions follows that of the notes. Each week, answers to
the question(s) marked “(** Assessed **)” should be handed in to me by
the end of the week after the week in which the notes were handed out.

1. Check the estimate of 100C50 given in the notes by computing it either
exactly or at least more accurately. It is trivial to compute it using
a CA system (or Lisp). In a conventional language it cannot be com-
puted using a standard (32-bit) integer representation (why?), but it
should be possible to compute it using a single-precision (32-bit) real
representation, although some care will be needed in the algorithm.
You may also be able to do it on a calculator.

2. Give the complete general (recursive) definition of a scalar expression,
by combining the “syntax” rules given in the notes on scalar expression
representation.

3. (** Assessed **)
Draw structure diagrams to show how the following expressions can
be represented using the full sparse recursive list representation for
general rational expressions described in the notes:

1. 1
2x2 + 3

2x + 1 (as a polynomial with rational coefficients);

2. x2+3x+2
2 (as a rational expression with integer coefficients);

3. (y+1)x2 +(3y)x+2 as a multivariate polynomial with x as main
variable;

4. x+1
y+1 .

4. Describe the simplest possible list representation for vectors, and out-
line an algorithm for adding two vectors in this representation that is
explicitly sequential, i.e. steps sequentially through the list structure.
Using this as a sub-algorithm, outline an algorithm for adding two
matrices in the representation described in the notes, which again is
explicitly sequential. [You may assume that the objects being added
are conformable, i.e. have the same size.]

5. (** Assessed **)
A trigonometric rational expression in x may be defined to be a quo-
tient of two trigonometric polynomials in x, and a trigonometric poly-
nomial in x may be defined as a multivariate polynomial in which

23

the variables may have only the form trig(kx), where “trig” represents
any one of the standard trigonometric functions {sin, cos, tan, csc (=
cosec), sec, cot}, k may be any integer, and x may be any single fixed
variable identifier. For example,

2 sin(2x) + 3 tan(x)
cos3(3x)

.

Specify a canonical representation (or simplification algorithm) for
such trigonometric rational expressions, assuming that there already
exists a canonical representation for general rational expressions, as
described in the notes. The point is to take account of all the trigono-
metric identities that permit different representations of expressions
that are equivalent, such as

cos(2x) = 2 cos2(x)− 1 = 1− 2 sin2(x).

6. Write the polynomial (x + y + 1)2 in distributed (i.e. fully expanded)
form using each of the term orderings:

1. lexicographic (then degree);
2. total degree (then lexicographic).

In both cases, use the variable ordering x before y, i.e. x > y, and
write the terms in decreasing order.

If you are feeling really enthusiastic, try writing out (x + y + z + 1)2

and more complicated polynomials in lexicographic, total degree, and
inverse lexicographic orderings. [You are allowed to use a CA sys-
tem, although you should then at least check that you understand
the result. For example, REDUCE 3.4 supports all three orderings
via its GROEBNER package, which will need to be explicitly loaded
(“LOAD PACKAGE GROEBNER;”). Then select a term ordering (“TORDER
LEX;”, the default, “TORDER GRADLEX;” or “TORDER REVGRADLEX;”),
and compute the Gröbner basis of a single polynomial (“GROEBNER
{POLY};”). Derive (2.02) appears to offer only lexicographic ordering,
although one can choose the variable ordering.]

7. Give a precise meaning to the assertion that

O(log n) ≺ O(n) ≺ O(n log n) ≺ O(n2) ≺ O(mn)∀m,

and then prove the assertion.

24

