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2: Introduction to Abstract Algebra

The notes this week are based on several chapters of the very nice book
by Lipson, which now unfortunately appears to be out of print. The first two
sections of these notes provide a rapid summary of some of the basic notions
of pure mathematics, as a reminder and in order to fix the notation and
nomenclature that I will use. Subsequent sections summarize the properties
of the computational domains of main interest for computer algebra. We
will return in subsequent weeks to consider in more concrete detail several
of the topics introduced this week.

1 Sets, relations and functions

1.1 Some fundamental sets

Z = {0,±1,±2, . . .} is the set of integers.
Q = {m/n | m,n ∈ Z;n 6= 0} is the set of rational numbers.
R is the set of real numbers.
C = {a+ ib | a, b ∈ R} is the set of complex numbers (i =

√
−1).

Some important subsets of these are the following:
Z+ = {a ∈ Z | a > 0} is the set of positive integers – the positive rationals
and reals are denoted similarly.
N = {a ∈ Z | a ≥ 0} is the set of natural numbers.1

Note that Z+ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C (with strict inclusions).

1It could be argued that 0 is not a natural number, and some authors call Z+
the

natural numbers, but in computing it is conventional and convenient to count from 0, and
it turns out that in our present context N is more natural than Z+

.
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The Cartesian product A × B of sets A and B is the set of all ordered
pairs thus

A×B = {(a, b) | a ∈ A, b ∈ B}.
Examples: R× R = R2 is the Cartesian plane;
{0, 1} × {a, b, c} = {(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)}.

1.2 Equivalence relations

A relation “≡” between a set A and a set B is the subset of A×B defined
by {(a, b) ∈ A×B | a ≡ b}. A relation ≡ on a set A (i.e. between A and A)
is an equivalence relation if ∀a, b, c ∈ A it is

1. Reflexive: a ≡ a

2. Symmetric: a ≡ b ⇒ b ≡ a

3. Transitive: a ≡ b and b ≡ c ⇒ a ≡ c

Examples: Equality (=) is an equivalence (but inequality (6=) is not, because
(1) and (3) are not satisfied).

The subset [a]≡ = {b ∈ A | a ≡ b} is called the ≡-equivalence class of
a. The set of all ≡-equivalence classes in A is denoted A/≡ = {[a] | a ∈ A}
and is called either the quotient set of A by ≡ or A modulo ≡ (abbreviated
to A mod ≡).
Lemma 1

[a] = [b] ⇒ a ≡ b

Proof is an exercise! 2

1.2.1 Equivalence mod m on Z

For m a positive integer, define

a = b (mod m) or a ≡m b ⇐⇒ a− b = km for some k ∈ Z.

Thus [a]m = {a+ km | k ∈ Z. For example, with m = 3,

[0]3 = {. . . ,−6,−3, 0, 3, 6, . . .},
[1]3 = {. . . ,−5,−2, 1, 4, 7, . . .},
[2]3 = {. . . ,−4,−1, 2, 5, 8, . . .},

and hence [0]3∪[1]3∪[2]3 = Z. Generally, Z/≡m = {[0]m, [1]m, . . . , [m−1]m}.
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1.2.2 Rational numbers

Let X = Z × (Z − {0}) = {(a, b) | a, b ∈ Z; b 6= 0}, and define the relation
∼ ⊆ X by (a, b) ∼ (c, d) ⇐⇒ ad = bc. Then [(a, b)]∼ represents all
equivalent rational numbers of the form a/b = (ka)/(kb)∀k.

Philosophy : The set A/≡ is simpler than A because it represents subsets
of elements of A as single elements of A/≡. Frequently A is infinite but
A/≡ is finite.

1.2.3 Partial and total orderings

A relation ≤ on a set P is a partial order if ∀x, y ∈ P it is

1. Reflexive: x ≤ x

2. Antisymmetric: x ≤ y and y ≤ x ⇒ x = y

3. Transitive: x ≤ y and y ≤ z ⇒ x ≤ z

A set P with a partial order ≤ is called a partially ordered set. It is totally
ordered if all elements x, y ∈ P satisfy either x ≤ y or y ≤ x, i.e. x 6≤ y ⇒
y ≤ x.

Examples: Z is totally ordered by the usual meaning of ≤; the positive
integers Z+ are partially ordered by divisibility ( | ), but not totally ordered
because 2 - 3 ; 3 | 2.

1.3 Functions or maps

&%
'$

&%
'$
-f

a ∈ A b ∈ B

A = domain of f B = codomain of f

r r

If f : A → B is a function or map then it must map a 7→ b = f(a) for all
a ∈ A, i.e. f must assign a unique image or value b ∈ B to every a ∈ A.
A function f : A → B defines a relation on A × B, which is its graph. If
A′ ⊂ A then f ′ : A′ → B is a partial function on A (e.g.

√
: R+ → R, where

R+ = {x ∈ R | x ≥ 0} is the set of non-negative real numbers).
If f, g : A→ B then f = g ⇐⇒ f(a) = g(a)∀a ∈ A.
The function f : A→ B is:
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1. injective or one-to-one if a 6= b ⇒ f(a) 6= f(b) (or if f(a) = f(b) ⇒
a = b);

2. surjective or onto if ∀b ∈ B, b = f(a) for some a ∈ A;

3. bijective if it is both injective and surjective.

The image of S ⊆ A under f : A→ B is

f(S) = {b ∈ B | b = f(s) for some s ∈ S}.

f(A) ⊆ B is called the image of f , Im f , or the range of f . The inverse
image of T ⊆ B under f : A→ B is

f−1(T ) = {a ∈ A | f(a) ∈ T}.

The composition of f : A→ B and g : B → C is denoted g ◦ f : A→ C
and defined by g ◦ f (a) = g(f(a)), which means apply the functions from
right to left. Generally function composition does not commute! Function
composition is sometimes displayed in a mapping diagram of the form

A C

B

?
���

���
��*

-h

f g

which means that h : A → C is the composition of f : A → B with
g : B → C, i.e. h = g ◦ f . (Note the order!)

1.3.1 Inverse functions

f : A→ B is

1. left invertible if ∃g : B → A such that g ◦ f = 1A (where 1A is the
identity function on A);

2. right invertible if ∃h : B → A such that f ◦ h = 1B;

3. (two-sided) invertible is it is both left and right invertible.

Theorem 2 If f : A→ B has a left inverse g : B → A and a right inverse
h : B → A then g = h.
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This unique two-sided inverse of f is denoted f−1.

Theorem 3

1. f is left invertible ⇐⇒ f is injective.

2. f is right invertible ⇐⇒ f is surjective.

Corollary 4 f is (two-sided) invertible ⇐⇒ f is bijective.

1.3.2 Functions and equivalence relations

An equivalence relation ≡ on a set A naturally induces a function on A,
ν : A→ A/≡, a 7→ [a]≡, called the natural map of ≡.

Conversely, any function on A naturally induces an equivalence relation
on A, a ≡f b ⇐⇒ f(a) = f(b), called the kernel relation of f .

1.3.3 Decomposition theorem for functions

Any function f : A → B can be expressed as the composition ψ ◦ ν of a
surjection ν and an injection ψ:

A B

A/≡f

?
��

���
���*

-f

ν :
a 7→ [a] ψ : [a] 7→ f(a)

Corollary 5 f is surjective ⇒ ψ is bijective.

2 The integers

As we have seen, the integers underlie all of computer algebra, and much of
abstract algebra is concerned with generalizing properties of the integers. Z,
Q and R share the same behaviour under the arithmetic operations +, − and
×, and are totally ordered (by ≤), so what distinguishes Z as fundamental?

Definition 1 A totally ordered set [P ;≤] is well-ordered (by ≤) if every
nonempty subset of P has a least element.

Then the natural numbers N = {a ∈ Z | a ≥ 0} are well-ordered by ≤. This
leads to
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Theorem 6 (Induction property of N) If S ⊆ N satisfies

1. 0 ∈ S

2. n ∈ S ⇒ n+ 1 ∈ S

then S = N.

This is the basis of proof by induction and definition by recursion.

2.1 Integer division

For a,m ∈ Z,m 6= 0, there exists a unique quotient q and remainder r such
that

a = mq + r (0 ≤ r < |m|).

This relation is important, so here are some examples, with the elements in
the same order as in the general statement above in each case:

7 = 3.2 + 1 (0 ≤ 1 < |3|);

3 = 7.0 + 3 (0 ≤ 3 < |7|);

−7 = 3.(−2) + 2 (0 ≤ 2 < |3|);

3 = (−7).0 + 3 (0 ≤ 3 < |−7|).

Remark to computer programmers: The above is related to, but not
the same as, integer division in most programming languages, in which in-
teger division usually truncates toward zero, so that for example q = a/m in
FORTRAN is defined so that

a = mq + r (0 ≤ sign(a).r < |m|).

In the division relation, r is called the remainder mod m of a and denoted
a mod m or rm(a). If rm(a) = 0 then m divides a, written m | a. Thus

m | a ⇐⇒ a = km for some k ∈ Z.

Examples: 3 | 6, 3 | −3, 3 - 7.
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2.2 Equivalence and remainders mod m

a ≡m b ⇐⇒ m | (a− b) ⇐⇒ rm(a− b) = 0.

Lemma 7 Let m ∈ Z+. Then

1. a ≡m rm(a)

2. a = rm(a) ⇐⇒ 0 ≤ a < m

3. a ≡m b ⇐⇒ rm(a) = rm(b)

Define the “integers mod m” to be Zm = {0, 1, . . . ,m− 1}.

Theorem 8

1. For any [a] ∈ Z/≡m, [a] = [rm(a)];

2. For any a, b ∈ Zm, a 6= b ⇒ [a] 6= [b].

Hence each equivalence class [a] has a unique representative in Zm, namely
rm(a).

2.3 The Greatest Common Divisor (GCD)

Divisibility is not affected by sign, so consider only the natural numbers
N = {a ∈ Z | a ≥ 0}. The integer 12 is divisible by 1, 2, 3, 4, 6 and 12 ∈ N.
Similarly, 18 is divisible by 1, 2, 3, 6, 9 and 18 ∈ N. Thus 12 and 18 have
the common divisors 1, 2, 3, 6 ∈ N, and hence the greatest common divisor
6.

Generally, the gcd g ∈ N of a, b ∈ Z (not both 0) may be defined by

1. g | a and g | b (common divisor);

2. c | a and c | b ⇒ c | g (greatest common divisor).

Proposition 9 The (positive) gcd of a, b ∈ Z is unique.

Proof Suppose g and g′ are both gcds of a and b, then g | g′ since g′ is
a greatest common divisor and g is a common divisor. But symmetrically
g′ | g. Hence g′ = ±g, and since g, g′ > 0, g′ = g. 2

The unique (positive) gcd of a, b ∈ Z is denoted gcd(a, b).
The following theorem is important.
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Theorem 10 Let a, b ∈ N be not both zero. Then

gcd(a, b) = sa+ tb

for some s, t ∈ Z.

In words, a gcd can be expressed as a (Z-)linear combination, which is (I
think) not obvious.

Examples:
gcd(3, 7) = 1 = (−2).3 + 1.7

gcd(15, 9) = 3 = 2.15 + (−3).9

The following proof uses the well-orderedness of N and the division prop-
erty of Z.

Proof Let S(a, b) = {sa + tb | s, t ∈ Z}. We aim to show that gcd(a, b) ∈
S(a, b). Clearly a = 1a + 0b and b = 0a + 1b are both in S(a, b), so S(a, b)
contains (at least two) positive integers. Consider the subset of S(a, b)
consisting of its positive elements. This subset is also a subset of N and is
non-empty, hence by the well-orderedness of N it contains a least element.
Denote this least positive element of S(a, b) as g = sga+ tgb. Now we prove
that g = gcd(a, b).

Lemma 11 S(a, b) = (g) = {kg | k ∈ Z}.

Proof of lemma:

1. (g) ⊆ S(a, b), because any kg ∈ (g) satisfies kg = k(sga + tgb) =
(ksg)a+ (ktg)b ∈ S(a, b).

2. S(a, b) ⊆ (g), because for any x = sxa + txb ∈ S(a, b) we can use the
division property of Z to write

x = gq + r, (0 ≤ r < g).

Hence

r = x− gq

= (sxa+ txb)− (sga+ tgb)q
= (sx − sgq)a+ (tx − tgq)b ∈ S(a, b).

But then r = 0, because g was defined to be the least positive element
of S(a, b). Thus x = gq ∈ (g), so S(a, b) ⊆ (g).
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(g) ⊆ S(a, b) and S(a, b) ⊆ (g) ⇒ S(a, b) = (g). 2

To complete the proof of the theorem, note that a, b ∈ S(a, b) and so a, b ∈
(g) by the lemma, so g | a and g | b and therefore g is a common divisor of a
and b. Moreover, if c | a and c | b then (trivially) c | (g = sga+ tgb), so g is a
greatest common divisor, i.e. g = gcd(a, b). 2

Remark 1: Later we will consider algorithms to compute gcd(a, b), s and
t.

Remark 2: (g) is an ideal, actually a principal ideal, of the ring Z, to which
we will also return later.

2.4 Prime factorization

Definition 2 An integer n ≥ 2 is called prime if it has no proper divisors,
i.e. its only (positive) divisors are 1 and n. An integer n ≥ 2 that is not
prime is called composite.

Theorem 12 (Existence of prime factorization) Any integer n ≥ 2
can be expressed as a product of primes.

Lemma 13 Let p be a prime. Then

p | ab ⇒ p | a or p | b.

Corollary 14 p |
∏

i ai ⇒ p | ai for some i.

Definition 3 If gcd(a, b) = 1 then a and b are called relatively prime.

Theorem 15 (Uniqueness of prime factorization) Every integer n ≥
2 can be expressed as a product of primes uniquely apart from reordering of
factors.

Corollary 16 Any integer n ≥ 2 has a unique “prime decomposition” of
the form

n = pe1
1 p

e2
2 · · · p

er
r (ei ≥ 1)

where the pi are distinct prime factors of n.

Proof The two main theorems above can be proved by induction on n. 2
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3 Groups

I want to emphasize the way that complex mathematical structures are built
from simpler ones, i.e. their hierarchical nature. In particular, group prop-
erties underlie the properties of the rings and fields that are the structures
of most direct importance in CA.

An algebra is a very general structure consisting of a set A together with
operations on the set. If an operation maps An → A then it is said to have
arity n. A binary algebra has a single binary (arity 2) operation, perhaps
together with operations of lower arity.

Definition 4 A groupoid [G; ·] is an algebra with a binary operation · :
(x, y) 7→ x · y or xy. It is called commutative if xy = yx.

An additive groupoid, in which the binary operation is written as +, is
always commutative.

Definition 5 A semigroup [S; ·] is a groupoid that is associative: x(yz) =
(xy)z (or x+ (y + z) = (x+ y) + z).

Definition 6 A monoid [M ; ·, 1] is an algebra with a binary operation · and
a nullary (arity 0) operation 1 (whose value is always 1) such that

1. [M ; ·] is a semigroup (associativity),

2. x1 = 1x = x (identity).

For a multiplicative monoid [M ; ·, 1] the identity is called a unit element; for
an additive monoid [M ; +, 0] the identity is called a zero element.

Definition 7 Finally, a group [G; ·,−1, 1] is an algebra with one binary
operation ·, one unary (arity 1) operation −1 (inversion) and one nullary
operation 1, such that

1. [G; ·, 1] is a monoid (associativity, identity),

2. xx−1 = x−1x = 1 (inverse).

An additive (which implies commutative or “Abelian”) group is written
[G; +,−, 0] where −x is the (additive) inverse of x.

In a multiplicative group [G; ·,−1, 1], division is defined by a/b = ab−1(6=
b−1a generally) and, in an additive group [G; +,−, 0], subtraction is defined
by a− b = a+ (−b) [= (−b) + a].

Examples:
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1. [N; +,−, 0]: the natural numbers form an additive group. However,
[N;−] is not even a semigroup because subtraction is not associative
– it is only a groupoid.

2. Similarly, [Z; +,−, 0] and [R; +,−, 0] are additive groups.

3. [Q+; ·,−1, 1]: the positive rationals form a multiplicative group, as does
[R∗; ·,−1, 1], the non-zero reals.

4. The multiplicative monoids Q, R, C, Zm are not groups because 0
does not have a multiplicative inverse.

3.1 Group properties of Zm (the integers mod m)

The following are semigroups (i.e. associative):

1. [Zm;⊕] where a⊕ b = rm(a+ b) or (a+ b) mod m;

2. [Zm;�] where a� b = rm(ab) or ab mod m.

Moreover, [Zm;⊕,	, 0] is an additive group, where

	a =

{
m− a if a 6= 0,

0 if a = 0.

However, as remarked earlier, the multiplicative monoid [Zm;�, 1] is not a
group because 0 has no multiplicative inverse.

So is Z∗m = Zm − {0} a group? Consider Z∗4 = {1, 2, 3}. Then 2 � 2 =
4 mod 4 = 0 6∈ Z∗4, so [Z∗4;�] is not even a groupoid because � is not defined
on all elements of Z∗4, i.e. the algebra is not closed. However:-

Theorem 17 Under mod m multiplication, Z∗m is a multiplicative group
⇐⇒ m is prime.

This result is important, and we should have a few proofs in this course, so
let us prove this theorem.

Proof
( ⇒ ): m composite ⇒ m = st, 1 < s, t < m. Then s, t ∈ Z∗m but

s� t = st mod m = m mod m = 0 6∈ Z∗m. Thus m not prime ⇒ Z∗m not a
group, so Z∗m a group ⇒ m prime.
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( ⇐ ): This is harder, but illustrates well the use of the hierarchical
structure. Let m be a prime p.

Closure under �. Let a, b ∈ Z∗p. We must show that a � b ∈ Z∗p, i.e.
a� b 6= 0.

a� b = 0 ⇒ ab mod p = 0
⇒ p | ab
⇒ p | a or p | b

But 1 ≤ a, b < p so this is impossible. Hence a� b 6= 0 and [Z∗p;�] is closed
and hence a groupoid.

Associativity of �.

rm(a)rm(b) = (a+ kam)(b+ kbm), kb, kb ∈ Z
= ab+ (kab+ kba+ kakbm)m
≡m ab

Thus rm(ab) = rm(rm(a)rm(b)) (*)
Then

a� (b� c) = rm(arm(bc)) defn. of �
= rm(rm(a)rm(bc)) a ∈ Zm

= rm(abc) by (*)
= rm(rm(ab)rm(c)) assoc. of · and (*)
= (a� b)� c defn. of �

Associativity of [Zm;�] ⇒ associativity of [Z∗p;�], i.e. both are semigroups.
Multiplicative identity. 1 ∈ Z∗p is an identity element with respect to �,

hence [Z∗p;�, 1] is a monoid.
Multiplicative inverses. Let a ∈ Z∗p. Since p is prime and 1 ≤ a < p then

1 = gcd(a, p) = sa+ tp

for some s, t ∈ Z (from the previous theory of integer gcds). Taking remain-
ders mod p gives

rp(1) = 1 = rp(sa+ tp)
= rp(sa) defn. of rp
= rp(rp(s)rp(a)) by (*) above
= rp(s)� rp(a) defn. of � above
= rp(s)� a a ∈ Zp

Hence a−1 = rp(s) ∈ Z∗p and so [Z∗p;�,−1 mod p, 1] is a group. 2
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3.2 Order of a group element

Definition 8 The order, o(a), of an element a 6= 1 in a multiplicative group
[G; ·,−1, 1] is defined by

o(a) =

{
n if an = 1 and ak 6= 1 for 1 ≤ k < n,
∞ if an 6= 1 for any n ∈ Z+.

Equivalently, the order of an element a 6= 0 in an additive group [G; +,−, 0]
is defined by

o(a) =

{
n if na = 0 and ka 6= 0 for 1 ≤ k < n,
∞ if na 6= 0 for any n ∈ Z+.

3.3 Subalgebras

A subset B of an Ω-algebra A is called a subalgebra of A if B is closed under
Ω (Ω-closed), meaning that for all ω ∈ Ω

x1, . . . , xn ∈ B ⇒ ω(x1, . . . , xn) ∈ B,

where n is the arity of ω. A subalgebra is denoted B ≤ A if B ⊆ A and
B < A if B ⊂ A.

Let A be an Ω-algebra and H ⊆ A. Denote by [H] the smallest subalge-
bra of A that includes H. If [H] = A then A is said to be generated by H.
If H is finite then A is said to be finitely generated by H.

3.4 Subgroups

A subset S of an (additive) group [G; +,−, 0] is a subgroup of G if:

1. x, y ∈ S ⇒ x+ y ∈ S;

2. x ∈ S ⇒ −x ∈ S;

3. 0 ∈ S.

Proposition 18 Let S be a nonempty subset of [G; +,−, 0]. Then S is a
subgroup of G if

x, y ∈ S ⇒ x− y ∈ S. (∗)

Proof Since S 6= ∅ ∃x ∈ G in S, so by (*) x − x = 0 ∈ S, and hence
0− x = −x ∈ S. If x, y ∈ S, then −y ∈ S ⇒ x− (−y) = x+ y ∈ S. 2
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4 Morphisms

A morphism is a structure-preserving map from one algebraic system (al-
gebra) to another, and morphisms underlie many of the more sophisticated
algorithms of CA.

Let [A; Ω] be an algebra consisting of a set A (the “carrier”) together
with a collection Ω of operations.

Definition 9 Two algebras [A; Ω] and [A′; Ω′] are similar if there is a bijec-
tion between Ω and Ω′ such that corresponding operations ω ∈ Ω and ω′ ∈ Ω′

have the same arity.

Note that this bijection relates the operations and not the carrier sets. Hence
any two groupoids are similar by definition. (In practice, it is often conve-
nient to use the same collection of operator symbols Ω for both algebras,
only distinguishing the carrier sets, and so to speak of similar Ω-algebras A
and A′.)

Definition 10 Let [A; Ω] and [A′; Ω′] be similar algebras. A map φ : A→ A′

is called a morphism (or homomorphism) from [A; Ω] to [A′; Ω′] if, for every
ω ∈ Ω and a1, . . . , an ∈ A,

φ(ω(a1, . . . , an)) = ω′(φ(a1), . . . , φ(an)).

This means that one can perform an operation in A and then map the result
to A′, or one can map the arguments to A′ and then apply the corresponding
operation in A′, and either way the result is the same. Diagrammatically, if
ω has arity n,

An A

A′(A′)n -

??

-

φφn

ω

ω′

where
φn : An → (A′)n, (a1, . . . , an) 7→ (φ(a1), . . . , φ(an)).

Example: A morphism φ from a (multiplicative) group [G; ·,−1, 1] to an
(additive) group [G′; +,−, 0] must be such that for all x, y ∈ G
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1. φ(x · y) = φ(x) + φ(y),

2. φ(x−1) = −φ(x),

3. φ(1) = 0

(although in fact requirements 2 and 3 are consequences of 1 and the defi-
nition of a group).

4.1 Special morphisms

A morphism φ : A→ A′ is called:

1. an isomorphism if φ is bijective (invertible);

2. an epimorphism if φ is surjective (onto);

3. an monomorphism if φ is injective (1-to-1).

4.1.1 Isomorphisms

If A and A′ are isomorphic, denoted A ∼= A′, then they are identical except
for the names (symbols) used.

Example: Let φ : [R+; ·] → [R; +], x 7→ log x. Then φ is an isomorphism,
which underlies the standard technique of using logarithms to multiply, thus:

R+ × R+ R+

RR× R -

??

-
·

+

loglog × logtake logs
take antilogs

(i.e. exponentiate)

add logs

6

? -

4.1.2 Epimorphisms

These are probably the most important morphisms in practice for CA.
If φ : A→ A′ is an epimorphism then A′ is called a homomorphic image

of A, and is regarded as an abstraction or model of A. The implication is
that φ is not also an injection, and so A′ is smaller than A, but nevertheless
captures some of the structure of A.
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If φ : b 7→ b′ then by computing b′ = ω(φ(a1), . . . , φ(an)) ∈ A′ we do
not determine b ∈ A completely, but we know that b ∈ φ−1(b′). Thus we
have found not b but an equivalence class in A that contains b, i.e. we know
b modulo the kernel relation of φ. [See the earlier notes on equivalence
relations and functions.]

Examples:

1. The “remainder mod m” map, a 7→ rm(a), is an epimorphism (of
additive groups) from [Z; +,−, 0] to [Zm;⊕,	, 0]. This is one of the
main uses of epimorphisms in CA; note that whereas Z is infinite, Zm

is finite and hence (much) simpler!

2. The projection maps p1 : (a, b) 7→ a, p2 : (a, b) 7→ b are epimorphisms
(of additive groups) from points in the plane R2 to points on the line
R.

Projection always implies a loss of information, so that epimorphisms always
correspond to projections in some general sense. One normally has the men-
tal image of projection downwards (perhaps by shining a light from above
and observing a shadow), and therefore any attempt to undo a projection
or an epimorphism is normally called lifting. We will return to lifting later.

4.1.3 Monomorphisms

If φ : A → A′ is a monomorphism then φ : A → φ(A) ⊆ A′ is clearly an
isomorphism, so A′ includes what is essentially a copy of A and φ : A→ A′

is sometimes called an embedding of A into A′.

4.1.4 Endomorphisms and automorphisms

A morphism φ : A→ A that maps an algebra to itself is called an endomor-
phism of A. If φ is also a bijection and hence an isomorphism it is called an
automorphism of A.

4.1.5 Structure-preserving properties of morphisms

Epimorphisms preserve semigroup, monoid and group structure, so that for
example a homomorphic image of a group is a group. Morphisms in general
preserve subalgebras and their generators.
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5 Rings

Groups have a single binary operation, whereas rings (and fields) have two:
addition and multiplication.

Definition 11 A ring [R; +,−, 0, ·, 1] is an algebra such that

1. [R; +,−, 0] is an abelian (commutative) group (the “additive group” of
R);

2. [R; ·, 1] is a monoid (the “multiplicative monoid” of R);

3. a(b + c) = ab + ac, (b + c)a = ba + ca (multiplication (·) is left and
right distributive over addition (+), which is the only link between +
and ·).

A ring is called commutative if its multiplication commutes. (The addition
must be commutative.) The multiplicative identity element 1 is called the
unity, unit element or one, but the term unit alone has a special meaning,
and usually 1 is just one of several units in a ring. Do not confuse R for ring
with R for reals!

Examples: Z, Q, R and C are all rings under the usual operations
+,−, 0, ·, 1, and form a hierarchy of (proper) subrings Z < Q < R < C.
Zm is a ring under mod m versions of +,−, ·, where the “mod m” is usually
implied by working in Zm.

A derived ring is a ring built on, or defined in terms of, an existing
“ground” ring, as in the following examples.

5.1 Formal power series

Let R be a commutative (ground) ring (e.g. Z, Q, R, C or Zm). Define R[[x]]
to be the set of all expressions of the form

a(x) = a0 + a1x+ a2x
2 + · · · =

∞∑
i=0

aix
i,

where the coefficients ai (i ∈ N) lie in the ground ring R. Since x is a symbol
with no value the summation cannot actually be performed and convergence
is not an issue. Hence each such a(x) is called a formal power series over R
in the indeterminate x.
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R[[x]] is endowed with a ring structure by defining operations +,−, ·, 0 [=
0(x)], 1 [= 1(x)] such that for all i ∈ N:

in R[[x]] in R (the ground ring)
c(x) = a(x) + b(x) ⇐⇒ ci = ai + bi
c(x) = a(x)b(x) ⇐⇒ ci =

∑i
j=0 ajbi−j

c(x) = −a(x) ⇐⇒ ci = −ai

c(x) = 0 ⇐⇒ ci = 0

c(x) = 1 ⇐⇒ ci =

{
1 if i = 0
0 otherwise

5.2 Univariate polynomials

Define R[x], the set of all polynomials over R in the indeterminate x, to be
the subset of R[[x]] consisting of finite sums ot terms. This is a subring of
R[[x]].

5.3 Bivariate polynomials

Since R′ = R[x] defined above is a ring, we can use it as the ground ring of
a new polynomial ring in y, R′[y] = (R[x])[y] = R[x][y]. Similarly, we could
construct R[y][x], and in fact the two rings are identical (assuming all mul-
tiplication commutes) and are therefore often written more symmetrically
as

R[x][y] = R[y][x] = R[x, y].

However, the distinction can be useful to indicate how the elements are
regarded, and whether the degree of terms with respect to one particular
variable or the total degree is considered important. For example,

a(x, y) = (5x2 − 3x+ 4)y + (2x2 + 1) ∈ Z[x][y],
= (5y + 2)x2 + (−3y)x+ (4y + 1) ∈ Z[y][x],
= 5x2y + (2x2 − 3xy) + (4y) + 1 ∈ Z[x, y].

Note that the forms R[x][y] andR[y][x] correspond to the nested multinomial
representation the we considered last week.

5.4 Matrix rings

The set Mn(R) of all n × n matrices over a commutative ring R (i.e. with
elements in R) is a ring under normal matrix arithmetic, but it is always
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non-commutative (if n > 1) even though R is commutative, as trivially
shown by many simple examples.

5.5 Integral multiples; characteristic of a ring

Definition 12 An integral multiple n · a, n ∈ Z of a ring element a ∈ R is
defined in terms of the additive group of R (alone) by

n > 0 : n · a = a+ a+ · · ·+ a (n terms),
n < 0 : n · a = −(|n| · a),
n = 0 : 0 · a = 0 ∈ R.

It is independent of the multiplicative monoid structure of R (ab ∈ R if
a, b ∈ R).

Definition 13 The characteristic of a ring R, char R, is the order of the
unity element 1 in the additive group of R if that order is finite, and zero
otherwise.

Thus if R has finite characteristic m then m · 1 = 0 and n · 1 6= 0 for
1 ≤ n < m. Z, Q, R and C all have characteristic zero; Zm has characteristic
m. A finite ring must have finite characteristic (otherwise it would not be
an additive group), but the converse is false, e.g. Zm[x] is an infinite ring
with finite characteristic m.

5.6 Subrings and extension rings

If R′ is a subring of R (R′ ≤ R) then also R is an extension ring of R′

(R ≥ R′). A subring R′ ≤ R is a subset of R that is closed under all the
ring operations +,−, 0, ·, 1 of R. But in fact a sufficient condition is that a
subset S of a ring R is a subring of R if, for all a, b ∈ S,

a− b ∈ S, ab ∈ S, 1 ∈ S,

by using the earlier proposition on subgroups to express all the additive
group conditions within the condition a− b ∈ S.

Example: Let α = 3
√

2, then

S = {a+ bα+ cα2 | a, b, c ∈ Q}

is a subring of R.
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Proof 1 = 1 + 0α + 0α2 ∈ S. If x = a + bα + cα2 and y = d + eα + fα2

then by direct computation x− y and xy are in S. 2

The subring generated by any subset S ⊆ R of a ring R is the smallest
subring of R that includes S, and is denoted [S].

The unital subring [1] is the smallest subring of any ring R, since every
ring must have a unity element. In fact,

[1R] = {n · 1R | n ∈ Z},

where the subscript distinguishes the ring of which 1 is considered to be the
unity element when necessary.

Proof By closure under +,−, 0 (additive group of R) it follows that {n·1R |
n ∈ Z} ⊆ [1R]. But 1R = 1 · 1R ∈ {n · 1R | n ∈ Z}, which also satisfies
the other subring conditions, and [1R] is the smallest subring containing 1R,
hence [1R] ⊆ {n · 1R | n ∈ Z}. 2

Therefore [1R] = [0R] and [1] = Z.

5.7 Morphisms of rings

A homomorphic image of a (commutative) ring is a (commutative) ring.
Let E and R be commutative rings with R ≤ E. For α ∈ E, define the

(α-)evaluation map φα : R[x] → E by

φα : a(x) 7→ a(α).

Then φα is a morphism of rings – the “evaluation morphism”. If E = R
then φα is an epimorphism R[x] → R (i.e. onto) since any a ∈ R is the
image under φα of the constant polynomial a ∈ R[x].

Note that the derived rings R[x] and R[[x]] include the ground ring R as
a subring: R < R[x] < R[[x]].

5.8 Ring adjunction and extension rings

Let R be a ring and E an extension ring of R. For some α ∈ E, the smallest
extension ring of R that includes α is the subring [R∪{α}] (i.e. the subring
generated by R∪{α} ⊆ E). It is denoted simply R[α] and called “R adjoined
by α”. This is the same notation as used for polynomials over R, for the
following reason.
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Proposition 19 Let E and R be commutative rings with E ≥ R, and let
α ∈ E. Then

R[α] = {a(α) | a(x) ∈ R[x]}.

[That is, R[α] is the set of all polynomials over R evaluated at α or equiva-
lently, regarding α as a symbol, all polynomials in α.]

Proof Let S = {a(α) | a(x) ∈ R[x]}. Any subring of E that includes
R ∪ {α} must contain any a(α) ∈ S by closure. (Polynomials only involve
ring operations.) Hence S ⊆ R[α].

Now consider the evaluation morphism φα : R[x] → E, a(x) 7→ a(α).
Because morphisms preserve subalgebras, φα(R[x]) = S is a subring of E.
Moreover, S contains each a = φα(a) in R and α = φα(x). Therefore
R[α] ⊆ S, because R[α] by definition is the smallest subalgebra that contains
each a ∈ R and α. 2

If α ∈ E satisfies a polynomial (i.e. is a root of a polynomial equation)
over R then some simplification is possible in R[α]. For example, if α = 3

√
2

then
Q[α] = {a+ bα+ cα2 | a, b, c ∈ Q}.

[That is, the ring of rationals adjoined by α = 3
√

2 is generated by all
quadratic polynomials in α, and it is not necessary to use all polynomi-
als in α. Thus, as a vector space over Q, Q[α] has dimension 3 (rather than
infinity!), with a suitable basis being {1, α, α2}.]

Proof Let S = {a + bα + cα2 | a, b, c ∈ Q}. Then S ⊆ Q[α] by closure of
the ring Q[α]. But S is a subring of R (proved above) that contains each
a = a+ 0α+ 0α2 ∈ Q and α = 0 + 1α+ 0α2. Hence Q[α] ⊆ S, because Q[α]
by definition is the smallest subring of R that contains each a ∈ Q and α.

2

6 Integral domains and fields

6.1 Zerodivisors and units

Let R be a commutative ring.

Definition 14 If a 6= 0, b 6= 0 in R satisfy ab = 0 then both a and b are
called zerodivisors.
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Definition 15 If u 6= 0, v 6= 0 in R satisfy uv = 1 then both u and v are
called units, and u = v−1, v = u−1.

Example: In Z8, 2× 4 = 0 so 2 and 4 are zerodivisors, and 3× 3 = 1 so 3 is
a unit.

The set of all units of a ring R is denoted U(R), and forms a multiplica-
tive group – the “group of units of R”.

Proposition 20 Let R be a commutative ring and u ∈ R be a unit. Then
u is not a zerodivisor.

Proof Assume uv = 0 for some v. Then v = u−1uv = u−10 = 0. 2

Definition 16 An integral domain is a nontrivial commutative ring with
no zerodivisors, so that ab = 0 ⇒ a = 0 or b = 0.

Theorem 21 The ring D is an integral domain if and only if the following
cancellation law holds:

(ab = ac and a 6= 0) ⇒ b = c.

Definition 17 A field is a nontrivial commutative ring in which every non-
zero element is a unit.

Hence a field is an integral domain, because a unit is not a zerodivisor.
Fields are important because they allow division by all elements except

0, and moreover ab−1 = ba−1 can be unambiguously written as a
b because

fields are commutative.
Examples: The prototypical integral domain is the ring of integers Z.

The only units are 1 and −1, hence Z is not a field. However, Q, R and C
are all fields.

6.2 Prime fields

We proved earlier that for prime p, Z∗p(= Zp−{0}) is a multiplicative group,
and hence every element has a multiplicative inverse and so is a unit in Zp

regarded as a ring. However, if m is composite and m = ab (1 < a, b < m)
then ab = 0 in Zm. Thus we have proved

Theorem 22
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1. If p is prime then Zp is a (finite) field.

2. If m is composite then Zm is a ring with zerodivisors.

There exist other finite fields. The ring of integers is an infinite integral
domain that is not a field. However:

Theorem 23 A finite integral domain is a field.

Theorem 24 If an integral domain has finite characteristic m then m is
prime.

6.3 Univariate polynomials and formal power series (again)

Definition 18 If a polynomial has the form a(x) =
∑n

i=0 aix
i, an 6= 0, then

its degree is defined to be deg a(x) = n; otherwise deg 0 = −∞.

Definition 19 If a formal power series has the form a(x) =
∑∞

i=n aix
i,

an 6= 0, then its order is defined to be ord a(x) = n; otherwise ord 0 = +∞.

Proposition 25

1. In R[x]:
deg a(x)b(x) ≤ deg a(x) + deg b(x),

deg[a(x) + b(x)] ≤ max[deg a(x),deg b(x)].

2. In R[[x]]:
ord a(x)b(x) ≥ ord a(x) + ord b(x),

ord[a(x) + b(x)] ≥ min[ord a(x), ord b(x)].

The definitions of deg 0 and ord 0 are designed to make the above proposition
apply to zero polynomials.

Henceforth, let D denote an integral domain and F denote a field.

Theorem 26 D[x] and D[[x]] are integral domains.

Corollary 27 In D[x] and D[[x]] the equality holds in the degree and order
relations for products and sums (because there are no zerodivisors).

Theorem 28 a(x) is a unit of D[x] ⇐⇒ a(x) is a unit of D.
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Proof ⇐ is trivial. To prove ⇒ let a(x) ∈ D[x] be a unit. Then
a(x)b(x) = 1 for some b(x) ∈ D[x], so taking degrees gives 0 = deg 1 =
deg a(x)b(x) = deg a(x) + deg b(x) ⇒ deg a(x) = deg b(x) = 0, so a(x) =
a ∈ D. Similarly for b, and ab = 1 ⇒ a is a unit of D. 2

Corollary 29 The units of F [x] are the nonzero constant polynomials of
F .

6.4 Ring morphisms

Ring morphisms preserve units and inverses. Isomorphisms preserve integral
domains and fields, but epimorphisms may not: for example, if the integral
domain Z is mapped to Zm then this homomorphic image is not an integral
domain if m is composite.

6.5 Field of quotients

Given an integral domain D it is useful to be able to construct a field F
that includes D, i.e. so that every element of F except 0 is invertible. If D
is finite then it is already a field, so assume D is infinite (and not a field).
The construction generalizes the construction of Q from R.

Theorem 30 (Field of quotients of an integral domain) Let D be an
integral domain, and let D∗ = D − {0}. Define a relation ∼ on D ×D∗ by

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

Then ∼ is an equivalence relation on D ×D∗.
Now let Q(D) = (D×D∗)/∼ and denote the equivalence class [(a, b)] by

the “fraction” or “quotient” a/b. Then

a/b = c/d ⇐⇒ ad = bc.

Define + and · on Q(D) by

a/b+ c/d = (ad+ bc)/(bd),

(a/b) · (c/d) = (ac)/(bd);

then + and · are well defined.
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Q(D) is a field, in which

zero: 0 = 0/1,
unity: 1 = 1/1,

additive inverse: −(a/b) = (−a)/b,
multiplicative inverse: (a/b)−1 = b/a (a 6= 0).

D̃ = {a/1 | a ∈ D} is a subdomain of Q(D) that is isomorphic to D
under the map a 7→ a/1. Identifying a ∈ D with a/1 ∈ D̃ gives the result
that if F is a field that includes D then F includes Q(D). Thus Q(D) is the
smallest field that includes D.

Example: Q = Q(Z).

Proposition 31 Let D,D′ be isomorphic integral domains D ∼= D′, then
Q(D) ∼= Q(D′).

6.5.1 Rational functions

Just as D has a field of quotients, so does D[x], denoted by

D(x) = {a(x)/b(x) | a(x), b(x) ∈ D[x]; b(x) 6= 0},

and called the field of rational functions over D. [Note the important dis-
tinction between the notations D[x] – a ring of polynomials – and D(x) – a
field of rational functions!]

7 Divisibility in integral domains

As usual, D denotes an integral domain and F denotes a field (a special case
of an integral domain).

Definition 20 The divisibility relation a | b in D means that b = ac for
some c ∈ D.

Examples:

1. In Z: 3 | 6, 3 - 7.
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2. In Z[x]: if a(x) = 2x+ 4, b(x) = 2x2 + 3x− 2, then

b(x)
a(x)

=
(2x− 1)(x+ 2)

2(x+ 2)
=

2x− 1
2

in the quotient field Q(Z[x]) (∼= Q(x)), or x− 1
2 in Q[x], 6∈ Z[x]. Hence

a(x) | b(x) in Q[x], but a(x) - b(x) in Z[x].

3. In any field: a | b provided a 6= 0, because b = a(a−1b), and hence
divisibility is trivial in a field.

Definition 21 a, b ∈ D∗ (= D − {0}) are called associates, denoted a ∼ b
(“a tilde b”), if a = ub where u is a unit in D.

Proposition 32

a ∼ b ⇐⇒ a | b and b | a.

Proof
( ⇒ ): If a ∼ b then a = ub, so b | a. Also b = u−1a since u is a unit, so

a | b.
( ⇐ ): If a | b and b | a then b = xa and a = yb for some x, y ∈ D.

Therefore b = xyb, so xy = 1 by cancellation of b 6= 0. Thus y is a unit (and
so is x) and hence a ∼ b. 2

A divisor a of b is called proper if it is neither a unit nor an associate of
b. (This therefore excludes the unity element 1, which is always a unit, and
b itself.)

Proposition 33 If a ∼ b and c ∼ d then a | c ⇒ b | d.

Thus divisibility is interesting only modulo associates. But this ambigu-
ity can be removed as follows.

Proposition 34 The relation ∼ is an equivalence relation on D∗.

Thus D∗ is partitioned by ∼ into equivalence classes of the form

[a] = {ua | u ∈ U(D)},

where U(D) is the group of units of D. A distinguished associate of a ∈ D∗

is a distinguished representative of [a]∼. The following are conventional
choices:
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1. In Z, U(Z) = {1,−1}. Hence [m] = {m,−m} and the distinguished
associate is chosen to be positive (i.e. |m|).

2. In F [x], U(F [x]) = F ∗. Hence [a(x)] = {ca(x) | c ∈ F ∗} and the dis-
tinguished associate is chosen to be monic (by dividing by the leading
coefficient).

3. In any integral domain D, [u] = U(D) if u is a unit. The distinguished
unit is chosen to be the unity element 1.

7.1 Greatest common divisors

Definition 22 A greatest common divisor (gcd) of a, b ∈ D (a, b not both
zero) is an element g ∈ D such that

1. g | a and g | b (common);

2. c | a and c | a ⇒ c | g (greatest).

Proposition 35 If g is a gcd of a, b ∈ D then so is any associate of g.
Conversely, if g, h are gcds of a, b ∈ D then g ∼ h.

Hence a gcd is determined only up to associates. A unique gcd can be
obtained by choosing a distinguished associate, as above. Thus:

1. in Z choose gcd(a, b) > 0;

2. in F [x] choose gcd(a(x), b(x)) monic;

3. in any D, if a gcd of a and b is a unit then take gcd(a, b) = 1: a and b
are then called relatively prime.

7.2 Primes and factorization

Definition 23 A nonunit p ∈ D∗ is called prime if p = ab (a, b ∈ D∗) ⇒
either a or b is a unit.

Thus a prime has no proper divisors. A nonunit that is not prime is called
composite. Thus a composite element c ∈ D∗ has a factorization of the form
c = ab (a, b ∈ D∗) where neither a nor b is a unit.

Proposition 36 If p is prime then so is any associate of p.
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Thus only distinguished primes need be considered, e.g. positive primes in
Z.

Polynomial domains depend subtly on their underlying number (coeffi-
cient) domains. If a(x) is prime (resp. composite) in D[x] then a(x) is called
irreducible (resp. reducible) over D.

In F [x] (F a field) the units are the nonzero constant (degree zero)
polynomials in F ∗. Hence a[x] ∈ F [x] is reducible over F if a(x) = b(x)c(x)
for polynomials b(x)c(x) ∈ F [x] having degree ≥ 1. In D[x] (D an integral
domain) the latter condition is sufficient but not necessary for reducibility
over D, as shown by the following.

Examples:

1. 2x+2 is irreducible over Q (because 2 is a unit in Q[x]), but reducible
over Z as 2(x+ 1) (because neither 2 nor x+ 1 is a unit in Z[x]).

2. x2− 2 is reducible over R as (x+
√

2)(x−
√

2), but irreducible over Q
(because

√
2 6∈ Q).

3. x2 + 1 is reducible over C as (x+ i)(x− i), but irreducible over R (or
Q or Z).

An application to factorization: Let a(x) ∈ F [x] be a quadratic or cubic.
If a(x) is reducible then a(x) = b(x)c(x) where b(x), c(x) have degree ≥ 1.
Hence one of b(x) and c(x) must be linear (in both the quadratic and cubic
cases), and so must have a root in F . This therefore proves the following.

Proposition 37 A quadratic or cubic polynomial a(x) ∈ F [x] is reducible
over F if and only if a(x) has a root in F .

Example: Let a(x) = x3 + 2x+ 2. Then:

1. a(x) is reducible over Z5 since a(1) = 1 + 2 + 2 (= 5 in Z) = 0 in Z5.

2. a(x) is irreducible over Z3 since a(0) = 2, a(1) (= 5 in Z) = 2 in Z3,
a(2) (= 8 + 4 + 2 in Z) = 2 + 1 + 2 = 2 in Z3, and the only possible
roots in Z3 are 0, 1, 2.

8 Euclidean domains

Polynomials over a field have essentially the same division properties as Z,
but polynomials over an integral domain that is not a field do not. The
notion of Euclidean domain explains this difference, and generalizes many
important properties of Z.
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Definition 24 A Euclidean domain is an integral domain D together with
a “degree” function (sometimes called an “integral norm”) d : D∗ → N such
that

1. d(ab) ≥ d(a) (a, b 6= 0);

2. Division property: for every a, b ∈ D (b 6= 0) there exist a “quotient”
q and “remainder” r in D such that

a = bq + r, d(r) < d(b) or r = 0.

Examples:

1. Z with d(a) = |a| is a Euclidean domain, because by the division
property of Z

a = bq + r, 0 ≤ r < |b|,

and hence also

a = b(q + 1) + (r − b), |r − b| < |b| if r > 0.

Thus in Z there are generally two possible quotient-remainder pairs, so
the axioms of a Euclidean domain do not guarantee a unique division.
In Z, uniqueness is obtained by requiring a non-negative remainder.
The unique or preferred remainder of a divided by b is denoted rb(a).

2. F [x] with d(a) = deg a(x) is a Euclidean domain with a unique quo-
tient and remainder. However, Z[x] with d(a) = deg a(x) is not a
Euclidean domain. As a proof by counterexample, an attempt to di-
vide 3x5 by 2x3 in Z[x] gives

3x5 = 2x3.0 + 3x5

because 2 - 3 in Z. But (d(3x5) = 5) 6< (d(2x3) = 3) so the division
axiom cannot be satisfied.

· · ·

The rest of this section is a fairly straightforward (but important) gener-
alization of properties of the integers, and it is instructive to compare the
proofs of results here with those given for the integers earlier.

29



8.1 Greatest common divisors in Euclidean domains

A “gcd domain” is an integral domain in which every pair of elements has
a gcd that can be expressed as a linear combination of the pair, as follows.

Theorem 38 (A Euclidean domain is a gcd domain) Let D be a Eu-
clidean domain, and let a, b ∈ D (not both zero). Then a and b have a gcd
g expressible in the form

g = sa+ tb (s, t ∈ D).

The main tool to prove this theorem is the following

Lemma 39 With a, b ∈ D (not both zero), define

S(a, b) = {sa+ tb | s, t ∈ D}.

Choose g ∈ S(a, b) (g 6= 0) to have minimum degree: d(g) ≤ d(x) for all
x ∈ S(a, b). Then

S(a, b) = (g),

where (g) = {rg | r ∈ D} is the set of all ring multiples of g.

Proof S(a, b) contains nonzero elements because at least one of a = 1a+0b
and b = 0a+1b in S(a, b) is nonzero by assumption. Therefore it is possible
to choose a g 6= 0.

(g) ⊆ S(a, b) is obviously true from the definitions of (g) and S(a, b).
To prove S(a, b) ⊆ (g), perform a Euclidean division of x ∈ S(a, b) by g

to obtain
x = gq + r where d(r) < d(g) or r = 0.

Now show that in fact r = 0. Since x, g ∈ S(a, b), we have

x = sxa+ txb, g = sga+ tgb,

and hence
r = x− gq = (sx − sgq)a+ (tx − tgq)b

is in S(a, b). Hence r = 0, otherwise we would have d(r) < d(g) in contra-
diction to g having minimum degree in S(a, b). Thus S(a, b) ⊆ (g). 2

Proof of theorem. With S(a, b) and g as in the lemma, the claim is that
g is a gcd of a, b. Since a, b ∈ S(a, b) = (g), a and b are multiples of g, so g is
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a common divisor of a and b. Moreover, if c | a and c | b then c | g = sga+ tgb
trivially. Thus g is a greatest common divisor of a and b. 2

As discussed above, a unique gcd can be obtained by choosing a distin-
guished associate of an equivalence class of gcds.

8.2 Prime factorization in Euclidean domains

A “unique factorization domain” is an integral domain in which every non-
unit can be expressed as a product of a unique set of factors. The following
lemmas provide the generalization of properties of the integers that are re-
quired for proofs by induction in abstract Euclidean domains. Let D be a
Euclidean domain with degree function d.

Lemma 40

1. d(1) ≤ d(a) for any a ∈ D∗.

2. d(1) = d(a) ⇐⇒ a is a unit.

Proof

1. d(1) ≤ d(1a = a) by definition of a Euclidean degree function.

2. ( ⇐ ) If a is a unit then d(a) ≤ d(aa−1 = 1), so d(a) = d(1) by (1)
above.

( ⇒ ) Let d(a) = d(1). Euclidean division of 1 by a gives 1 = aq + r
where d(r) < d(a) or r = 0. But d(r) < d(1)(= d(a)) is impossible by
(1) above. Hence r = 0 and so a is a unit.

2

Lemma 41 In D∗, if a = bc where c is a nonunit then d(b) < d(a).

Proof A Euclidean degree function must satisfy d(b) ≤ d(a) by definition,
so it is required to prove that the inequality must be strict. Euclidean
division of b by a gives

b = aq + r where d(r) < d(a) or r = 0.
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But if r = 0 then b = aq = bcq, so cq = 1 by cancellation of b 6= 0,
which contradicts the assumption that c is a nonunit. Hence r 6= 0 so that
d(r) < d(a), and

r = b− aq = b− bcq = b(1− cq),

so that d(b) ≤ d(r). Hence d(b) ≤ d(r) < d(a). 2

Corollary 42 If b is a proper divisor of a then d(b) < d(a).

Proof If b | a and a - b then a = bc where c is a nonunit. 2

Theorem 43 (Existence of a factorization into primes) Any a ∈ D∗

is either a unit or can be expressed as a finite product of primes: a =
p1p2 · · · pn.

Lemma 44 Let a and b be relatively prime in a Euclidean domain D. Then

1. a | bc ⇒ a | c;

2. a | c and b | c ⇒ ab | c.

The requirement that a and b be relatively prime is necessary: in Z for
example 4 | (2× 6) but 4 - 6, and 6 | 12 but (4× 6) - 12.

Corollary 45 (to 1 above). If p is a prime in a Euclidean domain D
then

p | ab ⇒ p | a or p | b,

and hence

p |
n∏

i=1

ai ⇒ p | ai for some i, 1 ≤ i ≤ n.

Theorem 46 (Uniqueness of prime factorization) In a Euclidean do-
main D, every nonunit a can be expressed as a product of primes in essen-
tially one way: if

a = p1p2 · · · ps = q1q2 · · · qt
where the pi and qi are primes, then s = t and there exists a reordering of
the qi such that

p1 ∼ q1, p2 ∼ q2, · · · , ps ∼ qs.

Both the main theorems can be proved by induction, using the lemmas
introduced above.
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Corollary 47 In a Euclidean domain, any nonunit a has a prime decom-
position of the form

a = upe1
1 p

e2
2 · · · p

er
r

where u is a unit, the pi are the distinct non-associated prime factors of a,
and each exponent ei > 0 is uniquely determined by the ∼-equivalence class
of pi.

9 Exercises

The assessed questions in this set of exercises are the last three (which does
not necessarily mean that they are the hardest)!

1. Prove Lemma 1.

2. Prove that “equivalence mod m” as defined in §1.2.1 is indeed an
equivalence relation.

3. Show the uniqueness of an identity element in any groupoid.

4. In a group G, prove that if (ab)n = anbn for all a, b ∈ G and positive
integers n then G is abelian (commutative), and conversely.

5. In a finite monoid [M ; ·, 1], prove that uv = 1 ⇒ vu = 1. (Thus
in a finite monoid either left or right invertibility implies two-sided
invertibility.) [Hint : Since M is finite, successive powers of u cannot
all be distinct.] Give a counterexample for the case of an infinite
monoid.

6. (Idempotents in finite semigroups.) In a semigroup [S; ·] an element s
is an idempotent if s2 = s. Show that for every element s in a finite
semigroup some power sn (n ∈ Z+) is an idempotent.

7. Prove the fact asserted in the example at the end of §4 that “require-
ments 2 and 3 for a map to be a morphism from a multiplicative to an
additive group are consequences of 1 and the definition of a group”.

8. Complete the sketch proof given in the notes that

S = {a+ bα+ cα2 | a, b, c ∈ Q},

where α = 3
√

2, is a subring of R, i.e. perform explicitly the required
“direct computations”.
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9. Complete the proof that the unital subring of any ring R is given by

[1R] = {n · 1R | n ∈ Z},

by proving that it satisfies the subring conditions.

10. Prove that the set U(R) of all units of a ring R forms a multiplicative
group.

11. (a) Show that every nonzero element of Zm is either a unit or a
zerodivisor.

(b) What is U(Zm)?

12. In an integral domain prove that a2 = 1 ⇒ a = ±1. Does this result
hold in a commutative ring with zerodivisors?

13. If a commutative ring R has prime characteristic p, is R necessarily
an integral domain? What if R has characteristic zero?

14. Prove Proposition 33 on divisibility by associate elements in integral
domains.

15. Prove Proposition 34 that the associate relation is an equivalence re-
lation.

16. Prove Proposition 35 concerning gcds and associates from the defini-
tions of gcd and associate.

17. Let D be a Euclidean domain, p a prime in D. Prove that
√
p 6∈ Q(D).

Conclude that
√

2,
√

3,
√

5, etc., are irrational. [Hint : Assume, to the
contrary, that

√
p = a/b. Then consider b2p = a2 in the light of unique

factorization.]

18. (** Assessed **)
In R[x], what is [R ∪ {x2}]? Prove your claim.

19. (** Assessed **)
Factor into irreducibles the following polynomials in Z3[x]:
(a) x2 + 1; (b) x3 + x+ 1; (c) x3 + 2x+ 2;
(d) x4 + x3 + x2 + x+ 1; (e) x4 + x3 + x+ 1.

20. (** Assessed **)
In a Euclidean domain, prove that a ∼ b ⇒ d(a) = d(b).
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