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2a: Introduction to Abstract Algebra
(continued)

1 Ideals and quotient rings

1.1 Quotient algebras

Homomorphic images provide simpler models of algebras, and quotient al-
gebras provide a technique for constructing homomorphic images. The quo-
tienting is by a congruence relation.

Definition 1 A congruence relation E on an Ω-algebra A is an equivalence
relation on A such that for any operation ω ∈ Ω of arity n

aiE bi for i = 1, . . . , n ⇒ ω(a1, . . . , an)E ω(b1, . . . , bn).

That is, if the operands of any operator are equivalent then so are the
corresponding values.

Example: Equivalence mod m on Z generalizes immediately to congru-
ence mod m on an arbitrary commutative ring R, thus:

a ≡m b ⇐⇒ a− b = km ⇐⇒ m | (a− b), a, b, k,m ∈ R.

Theorem 1 (Quotient algebras) Let A be an Ω-algebra and E a congru-
ence relation on A. Then:

1. the quotient set A/E is an Ω-algebra if ω ∈ Ω is defined on A/E by

ω([a1], . . . , [an]) = [ω(a1, . . . , an)]

(i.e. ω : A/E → A/E maps equivalence classes to equivalence classes);
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2. A/E is a homomorphic image of A under the natural map

ν : a 7→ [a].

Hence we have a source of homomorphic images. But do all homomorphic
images of algebras have this form? Essentially, yes, as follows.

Lemma 2 Let φ : A → A′ be a morphism of Ω-algebras. Then the kernel
relation Eφ, defined by

aEφ b ⇐⇒ φ(a) = φ(b),

is a congruence relation on A.

Theorem 3 (Universal Isomorphism Theorem) Let A and A′ be Ω-
algebras, with A′ a homomorphic image of A under φ : A → A′. Then
A′ ∼= A/Eφ, where ψ : [a] 7→ φ(a) is an isomorphism A/Eφ → A′, thus

A A′

A/Eφ

?
��

���
���*

-φ

ν :
a 7→ [a] ψ : [a] 7→ φ(a)

[This is essentially the Decomposition Theorem for Functions applied to
algebras instead of sets.]

1.2 Ideals

Let R be a ring. Then all homomorphic images of R are given up to isomor-
phism by quotient rings R/E for some congruence relation E on R. Ideals
provide congruence relations.

Definition 2 An ideal I in a ring R is a nonempty subset of R such that:

1. a, b ∈ I ⇒ a− b ∈ I;

2. a ∈ I, r ∈ R ⇒ ar, ra ∈ I.

Requirement (1) makes I an additive subgroup of R. However:

Remark A proper ideal I ⊂ R is not a subring because it does not contain
1R. If 1R ∈ I then I = R.
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The equivalence relation EI induced by I is defined by

aEI b ⇐⇒ a− b ∈ I.

This is also written as a ≡ b (mod I) (“a is congruent to b mod I”).

1.2.1 Principal ideals

If R is a commutative ring and m ∈ R then

(m) = {km | k ∈ R}

is the smallest ideal of R containing m, called the principal ideal generated
by m (principal because it is generated by a single element).

Examples: (2) ⊂ Z is the principal ideal of even integers, 63 1; (x) ⊂ R[x]
is the principal ideal of all polynomials containing x as a factor, i.e. with
zero constant term, 63 1.

The equivalence relation aE(m) b ⇐⇒ a − b ∈ (m) induced by (m) is
the same as congruence mod m, ≡m, defined above, and is normally written
“mod m” rather than “mod (m)”.

1.2.2 Ideal generators

More generally, let a1, a2, . . . , an ∈ R, a commutative ring. Then

(a1, a2, . . . , an) = {
∑n

i=1riai | ri ∈ R}

is the smallest ideal of R containing {ai}n
i=1, called the ideal generated by

{ai}n
i=1. (It is principal iff ∃b ∈ R such that (a1, a2, . . . , an) = (b).)

Theorem 4 Let R be a ring and I an ideal in R. Then the equivalence
relation EI induced by I (aEI b ⇐⇒ a− b ∈ I) is a congruence relation on
R.

Hence ideals generate homomorphic images via their equivalence relations.

1.3 Quotient rings

First we need a notion from group theory.

Definition 3 For any element a of a ring R regarded as an additive group
and any additive subgroup I, the (left) coset of I by a is defined to be

a+ I = {a+ i | i ∈ I}.

3



Since an additive group is commutative, the right coset I + a = a+ I.
Denote by R/I (“R mod I”) the set of all cosets of I by elements of R:

R/I = {a+ I | a ∈ R}.

Because the coset a+ I is the same as the equivalence class [a]EI
, R/I and

R/EI are just different notations for the same set.

Theorem 5 (Quotient rings) Let I be an ideal in a ring R. Then

1. R/I = R/EI = {a + I | a ∈ R}, the set of all additive cosets of I in
R, is a quotient ring under the following “mod I” operations:

(a+ I) + (b+ I) = (a+ b) + I,

−(a+ I) = −a+ I,

0R/I = 0R + I = I,

(a+ I)(b+ I) = ab+ I,

1R/I = 1R + I;

2. R/I is a homomorphic image of R under the natural map ν : a 7→ a+I;

3. R/I is a ring (commutative if R is).

Let us consider some examples.

1.3.1 The quotient ring Z/(m)

This is identical to Z/≡m, and each element a+ (m) has a unique represen-
tative rm(a) in Zm.

1.3.2 The quotient ring R[x]/(m(x))

Let m(x) be a polynomial in R[x], R commutative (and assume degm(x) >
0). Then (m(x)) is an ideal in R[x], and by the quotient ring theorem

R[x]/(m(x)) = {a(x) + (m(x)) | a(x) ∈ R[x]}

is a ring – the “quotient ring of polynomials mod m(x)” – and a homomor-
phic image of R[x] under the (natural) map

a(x) 7→ a(x) + (m(x)).
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Moreover, R[x]/(m(x)) and R[x]/≡m(x) are the same sets and the coset
a(x) + (m(x)) ∈ R[x]/(m(x)) is the equivalence class [a(x)] ∈ R[x]/≡m(x).

Each coset or equivalence class has a unique representative having degree
< degm(x), namely rm(x)(a(x)), because:-

Theorem 6

1. For any a(x) + (m(x)) ∈ R[x]/(m(x)),

a(x) + (m(x)) = rm(x)(a(x) + (m(x))).

2. If deg a(x),deg b(x) < degm(x) then

a(x) 6= b(x) ⇒ a(x) + (m(x)) 6= b(x) + (m(x)).

Corollary 7 If the number of elements in the set R, denoted |R|, is k and
degm(x) = n, then

|R[x]/(m(x))| = kn

(whereas |R[x]| is infinite because there is no limit on the degrees of the
polynomials in R[x]).

1.3.3 The quotient ring R[[x]]/(xm)

For fixed positive m,

a(x) ≡xm b(x) ⇐⇒ a(x)− b(x) ∈ (xm)
⇐⇒ ai = bi (i = 0, . . . ,m− 1)

and each element has a unique polynomial representative having degree < m.

1.4 Principal ideal domains

A principal ideal domain (PID) is an integral domain D in which every ideal
I is principal, i.e. I = (a) = {ra | r ∈ D} for some a ∈ D.

Examples: Z, F [x] and F [[x]] are PIDs, but F [x, y] is not, because (x, y)
is not principal. More generally:

Theorem 8 A Euclidean domain is a PID.
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Proof Let D be a Euclidean domain with degree function d, and let I be
an ideal in D. If I = {0} then I is the principal ideal (0), so assume I 6= {0}.
Let m 6= 0 be an element of I having minimum degree; then we claim that
I = (m). (m) ⊆ I trivially by the definition of ideal. To prove that I ⊆ (m),
perform a Euclidean division of any a ∈ I by m to give

a = mq + r, d(r) < d(m) or r = 0.

Then a,m ∈ I ⇒ r = a − mq ∈ I. But d(r) 6< d(m) because m has
minimum degree by assumption, so r = 0 ⇒ a = mq ∈ (m). 2

Generally in an integral domain D the generator of a principal ideal is
determined only up to associates, i.e.

(a) = (b) ⇐⇒ a ∼ b,

because a ∈ (m) ⇐⇒ au ∈ (m) if u is a unit in D from the definition of
ideal. Hence Z is a PID in which every ideal has the form (m) where m ≥ 0
and F [x] is a PID in which every ideal 6= (0) has the form (m(x)) where
m(x)) is monic, because both are Euclidean domains. Although F [[x]] is
not a Euclidean domain is can be proved to be a PID in a similar way to
the proof for Euclidean domains, in which every ideal 6= (0) has the form
(xm) for some m ≥ 0.

Because any homomorphic image of a ring R must be isomorphic to R
modulo an ideal, and a PID has only one class of ideals, the conclusion is
that the only non-trivial homomorphic image of Z is Zm, of F [x] is F [x]m(x)

(polynomials mod m(x)) and of F [[x]] is F [[x]]xm (truncated power series
under truncated arithmetic) – hence the importance of those image rings.

1.5 Simple rings

Any ring R has two improper ideals, the zero ideal (0) = {0} and the unit
ideal (1) = R, with corresponding improper homomorphic images

R/(0) ∼= R and R/(1) ∼= {0}

(and their isomorphs).
A ring whose only ideals are improper is called simple. It has no proper

homomorphic images and so cannot be abstracted or further simplified.

Theorem 9 Let R be a nontrivial commutative ring. Then

R is simple ⇐⇒ R is a field.
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Proof
( ⇐ ) Let I 6= (0) be an ideal in a field R. Then there exists x 6= 0 in I,

hence x−1x = 1 ∈ I, so r1 ∈ I for all r ∈ R ⇒ I = R.
( ⇒ ) Let R be a simple ring and x 6= 0 be in R. Since x ∈ (x),

(x) 6= (0). But R is simple, hence (x) = R and so 1 ∈ (x). Thus 1 = ax for
some a ∈ R ⇒ a = x−1. 2

Hence fields are trivial PIDs, since their only ideals are (0) and (1), and
they have no proper homomorphic images. This means that fields cannot be
modelled by homomorphic images, hence it is often preferable to work with
rings that are not fields – for example, to regard elements of Q[x] as elements
of Q(Z[x]) with trivial denominators in Z. Thus, to factorize a polynomial
over Q express it as a quotient of a polynomial over Z and an integer,
factorize the polynomial over Z by factorizing (several) homomorphic images
of it and lifting back to Z, and finally divide by the denominator to return to
Q[x] (in some preferred way, e.g. with an overall numeric factor and monic
polynomial factors).

Finally, it may be useful to know the following:

Theorem 10 A PID is a gcd domain.

1.6 Unital subrings

Whilst (0) is the smallest ideal in any ring R, the smallest subring is [1] = [0].
The nature of [1] is determined by the characteristic of R as follows:

Theorem 11 Let R be a ring. Then

1. [1] ∼= Z if char R = 0;

2. [1] ∼= Zm if char R = m.

1.7 Prime subfields

The smallest (with respect to inclusion) subfield of a field E is called the
prime subfield of E, which can be proved always to exists and to be unique.
It is determined by the characteristic of the field E as follows:

Theorem 12 Let E be a field and P the prime subfield of E. Then

1. P ∼= Zp if char E = p;
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2. P ∼= Q if char E = 0.

Note that p must be prime for E to be a (finite) field, hence the name “prime
subfield”, even though it is not entirely appropriate and “unital subfield”
might be better, since P is the smallest subfield containing 1 (or 0).

1.8 Prime and maximal ideals

In this subsection R will always denote a commutative ring. A homomorphic
image of R is isomorphic to a quotient ring R/I by an ideal I in R. So what
kind of ideal I makes R/I (1) an integral domain, or (2) a field?

Definition 4 An ideal P in R is prime if ab ∈ P ⇒ a ∈ P or b ∈ P .

This is motivated by the fact that if p is a prime in an integral domain then

p | ab ⇒ p | a or p | b.

Example: (6) is not prime in Z because 3 × 2 ∈ (6) but 3 6∈ (6) and
2 6∈ (6). However, (7) is prime because ab ∈ (7) ⇒ 7 | ab ⇒ 7 | a or 7 | b
(since 7 is prime), and hence either a ∈ (7) or b ∈ (7).

Definition 5 An ideal M in R is maximal if M ⊂ I ⊂ R for no ideal I in
R.

This is the largest non-trivial ideal in the ring.
Example: (x) is not maximal in Z[x] because (x) ⊂ (x, 2) ⊆ Z[x]. How-

ever, (x, 2) is maximal, as I will prove below.

Theorem 13 R/P is an integral domain ⇐⇒ P is prime.

Theorem 14 R/M is a field ⇐⇒ M is maximal.

Corollary 15 A maximal ideal is a prime ideal.

Proof A field is an integral domain, hence M maximal ⇒ R/M is a field
⇒ R/M is an integral domain ⇒ M is prime. 2

Example: Now we can prove that (x, 2) is the maximal ideal in Z[x].

Proof We show that Z[x]/(x, 2) is a field and appeal to Theorem 14 above.
To prove that Z[x]/(x, 2) is a field we use the Ring Isomorphism Theorem,
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which is the Universal Isomorphism Theorem for Ω-algebras given earlier
specialized to rings, starting from the ring Z[x].

Consider the “0-evaluation mod 2” map

φ : a(x) 7→ r2(a(0)),

which is easily shown to be an epimorphism: Z[x] → Z2. (In fact, φ is the
composition of two familiar epimorphisms: 0-evaluation, a(x) 7→ a(0), and
reduction mod 2, b 7→ r2(b).) Then by the Ring Isomorphism Theorem

Z[x]/kerφ ∼= Z2,

and because Z2 is a field (2 is prime) so is Z[x]/kerφ.
It remains to show that kerφ = (x, 2).1 By definition, (x, 2) = {rx+2s |

r, s ∈ Z[x]} and φ(rx+ 2s) = r2(2s(0)) = 0, so rx+ 2s ∈ kerφ ⇒ (x, 2) ⊆
kerφ.

On the other hand, if a(x) = a0 +a1x+a2x
2 + · · · ∈ Z[x] then φ(a(x)) =

r2(a0) = 0 ⇒ a0 = 0 + 2k, k ∈ Z, so

φ(a(x)) = 0 ⇒ a(x) = 2k + xr, k ∈ Z, r ∈ Z[x],

and hence
kerφ = {rx+ 2k | r ∈ Z[x], k ∈ Z} ⊆ (x, 2).

Therefore kerφ = (x, 2). 2

Finally, we return to the connection between prime elements and prime
ideals.

Theorem 16 In any integral domain,

(p) prime ⇒ p prime.

Corollary 17 In an integral domain D,

m composite ⇒ D/(m) is a ring with zerodivisors.
1The ring-theoretic definition of kernel is

ker φ = {a ∈ R | φ(a) = 0},

which specializes the general set-theoretic definition.
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Proof m composite ⇒ (m) is not prime by Theorem 16 ⇒ D/(m) is
not an integral domain by Theorem 13. 2

Generally, the converse to Theorem 16 is false, but:-

Theorem 18 In a PID (and hence in a Euclidean domain),

p prime ⇒ (p) maximal (and hence prime).

Corollary 19 In a PID,

p prime ⇒ D/(p) is a field.

Proof Apply Theorem 18 and Theorem 14. 2

Examples: Z and F [x] are Euclidean domains and hence PIDs, so from
Corollary 19:-

1. Z/(p) ∼= Zp is a field ⇐⇒ p is prime;

2. F [x]/(m(x)) ∼= F [x] is a field ⇐⇒ m(x) is irreducible over F .

We knew (1) already; (2) is illustrated below.
x2 − 2 = (x +

√
2)(x −

√
2) is reducible over R, so R[x]/(x2 − 2) is not

a field, and moreover not even an integral domain (from Corollary 17) – it
can easily be shown explicitly to have zerodivisors as follows:

R[x]/(x2 − 2) ∼= R[α] = {a+ bα | a, b ∈ R},

where α2 − 2 = 0. Then

(
√

2 + α)(
√

2− α) = 2− α2 = 0

and we have constructed two zerodivisors.
However, x2−2 is irreducible over Q, so Q[x]/(x2−2) is a field, in which

inverse elements can easily be constructed explicitly as follows:

Q[x]/(x2 − 2) ∼= Q[α] = {a+ bα | a, b ∈ Q},

where α2 − 2 = 0. Then

1
a+ bα

=
1

a+ bα
· a− bα

a− bα
=

a− bα

a2 − 2b2
(since α2 = 2)

=
a

a2 − 2b2
+

−b
a2 − 2b2

α ∈ Q[α].
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Unfortunately, this technique of “rationalizing the denominator” works
only for square roots, and not for modulus polynomials of degree > 2; in
general the “extended gcd formula” must be used.

2 Extension fields

This section is essentially the theory of irrational quantities, i.e. how to
represent and manipulate irrational numbers and more general irrational
expressions, by building on what we already know about rational quantities.

F will denote a ground field and E an extension field of F , E ≥ F .

2.1 Root adjunction

As an element of Q[x] the polynomial x3− 2 has no linear factors because it
has no roots in Q, and so it is irreducible over Q. However, if the coefficient
field Q is extended to R the polynomial is reducible. This suggests the
general root adjunction problem:

Given a field F and an irreducible polynomial m(x) over F ,
extend F to a field E in which m(x) has a root.

The following constructive solution, due to Kronecker (1823–1891), uses
quotient rings.

Theorem 20 Let m(x) be an irreducible polynomial over F . Then E =
F [x]/(m(x)) is an extension of F in which m(x) has a root.

This construction relies on the definition of arithmetic in a quotient ring,
and before proving the theorem we need the following preliminary theory.

Lemma 21 Let a(x) = anx
n +an−1x

n−1 + · · ·+a0 ∈ R[x]. Then in R[x]/I,
where I is some ideal (m(x)), a(x+ I) = a(x) + I.

Proof Identifying ai ∈ R with the coset ai + I ∈ R[x]/I, and using the
definition of an ideal, gives

a(x+ I) = (an + I)(x+ I)n + · · ·
= (anx

n + I) + · · ·
= (anx

n + an−1x
n−1 + · · ·+ a0) + I

= a(x) + I.
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2

Then if α = x+ I, where I = (m(x)),

m(α) = m(x+ I)
= m(x) + I by the above lemma
= 0 + I since m(x) ∈ I
= 0 ∈ R by agreed identification.

Proof of the theorem. m(x) irreducible over F ⇒ F [x]/(m(x)) is a
field (by Corollary 19). Identifying the coset a+(m(x)) ∈ F [x]/(m(x)) with
a ∈ F makes F [x]/(m(x)) an extension field of F . Finally, α = x+ (m(x))
is a root of m(x) in F [x]/(m(x)). 2

Remark This solution is formal, but it is no more formal than a solution
such as

√
2.

Corollary 22 Let m(x) be an irreducible polynomial over a field F . Then
E = F [x]/(m(x)) is an extension over which m(x) has a linear factor (and
hence over which m(x) is reducible).

Proof Apply the Factor Theorem. 2

This construction puts the “obvious” way to extend a field by a root of
a polynomial on a firm basis – we saw some examples at the end of the last
section.

Theorem 23 Let f(x) be any polynomial over F having degree ≥ 1, where
f(x) need not be irreducible. Then F can be extended to a field E in which
f(x) has a root (and hence a linear factor).

Proof Extend by a root of an irreducible factor of f(x). 2

Theorem 24 Let f(x) be a polynomial of degree ≥ 1 over a field F . Then
F can be extended to a field E in which f(x) has n roots.

Proof Use induction on the degree of the polynomial. 2

Definition 6 A root field over F of a polynomial f(x) ∈ F [x] is a field
E ≥ F such that
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1. All roots of f(x) lie in E;

2. E is the smallest extension of F that satisfies (1) (in that no proper
subfield of E is an extension of F that contains all roots of f(x).

Theorem 25 Any polynomial f(x) ∈ F [x] has a root field over F .

Corollary 26 A polynomial factors or “splits” into linear factors over its
root field (hence a root field is also called a “splitting field”).

2.2 Analysis of simple extension fields

The smallest extension field of F that contains α ∈ E is denoted F (α) and
called “F adjoined by α”. F (α) is called simple because only one element
is adjoined to F – one can also adjoin several elements to form the multiple,
or iterated, extension F (α1, α2, . . . , αr), which is the smallest extension field
of F that contains α1, α2, . . . , αr. Multiple extension fields are important
in the theory of integration, for example, but for many other purposes, for
reasons that will be exlained later, simple extension fields suffice.

The following categorization of elements of extension fields is extremely
important.

Definition 7 Let α ∈ E ≥ F . Then α is called algebraic over F if α satis-
fies a polynomial equation over F , so that f(α) = 0 for some f(x) ∈ F [x];
otherwise α is called transcendental over F . F (α) is called a (simple) alge-
braic or transcendental extension of F according to whether α is algebraic
or transcendental over F .

Examples: The classic (and default) setting is F = Q, E = C, and
referring to a (complex) number as being “algebraic” or “transcendental”
without qualification implies over Q, thus:

1. 3
√

2 is algebraic, because it is a root of x3 − 2 ∈ Q[x];

2. i =
√
−1 is algebraic, because it is a root of x2 + 1 ∈ Q[x];

3. 3
√

2 +
√

5 is algebraic, because if x = 3
√

2 +
√

5 then x3 = 2 +
√

5 or
(x3 − 2)2 = 5, so x6 − 4x3 − 1 = 0 over Q[x];

4. e and π are both transcendental, which is much harder to prove.
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Generally, the ground field F should be specified, because (e.g.) e and π are
both trivially algebraic over R.

These notions can be generalized to functions, and the elementary func-
tions log, exp, sin, etc. are referred to as transcendental functions. A func-
tion R → R is said to be transcendental if it is transcendental over the ring
PR of all polynomial functions R → R. Thus y = f(x) ∈ RR is transcenden-
tal if it satisfies no polynomial of the form a(x, y) =

∑
i ai(x)yi, ai(x) ∈ R[x];

otherwise f(x) is called an algebraic function. For example, y(x) = 3
√
x2 + 1

is clearly algebraic because y3 − x2 − 1 = 0, and so is y(x) = 1/x because
xy− 1 = 0, whereas proving that a function is transcendental is not so easy.

We are mainly interested in algebraic extension fields, which have the
following useful characterization. Let α ∈ E be algebraic over F . Then
we define the minimum polynomial of α over F , denoted mα(x), to be the
monic polynomial of smallest degree in F [x] having α as a root.

Proposition 27 (Properties of the minimum polynomial)
Let α ∈ E have minimum polynomial mα(x) over F . Then

1. mα(x) is unique;

2. mα(x) is irreducible over F ;

3. for any f(x) ∈ F [x], f(x) = 0 ⇐⇒ mα(x) | f(x).

Proposition 28 (Characterization of minimum polynomial)
If α ∈ E is a root of a monic irreducible polynomial m(x) over F then m(x)
is the minimum polynomial of α over F .

Hence an irreducible polynomial over a field F is the minimum polynomial
over F of any of its roots.

We have now seen two ways to construct extension fields: as quotients
by ideals and as fields generated by elements. The two are related by the
following:

Theorem 29 Let α ∈ E be algebraic over F ≤ E with minimum polynomial
mα(x) over F . Then

F (α) ∼= F [x]/(mα(x)).

Proof Use the Ring Isomorphism Theorem. 2
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Corollary 30 (Representation of F (α)) Let α ∈ E have minimum poly-
nomial of degree n over F . Then each β ∈ F (α) can be uniquely represented
in the form

β = a0 + a1α+ · · ·+ an−1α
n−1 (ai ∈ F ).

We have already seen this in a ring context. Note that since mα(α) = 0
in F (α), arithmetic in F (α) is essentially polynomial arithmetic modulo
mα(α), regarding α as an indeterminate (which it is not!).

Example: The minimum polynomial of Q( 3
√

2) is x3 − 2, and

Q( 3
√

2) ∼= Q[x]/(x3 − 2).

Each element β ∈ Q( 3
√

2) has a unique representation in the form

β = a+ b
3
√

2 + c
3
√

4 (a, b, c ∈ Q).

In particular, each β 6= 0 has an inverse expressible in the same form.
As a final remark about general extension fields, note the following:

Theorem 31 Let α ∈ E be transcendental over F ≤ E. Then

F (α) ∼= F (x).

Hence whereas a simple algebraic extension of a finite field is finite, a simple
transcendental extension of a finite field is infinite.

3 Finite fields

3.1 Cyclic property

The multiplicative group of a finite field is cyclic, which has some important
practical consequences for the structure of finite fields. To prove this requires
a little group theory, as follows.

Lemma 32 Let a, b be elements of an abelian (multiplicative) group, and let
their orders be o(a) = m, o(b) = n, where gcd(m,n) = 1. Then o(ab) = mn.

Proof Let r = o(ab). Now (ab)mn = (am)n(bn)m = 1.1 = 1, so r ≤ mn. In
the other direction,

1 = gcd(m,n) = sm+ tn, s, t ∈ Z.
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Hence
ar = (asm+tn)r

= (am)sr(an)tr

= (an)tr since o(a) = m
= (anbn)tr since o(b) = n
= ((ab)r)nt

= 1,

so that m | r. Similarly, n | r, so gcd(m,n) = 1 ⇒ mn | r ⇒ mn ≤ r.
Hence r = o(ab) = mn. 2

Theorem 33 Let G be a finite abelian (multiplicative) group and let m be
the order of a maximal order element of G. Then the order of any element
of G divides m.

Proof Let a ∈ G have maximal order m, and let b ∈ G have order n.
Assume to the contrary that n -m. Then there must be some prime p in the
prime power factorizations of m and n that occurs with higher power in n
than in m, and thus

m = peq, n = pfr, where f > e > 0, p - q, p - r.

Now o(ape
) = q and o(br) = pf since o(a) = m and o(b) = n. Then

o(ape
br) = pfq by the above lemma, since gcd(pf , q) = 1. But pfq > m, in

contradiction to m being the maximal order of elements in G. Hence n |m.
2

A cyclic group G is one generated by a single element, so that G = [a]
for some a ∈ G, i.e. [a] = {ai | i ∈ Z}. More precisely, if n = o(a) and
Z∞ = Z then [a] = {ai | i ∈ Zn}, where ai 6= aj if i 6= j (i, j ∈ Zn). Hence
o(a) = |[a]|, i.e. the order of an element is the order of the cyclic subgroup
that it generates.

Now we can state and prove the main theorem.

Theorem 34 Let E be a finite field. Then E∗, the multiplicative group of
E, is cyclic.

Proof Let |E| = r, the order of E or number of elements in E, and let
α ∈ E∗ have maximal orderm. Then we have to prove thatm = r−1 = |E∗|.

By Lagrange’s Theorem, the order of any element of E∗ divides the order
of E∗. Hence m | (r − 1), giving m ≤ (r − 1).
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In the other direction, consider the roots of xm−1 in E∗. For any b ∈ E∗,
o(b) = n, we have n |m by Theorem 33, so m = kn. Then bm = (bn)k = 1,
which makes every one of the r − 1 elements b ∈ E∗ a root of xm − 1. But
xm − 1 has at most m distinct roots, hence r − 1 ≤ m. 2

Theorem 35 Let a ∈ G be an element of order n. Then o(ai) = n ⇐⇒
gcd(i, n) = 1.

Definition 8 The Euler phi-function (or totient function) φ(n) is defined
to be the number of positive integers ≤ n that are relatively prime to n, i.e.
integers 1 ≤ i < n such that gcd(i, n) = 1, which always includes 1 and
never includes n.

For example, φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2.
Hence a cyclic group of order n has φ(n) distinct generators.

Definition 9 A generator of the cyclic group E∗ is called a primitive ele-
ment of E.

Hence any element of maximal order (i.e. |E| − 1) is primitive.
From the above group theory follows:

Theorem 36 Let |E| = r. Then E has φ(r − 1) primitive elements. If
α ∈ E∗ is primitive then ai is primitive if and only if gcd(i, r − 1) = 1.

Thus from one primitive element one can easily compute all of them, but
unfortunately it is not easy in a large field to find one!

3.2 Finite fields as algebraic extensions

The cyclic property plays a major rôle in the behaviour of finite fields, e.g.

Lemma 37 Let E be a finite field, |E| = r. Then any β ∈ E∗ is a root of
xr−1 − 1 (over E).

Proof For any β ∈ E∗, Lagrange’s Theorem asserts that k = o(β) divides
|E∗| = r − 1. Hence r − 1 = km for some m ∈ Z+, so βr−1 = (βk)m = 1. 2

Theorem 38 Let F be a finite field and E a finite extension field of F .
Then any β ∈ E is algebraic over F .

17



Proof Let |E| = r. By Lemma 37 any β ∈ E∗ is a root of xr−1− 1 ∈ F [x],
and 0 ∈ E is a root of x ∈ F [x]. 2

The next theorem explains the importance of simple algebraic exten-
sions:

Theorem 39 Let F be a finite field and E any finite extension field of F ,
then E is a simple algebraic extension of F .

Proof Since E is a finite field it contains a primitive element α. Since α
generates E∗ we have E = F (α). Therefore E is a simple extension of F ,
and hence by Theorem 38 a simple algebraic extension of F . 2

It now follows from previous results that:-

Theorem 40 Let F be a finite field and E a finite extension field of F .
Then

E ∼= F [x]/(mα(x))

where mα(x) is the minimum polynomial over F of a primitive element
α ∈ E.

Moreover, each β ∈ E can be uniquely represented in the form

β = a0 + a1α+ · · ·+ an−1α
n−1 (ai ∈ F )

where n = degmα(x). From this follows:

Corollary 41 Let F be a finite field, |F | = q, and let E be a finite extension
of F . Then |E| = qn for some positive integer n (namely, the degree of the
minimum polynomial over F of a primitive element (generator) of E).

We now make a distinguished choice of ground field F . We saw earlier
that a field E of characteristic p has a unique prime (i.e. smallest) subfield
isomorphic to Zp, namely its unital subring

[1] = {0 · 1E , 1 · 1E , 2 · 1E , . . . , (p− 1) · 1E}.

Identifying a · 1E ∈ E with a ∈ Zp (0 ≤ a < p) allows us to regard Zp itself
as the unique prime subfield of any field E of characteristic p. Applying
Corollary 41 then leads to:

Theorem 42 Any finite field has pn elements for some prime p (the char-
acteristic of the field) and positive integer n (the degree of the minimum
polynomial over Zp of any primitive element of the field).
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3.3 Galois fields

The notation GF (q) (“Galois field of order q”) is used to denote any finite
field with q elements, where q must be a prime power pn. The name honours
the discoverer of finite fields, the French mathematician Evariste Galois, and
anticipates the result that any two finite fields with the same number of
elements are isomorphic.

3.3.1 Uniqueness of GF (pn)

To prove this we need a few properties of irreducible polynomials over finite
fields.

Lemma 43 Let a1(x), a2(x), . . . , aL(x) ∈ F [x] be distinct irreducible factors
of f(x) ∈ F [x]; then

L∏
i=1

ai(x) | f(x).

This follows essentially from the definition of irreducible (i.e. prime) factors.
Now with q = pn, let GF (q) be a given ground field and GF (qn) an

extension of it, and let us determine the irreducible factorization of xqn − 1
over GF (qn) and GF (q). We denote qn − 1 by Q.

Proposition 44 Let GF (qn) have distinct elements α0 = 0, α1, . . . , αQ.
Then over GF (qn), xQ − 1 has the irreducible factorization

xQ − 1 =
Q∏

i=1

(x− αi).

Proof Each αi is a root of xQ − 1 by Lemma 37, hence by the Factor
Theorem xQ − 1 has a linear factor x− αi for each αi ∈ GF (qn)∗. Then by
Lemma 43

xQ − 1 = c(x)
Q∏

i=1

(x− αi).

In order for the degrees and leading coefficients to match we must have
c(x) = 1. 2
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Proposition 45 Let m1(x), . . . ,mL(x) be distinct minimum polynomials
over GF (q) of the elements of GF (qn)∗. Then over GF (q), xQ − 1 has
the irreducible factorization

xQ − 1 =
L∏

i=1

mi(x).

Proof Each mi(x) is the minimum polynomial over GF (q) of some α ∈
GF (qn)∗, and this α is also a root of xQ − 1. Hence mi(x) |xQ − 1 by the
properties of a minimum polynomial. Then since each mi(x) is irreducible,∏L

i=1mi(x) |xQ − 1 by Lemma 43, so that

xQ − 1 = c(x)
L∏

i=1

mi(x).

Hence deg[
∏

imi(x)] ≤ Q. But each of the Q elements of GF (qn)∗ is a
root of some mi(x) and hence of

∏
imi(x). Therefore deg[

∏
imi(x)] ≥ Q,

and hence deg[
∏

imi(x)] = Q making c(x) a constant, which must be 1 by
equating leading coefficients because the mi(x) are all monic. 2

Comparing the factorization of xQ − 1 over both GF (qn) and GF (q)
leads to

Corollary 46 Let α ∈ GF (qn) have minimum polynomial mα(x) over
GF (q). Then mα(x) has distinct roots, all of which lie in GF (qn).

Theorem 47 (Uniqueness of GF (pn))
Any two fields with pn elements are isomorphic.

Proof Every field F includes a smallest prime subfield P , of which every
extension field must contain a power of |P | elements; hence |P | is the smallest
factor of |F |. Moreover, char F = char P . Hence if F is a field with pn

elements then F has characteristic p and is an extension field of Zp. By
Proposition 45, xpn − 1 has the irreducible factorization over Zp

xpn − 1 =
L∏

i=1

mi(x)

where the mi(x) are the distinct minimum polynomials over Zp of the ele-
ments of F ∗.
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Choosing α to be a primitive element of F , we have

F = Zp(α) ∼= Zp[x]/(mα(x)).

Now suppose that F ′ is also a field with pn elements, then xpn − 1 also
has the irreducible factorization over Zp

xpn − 1 =
L′∏
i=1

m′
i(x)

where the m′
i(x) are the distinct minimum polynomials over Zp of the ele-

ments of F ′∗. But by the uniqueness of prime factorization in the Euclidean
domain Zp[x] the set of factors {mi(x)} must be the same as {m′

i(x)}, and
in particular mα(x) = mβ(x) for some β ∈ F ′ so that

Zp(β) ∼= Zp[x]/(mα(x)).

Since Zp[x]/(mα(x)) ∼= F has pn elements, so does the subfield Zp(β) of F ′,
and hence Zp(β) = F ′. Therefore,

F = Zp(α) ∼= Zp[x]/(mα(x)) ∼= Zp(β) = F ′,

and hence F ∼= F ′. 2

3.3.2 Existence of GF (pn)

Lemma 48 In an integral domain of characteristic p 6= 0 (and hence p
prime),

(a+ b)p = ap + bp.

Proof By the binomial theorem,

(a+ b)p =
p∑

k=0

(
p
k

)
ap−kbk.

But for 1 ≤ k ≤ p− 1,(
p
k

)
=
p(p− 1)(p− 2) · · · (p− k + 1)

k!

contains p as a factor, for the following reason. Clearly the denominator
divides the numerator, because the result is an integer. But the denominator
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cannot divide p because p is prime, so it must divide the remaining factor,
and hence (p

k) = mp for some positive integer m.
But for any x in an integral domain D of characteristic p,

mp · x = m · ((p · 1D)x) = m · (0Dx) = m · 0D = 0D.

Thus, every term in the binomial expansion vanishes except the first and
last. 2

Corollary 49 (a+ b)pn
= apn

+ bp
n
.

Proof Use the previous lemma and induction on n. 2

Armed with this result we can state and prove the final theorem in this
introduction to abstract algebra:

Theorem 50 (Existence of GF (pn))
For every prime p and positive integer n there exists a field with pn elements.

Proof Consider the polynomial f(x) = xpn − x ∈ Zp[x]. This polynomial
has a root field, which is an extension E of Zp that contains all the roots of
f(x) and is such that no proper subfield of E also contains all the roots of
f(x). We now show that E is a field of pn elements.

By definition of root field, f(x) = xpn − x has pn roots, not necessarily
distinct, in its root field E. But the derivative

f ′(x) = pnxpn−1 − 1 = −1 6= 0

because E has characteristic p, and hence the pn roots of f(x) in E are in
fact distinct.

Moreover, the roots form a field because they are a closed set under field
operations. For example, if r1, r2 are roots of f(x) = xpn − x then:

f(r1 + r2) = (r1 + r2)pn − (r1 + r2)
= rpn

1 + rpn

2 − (r1 + r2) by Corollary 49
= r1 + r2 − (r1 + r2) r1, r2 are roots of xpn − x
= 0,

so r1 + r2 is also a root and the roots are closed under addition.
Thus the pn roots of f(x) themselves form a field, which clearly must

be the root field E. Hence the root field of xpn − x over Zp is a field of pn

elements. 2
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4 Exercises

The assessed questions in this set of exercises are the last three.

1. Show that any congruence relation on Z with respect to addition is
also a congruence relation with respect to multiplication. What about
the converse?

2. Verify the claim that {
∑n

i=1 airi | ri ∈ R} is the smallest ideal con-
taining a1, . . . , an ∈ R, where R is a commutative ring.

3. In an integral domain, prove that (a) = (b) ⇐⇒ a ∼ b (where ∼ is
the “associate” relation of differing by a factor of a unit).

4. Show that the ideal (x, 2) in Z[x] is not principal (and hence that Z[x]
is not a PID).

5. (Simplicity of the matrix ring Mn(F ).) Show that the ring Mn(F )
of all n × n matrices over a field F has no proper ideals. [Hint : Let
I 6= {0} contain a nonzero matrix A = (aij) with ars 6= 0. Now
consider the product a−1

rs EirAEsi (1 ≤ i ≤ n), where Eij is the matrix
with 1 in the (i, j) position and 0 elsewhere.]

6. Show that the ideal (x) is

(a) prime but not maximal in Z[x];

(b) maximal in Q[x].

7. Show that the following numbers are algebraic over Q: (a)
√

2i, (b)
5
√

1 +
√

3, (c)
√

2 +
√

3, (d)
√

2 + 3
√

2.

8. Let E be an extension field of F , α ∈ E. Show that F [α] = F (α).
[Note that F [α] is the smallest extension ring containing α, whereas
F (α) is the smallest extension field containing α.]

9. Show that for every positive integer n, a root field for the polynomial
xn − 1 over Q can be obtained as a simple algebraic extension of Q.
[Hint : Use your knowledge of complex numbers.]

10. Is F (x) = F (x2, x3)? Is F (x) = F (x4, x6)?

11. Find (by direct computation) all primitive elements of Z11.
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12. (** Assessed **)
For a commutative ring R show that the set of all polynomials in
R[x, y] with zero constant term is an ideal and show how to write it
in terms of its minimal set of generators.

13. (** Assessed **)
For each of the quotient rings R[x]/(x2 − 3) where (a) R = Q and (b)
R = Z7 verify that it is a field, and find the inverse of the coset or
equivalence class [2 + 5x].

14. (** Assessed **)
Show that Q(

√
2,
√

3) = Q(
√

2 +
√

3).
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