
Mathematics and Algorithms for Computer Algebra

Part 1 c© 1992 Dr Francis J. Wright – CBPF, Rio de Janeiro

July 9, 2003

3: Integer and rational arithmetic

I now want to apply the basic notions of computational representations
and abstract algebra that I have developed so far to concrete algorithms, and
briefly to consider their complexity. As I explained earlier, underlying all of
computer algebra are the integers, so I will begin by considering algorithms
for performing arithmetic on integers of unlimited magnitude, which I will
call long integers. It is then a very small step to extend this to arbitrary
rational numbers.

I will not consider any approximate representations, such as rounded
representations of the reals, because they are not fundamental to CA and
they lie more within the domain of numerical analysis. Given algorithms to
manipulate long integers it is a small extension to manipulate rounded real
representations of unlimited magnitude and precision. I will not explicitly
consider complex numbers because they are a trivial extension of the real
numbers, and similarly arithmetic on the integers mod m, which as we have
seen is very important, is essentially a trivial extension of integer arithmetic.

The definitive presentation of the material discussed in this set of notes is
in Chapter 4 “Arithmetic” in Vol. 2 “Seminumerical Algorithms” of the clas-
sic book The Art of Computer Programming by Donald E. Knuth (Addison-
Wesley, 1981), which henceforth I will refer to simply as “Knuth”, and most
of it is in section 4.3.1 “Multiple-precision arithmetic: The classical algo-
rithms”.

1 Representation of long integers

We have already seen how to do this in practice, by choosing a base B
that conveniently fits into a word of memory, and then linking a sufficient

1

number of words together, either as a linked list or an array. There is a
question about exactly what the base should be, to which we will return
later. Any integer can be represented by its magnitude together with its
sign. I will assume that the sign, which requires only one bit of information,
is stored somewhere and can be accessed as required, and I will focus on the
representation of non-negative integers. The manipulation of long integers
essentially just formalizes the conventional techniques for performing integer
arithmetic by hand using “long multiplication”, “long division”, etc. In
order to understand the algorithms it is often useful to imagine the base B
to be 10, even though the real intention is that the base will be more like
105 or 1010.

The mathematics of this representation requires the lexicographic order-
ing once again, but now in a purely numerical context. Each digit (compo-
nent) of a long (unlimited magnitude) integer is itself a (small) integer, so
a (long) integer is represented by a set of digits (small integers), but this
set has an order corresponding to the positional representation used when
writing integers conventionally. Hence we need to formalize the ordering on
such sets of digits.

1.1 Lexicographic order

Let E1, . . . , Er be ordered sets (e.g. each {0, 1, 2, . . . , B−1}), and define the
relation < on the Cartesian product set E = E1×· · ·×Er of r-tuples of the
form x = (x1, . . . , xr) ∈ E by

x < y if xi < yi for the first index i such that xi 6= yi.

This is called the lexicographic order on E.
For example, taking B = 10 as in conventional decimal representation,

and r = 5 to allow integers with up to 5 digits, this ordering would give

(1, 2, 3, ?, ?) < (1, 2, 4, ?, ?),

where ? represents any digit, or expressed more conventionally and in words:
123 hundred and anything is less than 124 hundred and anything.

[Note that if each Ei is an ordered set of variable identifiers together
with 1 ordered so that xi > 1 ∀i and (x1, x2, . . . , xr) denotes the product
(x1 × x2 × · · · × xr) then E is the set of all monomials of total degree at
most r, and this lexicographic ordering is exactly the same as that which I
described less formally in the first set of notes.]

2

The set E together with the lexicographic order relation is called the
lexicographic product of the sets Ei. If each Ei is totally ordered then so is
E.

1.2 Existence and uniqueness of the representation

Theorem 1 Let B be an integer > 1, and for k a strictly positive integer let
Bk be the lexicographic product of k copies of the set B = {0, 1, . . . , B − 1}.
Then the map fk : Bk → {0, 1, . . . , Bk − 1} defined by

fk : (d0, d1, . . . , dk−1) 7→
k−1∑
i=0

diB
k−i−1

is an isomorphism.

Proof is by induction on k. 2

This shows how to go from a representation to the integer that it rep-
resents. To go the other way we need the observation that for any integer
a > 0 there is a smallest integer k > 0 such that a < Bk. Then according
to the above theorem a has a unique representation of the form

a = (d0, d1, . . . , dk−1)B, (d0 6= 0).

The (small) integers di are called the digits of a in base B; the base is
normally only indicated (as a subscript) when necessary to avoid ambiguity.

Finally, the following bounds will be useful later.

Proposition 2 If the positive integer a admits the following representation
in base B:

a =
k∑

i=0

aiB
i, with ak 6= 0,

then
Bk ≤ akB

k ≤ a ≤ Bk+1 − 1.

[Beware of the change of notation here!]

Proof The only non-trivial inequality is the last one, which follows from
the observation that

ai ≤ B − 1 ⇒ a ≤ (B − 1)(1 + B + · · ·+ Bk) = Bk+1 − 1.

2

3

1.3 Number bases

The most commonly used bases are 10, giving the decimal or denary sys-
tem, 2 giving the binary system, 8 giving the octal system and 16 giving the
hexadecimal system. Modern computers normally use binary internally, al-
though because binary representation generates rather long strings of digits
it is common for computer programmers to use hexadecimal or octal nota-
tion. The smallest addressable amount of memory is usually 8 bits, called a
byte, and one hexadecimal digits corresponds to 4 bits, which is sometimes
called a nibble (or nybble) (because “nibble” means a small “bite” in the
more conventional context of eating food). Therefore one byte is conve-
niently represented by two hexadecimal digits. However, we only have con-
ventional symbols for 10 digits, whereas hexadecimal representation needs
16 digits, so these are represented as {0, 1, 2, . . . , 9, a, b, . . . , f}. Octal repre-
sentation has the advantage that it requires only (the first 8) conventional
digit symbols.

(In fact, many computers can also work in decimal internally using a
representation called binary coded decimal (BCD), in which nybbles are used
to store only decimal digits. If not much arithmetic is performed then BCD
avoids the input-output overhead of converting from decimal to binary and
back again, and may therefore be more efficient, but there is no floating-
point analogue of BCD and it is used in commerce rather than in science.)

When a representation requires more memory than is available it is said
to overflow, which can easily happen in the conventional representation of
numbers using a fixed number of words. In our flexible multi-word repre-
sentation it would correspond to completely running out of memory, which
is certainly possible. However, it is important to avoid conventional over-
flow during arithmetic calculations with multi-word integers. Addition (and
hence subtraction) of two integers in any base can produce at most one extra
digit, and so a choice of base that leaves at least one (small) digit position
free in each word of the representation is necessary. Thus if the word size of
a computer is n bits the base should use at most n− 1 of them, and so we
require B ≤ 2n−1. This implies a maximum digit size of 2n−1 − 1, hence we
can add two maximal digits to get 2n − 2 which is less than the maximum
(small) integer that can be stored in an n-bit word, namely 2n − 1.

This choice of base is the most storage-efficient among reasonable choices,
but it causes difficulty in multiplication, because the product of two (n−1)-
bit digits can have up to 2n− 2 bits! Using only half of the available bits to
avoid this problem does not make efficient use of memory, so the solution is

4

to take care when designing the multiplication algorithm, to which we will
return below.

1.4 Converting between representation and long integer

To convert from a representation a = (a0, a1, . . . , ak−1) to the integer that
it represents is simply a matter of evaluating the sum

a =
k−1∑
i=0

aiB
k−i−1.

Note that this is the same as the standard numerical task of evaluating a
(univariate) polynomial, and the efficient way to do it is exactly the same.
For example, to numerically evaluate the polynomial

a0x
3 + a1x

2 + a2x + a3

one writes it in Horner’s nested form as

((a0x + a1)x + a2)x + a3,

which (generally) involves the minimum number of multiplications, and (as
always) evaluate from the inside of the nest of parentheses outwards. In the
general case, this evaluation scheme is expressed by the following algorithm.
I will write algorithms in an algorithmic pseudo-language that is similar to
Pascal and REDUCE, and not unlike Maple, C, etc.

input: B integer > 1, k, a0 integers > 0, a1, . . . , ak−1 integers ≥ 0
a := a0;
for i := 1 to k − 1 do a := aB + ai.
output: the long integer a

This algorithm is interesting in theory, and it is useful (and used) in
practice when working with small integers, but for long integers we cannot
actually use it, because the long integer has no computational significance
other than as its representation – in other words, for us a long integer is its
representation, and what we need is algorithms to manipulate long integers
by manipulating their representations. Nevertheless, such algorithms are
based on this first and simplest algorithm. For example, there is a need for
algorithms to convert integer representations between different bases, and
in particular to convert between base 10 and the internal base for input and
output purposes.

5

The conversion of a long integer into its digit representation has a similar
status to the above conversion the other way. It is perhaps most obvious
from the explicit Horner form above that

a = Bq + ak−1, where 0 ≤ ak−1 < B,

so that under integer division the last digit ak−1 is the remainder when the
number a is divided by the base B, i.e.

ak−1 = a mod B.

Then the quotient q has the form

q =
k−2∑
i=0

aiB
k−i−2,

of which the last digit again is given by

ak−2 = q mod B.

This suggests a conversion procedure, but writing it as an explicit al-
gorithm is not quite as easy as the opposite conversion, because we do not
know in advance how many digits will be generated. Therefore we cannot
simply loop through all the digits, and instead we must use a more general
condition on the number being decomposed into digits to stop the loop,
thus:

input: a integer ≥ 0, B integer > 1
i := 0;
while a > 0 do
begin

xi := a mod B;
i := i + 1;
a := a div B

end.
output: the representation (xk−1, . . . , x1, x0)B

Note that this algorithm destroys the value of the variable a; in practice one
would probably make it local so that this would not matter – otherwise a
copy should be used instead. I have used div to denote the quotient in an

6

integer division operation, as provided in Pascal, symmetricaly with mod for
the remainder.1

Note also that this algorithm naturally generates the digits in the “wrong
order”, i.e. from the right in increasing weight order, so that xi = ak−i−1. In
order to use essentially the same iterative algorithm to generate the digits
in the “right order”, i.e. from the left in decreasing weight order as would
be necessary for example to print out the number, it is necessary to first
compute the number of digits k. This is blogB ac + 1,2 but it is better to
compute it simply by counting in a preliminary loop, thus:

input: a integer ≥ 0, B integer > 1
k := 1; x := 1;
while a > xB do
begin

k := k + 1;
x := xB

end;
for i := 0 to k − 1 do
begin

ai := a div x;
a := a mod x;
x := x div B

end.
output: the representation (a0, a1, . . . , ak−1)B

1.5 Iteration versus recursion

The above iterative algorithm to compute digits in decreasing weight order
is inelegant, whereas a recursive algorithm could naturally generate them
in increasing weight order. In fact, it is frequently the case that a recur-
sive algorithm follows the opposite order to an iterative algorithm. This is
essentially because recursion naturally involves two passes in opposite or-
ders through the data: an “inward” pass that stacks recursive invocations,
followed by an “outward” pass that unstacks them.

1Unfortunately, the normal (algebraic) user mode of REDUCE does not provide either
of these keywords, although both facilities exist internally and could easily (and I believe
should) be made more readily available!

2The floor function b·c : R → Z is defined such that bxc = n is the largest integer not
greater than x, i.e. n ≤ x < n + 1.

7

Using the notation rep(a;B) = (a0, a1, . . . , ak−1)B to denote the k-tuple
representation of the integer a in base B, the observation that

a =
k−1∑
i=0

aiB
k−i−1 = Bq + ak−1

where

q =
k−2∑
i=0

aiB
k−i−2 = a div B, ak−1 = a mod B,

gives the recursive formulation

rep(a;B) = rep(a div B;B)‖(a mod B) if a 6= 0,

rep(0;B) = (0),

where the “concatenation operator” ‖ is defined by

(x1, x2, . . . , xr−1)‖(xr) = (x1, x2, . . . , xr−1, xr),

(0)‖(x) = (x).

Since the above recursive formulation was in terms of building a list (i.e.
a k-tuple), here is a more algorithmic example of a recursive procedure (one
that calls itself) to output the digits in the correct order. Notice that it is
very succinct (short) and elegant, and that it must have a name (so that it
can call itself):

procedure rep(a,B);
if a 6= 0 then
begin

rep(a div B, B);
output a mod B

end.

1.6 Comparing two long integers

If the two integers have opposite signs then the comparison operation is
trivial and requires only the sign information. I will consider only the case
that they are both positive; the case that they are both negative trivially
requires the comparison to be reversed. Let a = (am, . . . , a0)B and b =
(bn, . . . , b0)B be representations in base B of two positive (long) integers,
such that am, bn 6= 0.

8

It is convenient to express the comparison in terms of the function

sign(x) =

+1 if n > 0,

0 if n = 0,
−1 if n < 0.

We assume that this function and arithmetic are supplied for small integers,
and that B,m, n are small integers.

The comparison algorithm is a direct consequence of the representation
theorem (Theorem 1) and lexicographic ordering:

input: a = (am, . . . , a0)B, b = (bm, . . . , b0)B, am, bn 6= 0
if m 6= n then r := sign(m− n) else
begin

i := m;
while ai = bi do i := i− 1;
if i = −1 then r := 0 else r := sign(ai − bi)

end.
output: r = sign(a− b)

2 Addition and subtraction of long integers

I will consider only the addition and subtraction of pairs of integers; the
case of many numbers can trivially be expressed as repeated operations on
pairs.

2.1 Two positive integers

Let a = (am−1, . . . , a0)B and b = (bn−1, . . . , b0)B be representations in base
B of two positive (long) integers with respectively m and n digits; then

a =
m−1∑
i=0

aiB
i and b =

n−1∑
i=0

biB
i.

Note that for addition and multiplication it is convenient to sum in ascend-
ing weight order, which is the reverse of the representation order. If the
representation is implemented as arrays then this presents no difficulty at
all; if the representation uses lists then either they must first be reversed, or
a recursive summation algorithm could be used that is slightly more subtle
than the iterative version presented below.

9

If m ≥ n then the sum is formally

c = a + b =
m−1∑
i=0

(ai + bi)Bi where bn = bn+1 = · · · = bm−1 = 0.

However it is generally not the case that the representation of c in base
B is simply c = (am−1 + bm−1, . . . , a0 + b0)B because it may happen that
ai + bi ≥ B, in which case a carry to the digit position having next higher
weight is generated. The carry can be only 0 or 1 (in any base) because by
definition

ai, bi ≤ B − 1 ⇒ ai + bi ≤ 2B − 2 = 1B + (B − 2).

In the following algorithm, r denotes the carry at each stage, and it is
assumed that a small amount of pre-processing has been done to ensure that
b has no fewer digits than a by exchanging a and b if necessary.

input: a = (am−1, . . . , a0)B, b = (bn−1, . . . , b0)B, a, b ≥ 0, m ≥ n
r := 0; {carry forward}
k := m− 1; {length of sum}
for i := 0 to m− 1 do
begin

s := ai + bi + r;
if s < B then begin ci := s; r := 0 end

else begin ci := s−B; r := 1 end
end;
if r > 0 then begin k := m; cm := 1 end.
output: c = a + b = (ck, . . . , c0)B

2.2 Two integers of arbitrary sign; subtraction

If a and b have the same sign then

c = a + b = sign(a) (|a|+ |b|)

and the previous addition algorithm can be used. If a and b have opposite
signs then two (and only two) cases need to be distinguished:

• if |a| ≥ |b| then c = a + b = sign(a) (|a| − |b|);

• if |a| < |b| then c = a + b = sign(b) (|b| − |a|).

10

Hence it is necessary to be able to compare |a| and |b|, for which we already
have an algorithm (taking an absolute value is trivial – just reset the sign
indicator to positive), and to be able to subtract one positive integer from
another that is no larger. Assuming as before that the shorter integer b
is padded with leading zeros, the algorithm can be almost identical to the
addition algorithm, except that the carry is subtracted rather than added:

input: a = (am−1, . . . , a0)B, b = (bn−1, . . . , b0)B, a ≥ b ≥ 0 (⇒ m ≥ n)
r := 0; {carry forward}
for i := 0 to m− 1 do
begin

s := ai − bi − r;
if s ≥ 0 then begin ci := s; r := 0 end

else begin ci := s + B; r := 1 end
end.
output: c = a− b = (cm−1, . . . , c0)B

Note that there can be no carry beyond the digits of a by the assumption
that a ≥ b, which makes this algorithm slightly simpler than the addition
algorithm.

Subtraction itself is now trivially implemented in terms of addition as

a− b = a + (−b);

note that it is necessary to use the full addition algorithm to accommodate
arbitrary signs for a and b.

2.3 Complexity of addition and subtraction

As I discussed in the first set of notes, the natural choice for the complexity
of an algorithm is the number of operations on small integers. In both
the above algorithms there is only one loop which performs m iterations
(assuming m ≥ n). We can conveniently lose the details of what happens
in the loop, and precisely which operations we count, in the “O” notation,
which ignores constant factors. Therefore, a reasonable estimate of the
complexity bound is O(max{m,n}).

As a worst-case bound this cannot be replaced by O(min{m,n}), by
modifying the algorithm to stop the loop when the digits of b are exhausted,
because it is possible for a carry to propagate right through the remaining

11

digits of a, as illustrated by the following worst possible example of this
phenomenon for addition:

a =
m−1∑
i=0

(B − 1)Bi, b = 1, c = a + b = Bm,

because

a = (B − 1)(Bm−1 + Bm−2 + · · ·+ B + 1) = Bm − 1.

A similar worst case can occur in a non-trivial subtraction.

3 Multiplication of long integers

I will consider only pairs of positive integers because it is trivial to accom-
modate arbitrary signs in a product, and to generalize to a product of many
integers. With a and b as above, m ≥ n, their product is given by

c = ab =

(
m−1∑
i=0

aiB
i

)n−1∑
j=0

bjB
j

 =
m+n−2∑

h=0

 ∑
i+j=h

aibj

Bh.

The limits on the inner sum can be arranged so that non-existent digits are
not accessed, by combining the relations

0 ≤ i ≤ m− 1,

and
0 ≤ j ≤ n− 1, i = h− j ⇒ h− n + 1 ≤ i ≤ h.

However, the inner sum can attain the maximum value of α(B − 1)2, where
α depends on m,n in a fairly complicated way but is clearly bounded by
m + n − 1. Hence, when converting the outer sum into a representation in
base B, the carry can be arbitrarily large, and so must be handled in a more
general way than in the addition and subtraction algorithms. Nevertheless,

a < Bm, b < Bn ⇒ c = ab < Bm+n,

and hence the number of digits in the product cannot be more than m + n.
With this analysis, the double sum formulation translates directly into

the following algorithm:

12

input: a = (am−1, . . . , a0)B, b = (bn−1, . . . , b0)B, a, b ≥ 0
r := 0; {carry forward}
k := m + n− 1; {length of product}
for h := 0 to m + n− 2 do
begin

s := r;
for i := max(0, h− n + 1) to min(h, m− 1) do s := s + aibh−i;
ch := s mod B;
r := s div B

end;
if r 6= 0 then begin k := k + 1; ck−1 := r end.
output: c = ab = (ck−1, . . . , c0)B

This algorithm is a direct translation of the nested sum formula, which is
itself a reformulation of the product of two sums, hence all three involve the
same number of multiplications, which is most easily seen from the product
of sums to be mn. The number of other operations is clearly also bounded
by this number, and therefore the complexity is O(mn).

When directly multiplying two digits ai, bj ≤ B − 1 there is an unavoid-
able possibility of the product being (B − 1)2, which whilst being ≥ B (for
B ≥ 3) is also < B2, so that whilst it may not fit into one small integer,
it can be represented using two, which I will call a double small integer.
However, the above algorithm also sums such products, and thereby can
produce intermediate values that do not fit into a double small integer, and
moreover are not bounded independently of m,n. This can be avoided by
re-writing the double sum as

c = ab =
n−1∑
j=0

(
m−1∑
i=0

aibjB
i+j

)
,

which puts the powers of B inside the inner sum and thereby spreads out
the products aibj so that within the inner sum they are not added but only
stored. This formulation translates into the following algorithm:

input: a = (am−1, . . . , a0)B, b = (bn−1, . . . , b0)B, a, b ≥ 0
for i := 0 to m− 1 do ci := 0; {if necessary}
k := m + n; {length of product}
for j := 0 to n− 1 do
begin

r := 0; {carry forward}

13

for i := 0 to m− 1 do
begin

s := aibj + ci+j + r;
ci+j := s mod B;
r := s div B

end;
cj+m := r; {hence no need to initialize}

end.
if r = 0 then k := k − 1;
output: c = ab = (ck−1, . . . , c0)B

Note that if the variables storing the digits of the product c cannot be
assumed to be zero at the start of the algorithm (which depends on details
of an implementation) then it is necessary to explicitly clear only the first
m, because the carry from each evaluation of the inner sum assigns directly
to the next higher digit position in c.

To prove that this algorithm does not overflow a double small integer
representation for the intermediate sum s or a small integer representation
for r, note that

s = aibj + ci+j + r ≤ (B − 1)2 + (B − 1) + r, r = s div B.

Assuming s < B2 then r < B, and hence consistently

s ≤ (B − 1)2 + (B − 1) + (B − 1) < (B − 1)2 + 2(B − 1) + 1 = B2.

We still have the problem that s generally requires a double small inte-
ger representation, whereas the motivation for representing a long integer
as a sequence of small integers was that the small integer arithmetic could
be performed directly by the computer hardware. In fact, many processors
support double-word arithmetic, and therefore there is no problem, unless
the small integer representation itself was based on a double word. If neces-
sary, double-small-integer arithmetic could be implemented in software as a
simple special case of the implementation of long integer arithmetic, for ex-
ample by choosing B to be a perfect square and representing a small integer
u < B in the form u = u0

√
B + u1, u0, u1 <

√
B, so that uiuj < B and this

arithmetic really can be performed using only small integers. This software
implementation would increase the complexity of the algorithm, but only by
a constant factor, so that it would still be O(mn).

14

4 Euclidean division

Division of numbers is much harder than any of the other arithmetic oper-
ations, in much the same way that integration is much harder than differ-
entiation. In the same way that multiplication by an integer corresponds
to repeated addition of ring elements, so division corresponds to repeated
subtraction, and it could be implemented that way, but for large integers
one would prefer a more efficient approach! Many books on computer alge-
bra are rather vague about integer division. I will present a complete but
simplified algorithm; for the most efficient version see Knuth.

Let a and b be two long integers having respectively m and n digits in
base B representation. Because division proceeds from the left it is conve-
nient to number the digits from the left as we did originally, to give

a = (a0, a1, . . . , am−1)B, b = (b0, b1, . . . , bn−1)B.

Then the problem is to divide a by b to obtain a quotient q and remain-
der r satisfying the integer division relation (which is a special case of the
Euclidean division relation):

a = bq + r, 0 ≤ r < |b|.

One need not necessarily insist that the remainder r be positive in all cases,
provided q and r are uniquely defined, as I discussed in Notes 2. However,
I will consider only strictly positive integers a and b – the generalization to
include all integers is a technical detail.

If a < b then trivially q = 0 and r = a, so assume that a > b (and hence
m ≥ n). Because Bm−1 ≤ a < Bm and Bn−1 ≤ b < Bn it follows that

q ≤ a/b < Bm/Bn−1 = Bm−n+1

and hence the length k of q satisfies k ≤ m− n + 1.
Long division of a by b determines the digits of the quotient q one by one

from the left (i.e. in decreasing weight order). The leading significant digit
q0 is determined by dividing b into the number consisting of the smallest
leading subset of the digits of a for which the division is possible (i.e. gives
a non-zero quotient). At most the leading n + 1 digits of a are required:
if a0 > b0 then the leading n digits suffice, if a0 = b0 then the leading n
may suffice; otherwise the leading n + 1 digits are required. However, it is
easiest to add a leading 0 to the front of a and allow the leading digit of the
quotient to be 0, in which case we can always start with the leading n + 1

15

digits of a. The leading quotient digit q0 times b is then subtracted from the
leading n+1 digits of a, to leave a remainder r that is guaranteed to be less
than b. Digit n + 1 of a is now appended to r to make it into an n + 1-digit
number, which when divided by b is guaranteed to have a quotient q1 such
that 0 ≤ q1 < B. The process is repeated until all digits of a have been
processed, when the final value of r is the overall remainder.

Then the difficult part of the algorithm is to determine the quotient Q
of an n+1-digit integer by an n-digit integer, which is quaranteed to satisfy
0 ≤ Q < B. Let us assume that we have a suitable sub-algorithm, which we
will develop later, to perform this task; then the overall division algorithm
looks like this:

input: a = (a0, . . . , am−1)B, b = (b0, . . . , bn−1)B, a ≥ b ≥ 0 (⇒ m ≥ n)
k := m− n + 1; {length of quotient}
{Initial n + 1-digit remainder:}
r := (0, a0, . . . , an−1)B;
for i := 0 to k − 1 do
begin

{Determine next digit of quotient:}
qi := br/bc;
r := r − qib; {at most n significant digits}
{Append next digit of a:}
if i 6= k − 1 then r := (r0, . . . , rn−1, a(m−k+1)+i)B;

end;
output: q = (q0, . . . , qk−1)B, r = (r0, . . . , rn−1)B (a = bq + r, 0 ≤ r < b)

The leading digit q0 of the quotient q may be zero (in which case it can be
discarded), and the length of the remainder r can be anything between 0
and the length n of b.

Before proceeding further, we can now bound the complexity of integer
division. The loop determines one digit of q on each iteration, and the
length k of q satisfies k ≤ m − n + 1, so that the loop is executed at most
m−n+1 times. Because 0 ≤ qi ≤ B−1, qi could in principle be determined
by testing all B − 1 possible values in a time that is independent of m, n
(although we will see below that we can do a lot better than that). The
time to multiply the integer b of length n by the digit qi is clearly O(n),
and the time to subtract the result from r is clearly also O(n). Therefore,
the complexity of the whole algorithm is O((m−n)n), which is the same as
the time required to compute the product bq. Note that the details of the
algorithm, such as precisely how each digit in the quotient is determined,

16

do not affect the order of the asymptotic time complexity; however, they
do affect the constant factor that is suppressed by the “O” notation but
can be significant in practice, because long integers of practical importance
typically have no more than a few hundred decimal digits, which in a base
of say 1010 corresponds to m,n ≈ 10, which is not very asymptotic!

4.1 Determining digits of the quotient

With a minor shift of notation, the problem is the following:

Let u = (u0, u1, . . . , un)B and v = (v1, v2, . . . , vn)B, v1 6= 0, be
non-negative integers in base-B representation, such that u/v <
B. Find an algorithm to determine Q = bu/vc.

The condition that u/v < B is equivalent to

u/B < v ⇒ bu/Bc < v ⇒ (u0, u1, . . . , un−1)B < (v1, v2, . . . , vn)B,

i.e. the leading n digits of u do not have a non-zero quotient with v. We
ensured this initially by prepending a leading 0 to the dividend a; it is
ensured subsequently by the integer division property which ensures that
the remainder r is strictly less than the divisor b. Furthermore, Q is the
unique quotient such that

u = vQ + R, 0 ≤ R < v.

It will not always be the case that u0 ≥ v0, but it will always be the
case that (u0, u1)B ≥ v0, so their quotient is a plausible first guess at Q.
Therefore, since we know that Q < B, let us guess

Q̂ = min
(⌊

u0B + u1

v1

⌋
, B − 1

)
.

It is not obvious, but we will now prove that Q̂ is guaranteed to be very
close to Q provided v1 is large enough (which can easily be arranged by
rescaling both u and v). The proofs use the properties of the floor function
that bxc > x− 1 and bxc ≤ x.

Surprisingly, Q̂ can never be too small:

Proposition 3 With the definitions above, Q̂ ≥ Q.

17

Proof It is obviously true if Q̂ = B − 1. Otherwise

Q̂v1 > u0B + u1 − v1 ⇒ Q̂v1 ≥ u0B + u1 − v1 + 1.

It then follows that

u− Q̂v ≤ u− Q̂v1B
n−1

≤ (u0B
n + · · ·+ un)− (u0B + u1 − v1 + 1)Bn−1

= u2B
n−2 + · · ·+ un −Bn−1 + v1B

n−1

< v1B
n−1 ≤ v,

i.e. u − Q̂v < v. But Q is the smallest integer such that u − Qv = R < v
because also R ≥ 0, hence Q̂ ≥ Q. 2

We now prove that also Q̂ cannot be much too big, by contradiction.
Suppose that Q̂ ≥ Q + 3. By definition

Q̂ ≤ u0B + u1

v1
=

u0B
n + u1B

n−1

v1Bn−1
≤ u

v1Bn−1
<

u

v −Bn−1

because v−v1B
n−1 < Bn−1. The case v = Bn−1 ⇒ v = (1, 0, 0, . . . , 0)B ⇒

Q = bu/vc = u0B+u1 = Q̂, which is ruled out by the assumption Q̂ ≥ Q+3.
Moreover, this assumption and the relation Q > (u/v)− 1 imply that

3 ≤ Q̂−Q <
u

v −Bn−1
− u

v
+ 1 =

u

v

(
Bn−1

v −Bn−1

)
+ 1.

Therefore,
u

v
> 2

(
v −Bn−1

Bn−1

)
≥ 2(v1 − 1).

Finally, Q̂ ≤ B − 1 by definition, so that

B − 4 ≥ Q̂− 3 ≥ Q = bu/vc ≥ 2(v1 − 1)

and hence v1 < bB/2c. This result together with the previous proposition
prove:

Theorem 4 If v1 ≥ bB/2c then Q̂− 2 ≤ Q ≤ Q̂.

18

Hence the only possible error in Q̂ is that it can over-estimate the true
quotient Q by at most 2, and this is independent of the base B. Hence the
B − 1 possible values that Q might take have been reduced to just 3.

The requirement that v1 ≥ bB/2c is analogous to a normalization con-
dition on the representation of v, which essentially states that the leading
significant digit should be non-zero, although here we have a more stringent
requirement. A simple way to meet the requirement is to multiply both u
and v by d = bB/(v1 + 1)c, which satisfies bB/2c ≤ dv1 ≤ B − 1.

To use this estimate of the quotient, the overall division algorithm needs
a pre-processing step in which both a and b are multiplied by d = bB/(b0 +
1)c, and a post-processing step in which the remainder r only is divided
by d. (Note that it must be the case that d | r.) Then an algorithm to
compute Q = bu/vc under the assumptions explained at the beginning of
this subsection is the following:

input: u = (u0, u1, . . . , un)B, v = (v1, v2, . . . , vn)B, v1 6= 0, u, v > 0
Q := Q̂; {as above}
R := u−Qv;
while R < 0 do {at most 3 iterations}
begin

Q := Q− 1;
R := R + v

end.
output: Q,R such that u = vQ + R, 0 ≤ R < v

This algorithm can be inserted into the main division algorithm presented
earlier. Knuth gives a slightly more sophisticated and faster version.

5 Faster multiplication

The straightforward multiplication algorithm described earlier had complex-
ity O(mn) when multiplying two integers a and b with respectively m and n
digits. It is interesting to know whether this complexity is optimal, and in
fact it is not. A simple algorithm with lower asymptotic complexity is the
following, essentially as described by Knuth.3

3The essence of the algorithm was apparently first suggested by A. Karatsuba in Dok-
lady Akad. Nauk SSSR 145 (1962), 293–294 [English translation in Soviet Physics–Doklady
7 (1963), 595–596].

19

Suppose that we wish to multiply two long integers u, v each with 2N
digits in base B. [In practice, this means choosing N to be the smallest
integer so that 2N ≥ m,n, and padding a and b with leading zeros as
necessary.] Then write u, v in the form

u = BNu1 + u0, v = BNv1 + v0,

which is equivalent to representing them in base BN ; u1 = (u2N−1, . . . , uN)B

is the more significant half of u, u0 = (uN−1, . . . , u0)B is the less significant
half, and similarly for v. Then

uv = B2Nu1v1 + BN (u1v0 + v1u0) + u0v0

= (B2N + BN)u1v1 + BN (u1 − u0)(v0 − v1) + (BN + 1)u0v0.

This formula replaces one multiplication of 2N -digit numbers by three mul-
tiplications of N -digit numbers. This will probably be slightly faster, but
the main use of the formula is to apply it recursively to perform the N -digit
multiplications, etc. This implies that N should be chosen initially to be a
power of 2.

If T (N) denotes the time to perform an N -digit multiplication, then the
above transformation implies that

T (2N) ≤ 3T (N) + cN

for some constant c, because one 2N -digit multiplication has been replaced
by three N -digit multiplication and some additions and subtractions, each
of which require time O(N). Now if the technique is applied recursively k
times we can apply the above complexity bound recursively k times to get

T (2k) = T (2.2k−1)
≤ 3T (2k−1) + c2k−1

≤ 32T (2k−2) + c(3.2k−2 + 2k−1)
...
≤ 3k−1T (2) + c(3k−2.2 + · · ·+ 3.2k−2 + 2k−1).

If c is chosen to be large enough that T (2) ≤ c then

T (2k) ≤ c(3k−1 + 3k−2.2 + · · ·+ 3.2k−2 + 2k−1)
= c(3k−1 + 3k−2.2 + · · ·+ 3.2k−2 + 2k−1)(3− 2) = c(3k − 2k)

20

(which for k = 1 consistently gives T (2) ≤ c). Therefore

T (n) ≤ T (2dlg ne) ≤ c(3dlg ne − 2dlg ne) < 3c · 3lg n = 3cnlg 3

is an estimate of the complexity of multiplying two n-digit numbers.4

Hence, this technique of splitting a problem into two similar subprob-
lems, and applying the splitting recursively (which is a standard technique
for improving algorithms), has reduced the asymptotic complexity of multi-
plying two n-digit numbers from O(n2) to O(nlg 3) ≈ O(n1.585).

One can take this idea further, again following Knuth, and chop each
number into r + 1 pieces rather than only 2, assuming that the numbers
have (r +1)N digits (in base B). Then formally replacing the new base BN

by a variable x associates each number

u = urB
Nr + · · ·+ u1B

N + u0

with the polynomial

u(x) = urx
r + · · ·+ u1x + u0,

and similarly for v. Define the polynomial

w(x) = u(x)v(x) = w2rx
2r + · · ·+ w1x + w0.

Then because the numbers u, v can be recovered from their associated poly-
nomials as u = u(BN), v = v(BN), we have that uv = w(BN). The
coefficients of the degree-2r polynomial w(x) can be found as linear combi-
nations of its values at 2r+1 distinct values of x. (They are the solution of a
system of 2r +1 linear equations, which can be solved formally before being
evaluated numerically, or equivalently the Lagrange interpolation formula
can be used.) The values of w(x) are found as u(x)v(x). The complexity
of this operation is determined by the size of the coefficients, which have N
digits (in base B); the interpolation is O(N) and the multiplications require
T (N) operations. Then a single application of this technique gives

T ((r + 1)N) ≤ (2N + 1)T (N) + cN.

Applying this recursively as before leads to

T (n) ≤ cnlogr+1(2r+1) < cnlogr+1((r+1)2) = cn1+logr+1 2

4lg denotes the binary logarithm function log2; the ceiling function d·e : R → Z is
defined such that dxe = n is the smallest integer n not less than x, i.e. n − 1 < x ≤ n;
3lg n = nlg 3 because lg 3 lg n = lg n lg 3.

21

as an estimate of the complexity of multiplying two n-digit numbers. Hence,
we have proved the following:

Theorem 5 Given ε > 0, there exists a multiplication algorithm such that
the number of elementary operations T (n) needed to multiply two n-digit
integers satisfies

T (n) < c(ε)n1+ε,

for some constant c(ε) independent of n.

Unfortunately, this technique is not as good as it appears at first sight,
because the inherent complication of the algorithm hidden in c(ε) becomes
very large as ε → 0, i.e. r → ∞, and in fact there are algorithms that
make better use of the underlying interpolation-evaluation technique. The
algorithms currently considered to be the best use finite Fourier transform
techniques developed by Schönhage and Strassen, and for practical values of
the size n of the integers give complexity essentially linearly proportional to
n. However, these questions are of mainly theoretical interest, because the
numbers that occur in CA are not normally large enough to make these so-
phisticated methods significantly better than the straightforward algorithm
presented earlier.

6 Computation of powers

We have considered algorithms for multiplication, and multiplication of an
element of any additive group by an integer corresponds to repeated addi-
tion; now we consider algorithms for computing powers xn, and an integer
power n of any element x of a multiplicative group corresponds to repeated
multiplication. In fact, I will consider only n ∈ N, in which case xn can be
defined in any (multiplicative) monoid. For n ∈ Z+ it would suffice for x to
be a member of a semigroup, and the multiplication could be replaced by
any associative binary operation.

The näıve algorithm to compute xn, n ∈ N, simply multiplies 1 by x n
times. (If one were to multiply x by itself n − 1 times then n = 0 would
become a special case, and it is best to avoid special cases if possible, because
the resulting algorithm is simpler, more elegant, and therefore more likely
to be correct!) Hence the näıve algorithm looks like this:

input: x ∈ some multiplicative monoid, n ∈ N
z := 1; {the result}

22

for i := 1 to n do z := xz.
output: z = xn

This algorithm requires n multiplications, of which n− 1 are non-trivial.
An alternative approach is to think recursively; express the solution to

the problem in terms of a simpler version of the same problem. If n is
even then xn = (xn/2)2, and if n is odd then xn = x(x(n−1)/2)2. A recursive
formulation needs a base case that can be solved non-recursively (in order to
stop the recursion), and in this case it is that x0 = 1. This leads immediately
to the following recursive algorithm:

input: x ∈ some multiplicative monoid, n ∈ N
procedure power(x, n);
if n = 0 then 1
else if n even then

power(x, n div 2)
else

power(x, (n− 1) div 2)× x.
output: power(x, n) = xn

The successive halving of the exponent used in this algorithm corre-
sponds to its representation in binary. More precisely, if

n =
k−1∑
i=0

ei2i, ei ∈ {0, 1}, ek−1 = 1

then

xn = x
∑k−1

i=0
ei2

i

=
k−1∏
i=0

xei2
i
=

∏
i,ei=1

x2i
.

This formulation suggests the following iterative algorithm, which computes
successive even powers of x, and multiplies them into the result when they
occur:

input: x ∈ some multiplicative monoid, n ∈ N
y := x; {successively y = x, x2, x4, . . .}
z := 1; {the result}
while n > 0 do
begin

m := n div 2;
if n > 2m then z := zy; {bit was 1}

23

y := y2;
n := m

end.
output: z = xn

To check that this algorithm is correct, convince yourself that it works cor-
rectly for n = 0, 1, 2, 3, 4, 5, in which case it is probably correct generally.
(But this is not a proof!)

The loop in the above algorithm is controlled by successively halving
n, and hence it is executed once for each of the k digits of n in binary
representation. Within the loop there is one multiplication to square y, and
one multiplication when the current bit of n is 1, giving the total number of
multiplications N to be

N = k +
k−1∑
i=0

ei ⇒ k < N ≤ 2k

(since at least the highest-order bit of n must be 1). If n has k binary digits
as above then 2k−1 ≤ n < 2k, and hence k = 1 + blg nc, so blg nc ≤ N ≤
2(1 + blg nc). In fact, 1 multiplication in the näıve algorithm is trivial (a
multiplication by 1), as is the case in the binary algorithm, and the last
squaring of y is unnecessary and could be avoided by taking slightly more
care. Therefore, the multiplication counts N for the two algorithms are
really N = n− 1 and blg nc ≤ N ≤ 2blg nc respectively, e.g. if n = 106 then
N = 999, 999 and N ≤ 38.

The recursive binary algorithm involves precisely the same operations as
the iterative binary algorithm, and so must have exactly the same multipli-
cation count.

6.1 Full complexity of power computation

We have bounded the number of multiplications required, but this may not
be a true indication of the complexity, because we also need to consider
the complexity of each multiplication operation itself. If, for example, x is
an element of a finite monoid then the complexity of each multiplication is
bounded by a constant, so the multiplication count is a fair measure of the
overall complexity.

However, at present we are more interested in the case that x is a long
integer, having (say) h digits in base-B representation, and let us suppose
that the complexity of multiplying integers having m and m′ digits is cmm′,

24

i.e. we are using a direct multiplication algorithm. In the näıve power al-
gorithm the length of one of the multiplicands increases linearly, giving the
complexity in terms of small-integer operations to be

C1(n) = ch(h + 2h + 3h + · · ·+ (n− 2)h) ≈ 1
2
ch2n2

by summing the geometric series.
In the binary algorithm (avoiding unnecessary multiplications), initially

y and z are both h-digit integers. In the worst case, in which every bit of n
is 1, both multiplications are performed on each of the k − 1 executions of
the loop, so the lengths of y and z double, and there is one multiplication
of the final values of y and z. Then an upper bound on the true complexity
is given by

C2(n) = 2ch2(1 + 22 + (22)2 + (23)2 + · · ·+ (2k−2)2) + ch2(2k−1)2

= ch2

(
2

k−2∑
i=0

22i + 22(k−1)

)

≈ ch2

(
22k

6
+

22k

4

)
=

5
12

ch222k.

To compare the two complexities, put n ≈ 2k to give

C2(n) ≈ 5
12

ch2n2,

which is essentially the same as C1(n). A more careful analysis of the binary
algorithm would show that its complexity varies around that of the näıve
algorithm, but always within a small factor.

Hence we have the somewhat counter-intuitive result that merely re-
ducing the number of multiplications performed on long integers does not
necessarily reduce the overall complexity of an algorithm, because one mul-
tiplication of two very long integers may be significantly more complex than
many multiplications of shorter integers. By balancing the sizes of the in-
tegers being multiplied, the binary algorithm effectively makes each of its
multiplications more complex.

6.2 Application to linear recurrence relations

An h-step linear recurrence relation (or difference equation) determining (or
satisfied by) a sequence {ur} has the form

un = a1un−1 + a2un−2 + · · ·+ ahun−h, n ≥ h.

25

For example, a discretization of a differential equation for purposes of numer-
ical solution takes this form. If Un denotes a column vector with elements
{un, un−1, . . . , un−h+1} then the above recurrence relation can be written in
the matrix form

Un = AUn−1,

where

A =

a1 a2 · · · ah−1 ah

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Then
Un = An−h+1Uh−1,

which can be computed using O(lg n) matrix multiplications.
The binary method is particularly useful when computations are made

modulo some integer, which therefore keeps the size of the integers involved
bounded.

7 Greatest common divisors

We have seen that a greatest common divisor can be defined in any integral
domain, and moreover in a gcd domain it can be expressed as a linear
combination in the form

gcd(a, b) = sa + tb.

In a Euclidean domain, which is a special case of a gcd domain, the Euclidean
division property leads to an algorithm to compute both a gcd and the
coefficients in the linear combination. However, a gcd is determined only
up to associates. In Z, which is a Euclidean domain if the absolute value
function is used as the degree function, associates differ by their sign, and
it is conventional to define the gcd to be positive.

7.1 Euclid’s algorithm

The algorithm to compute gcds is due to Euclid (after whom the domain is
named), and has been known for over two thousand years.

26

Let a, b ∈ Z be not both zero (otherwise the gcd is undefined). To
construct a gcd algorithm, let us think recursively again. Firstly, note that
every integer divides zero, so that

gcd(a, 0) = |a|,

which gives us a base case for a recursive definition. The integer division
property (a special case of the Euclidean division property) asserts that if
b 6= 0 then there exist unique q, r ∈ Z such that

a = bq + r, 0 ≤ r < |b|,

which we denote by q = a div b, r = a mod b. Then

c | a, c | b ⇒ c | r = a− bq

and so if b 6= 0

gcd(a, b) = gcd(b, r) = gcd(b, a mod b).

Hence we have an evaluation for gcd(a, b) in both of the cases that b = 0
and b 6= 0, which suggests the following (recursive) algorithm:

input: a, b ∈ Z, not both 0
procedure gcd(a, b);
if b = 0 then |a| else gcd(b, a mod b).
output: gcd(a, b)

To show that this algorithm terminates (i.e. stops after a finite number
of recursive calls), observe the following. If |a| ≥ |b| then q 6= 0 and so
|r| < |b|, hence in the recursive call the first argument does not increase
and the second argument strictly decreases towards a minimum value of
0, which it must eventually attain (because it is strictly decreasing) in at
most |b| recursions. If |a| < |b| then q = 0, r = a, and the recursive call
simply exchanges the arguments. Then |a| ≥ |b| in the next recursive call
of gcd(a, b), and |a| > |b| in all subsequent recursive calls, so this exchange
operation occurs at most once.

The above algorithm can easily be converted into an iterative algorithm,
i.e. one that is not explicitly recursive. To do this, it is convenient to let the
initial values of the variables a, b, r, q be p0, p1, p2, q1, and on each recursive
call to increment the subscripts by 1. This notation reflects the assignments

27

a := b, b := r implicit in the recursive calls. Then the sequence of recursive
calls is equivalent to the sequence of instances of the division property shown
in the left half of the following table:

gcd(a, b) = sa + tb

p0 = a, p1 = b P0 = A, P1 = B

p0 = p1q1 + p2 P2 = P0 − P1q1

p1 = p2q2 + p3 P3 = P1 − P2q2
...

...
pn−2 = pn−1qn−1 + pn Pn = Pn−2 − Pn−1qn−1

pn−1 = pnqn + 0
gcd(p0, p1) = pn Pn = sA + tB

Note that the quotients qi are not actually used in the computation of the
gcd, and they were not used in the above recursive algorithm. I will give an
explicit iterative algorithm in the following extended context.

7.2 The extended Euclidean algorithm

The gcd of a, b and the coefficients s, t in the linear combination

gcd(a, b) = sa + tb

can be found together by using a small extension of Euclid’s algorithm. To
see how this works, consider the right half of the above table, in which I have
used capital letters for some of the symbols. Otherwise, the equations in the
right half are identical to those in the left half, but with the remainders iso-
lated on the left. Clearly, P2 is a linear combination of P0 = A and P1 = B,
and hence so are P3, . . . , Pn, and since Pn is the gcd, the coefficients of A,B
in the expression that is the value of Pn are the required expansion coeffi-
cients s, t. Then suppose that A,B are symbolic objects that are distinct
from a, b, that the Pi are variables, distinct from the pi, that are assigned
values according to the right half of the above table, but that the qi are the
values determined by the equations in the left half of the table. This allows
us to run the two calculations together. One obvious choice for the symbolic
objects to represent A,B is two linearly independent 2-vectors, and if these
are chosen to be A = (1, 0), B = (0, 1) then Pn = sA + tB = (s, t). How-
ever, other representations are possible, such as keeping A,B as unbound
(unassigned) variables.

Based on this analysis, here is an iterative extended Euclidean algorithm:

28

input: a, b ∈ Z, not both 0
p0 := a; P0 := (1, 0);
p1 := b; P1 := (0, 1);
while p1 6= 0 do
begin

q := p0 div p1;
p2 := p0 mod p1; {or p0 − qp1}
p0 := p1; p1 := p2;
P2 := P0 − qP1;
P0 := P1; P1 := P2

end;
{Pick the positive gcd:}
if p0 < 0 then
begin

p0 := −p0;
P0 := −P0

end.
output: gcd(a, b) = p0 = sa + bt, (s, t) = P0

As we will see in later notes, the main practical use of the extended Euclidean
algorithm is to compute inverses in quotient rings and finite fields, and it can
also be used to compute partial fraction decompositions, which are useful in
integration and summation, for example.

7.3 Complexity of Euclid’s algorithm

The argument used above to show termination of the algorithm also shows
that the algorithm requires at most |b| iterations to reduce b to zero, plus
perhaps 1 iteration to initially exchange a and b, and so the complexity mea-
sured in terms of iterations is bounded by O(N) where N = min(|a|, |b|).
However, this assumes that |b| decreases in steps of 1, which is unduly pes-
simistic. The following better complexity bound is due to G. E. Collins5

and is described by Lipson.
We may assume that a ≥ b > 0. Then Euclid’s algorithm computes a

remainder sequence a ≥ b > p2 > . . . > pn > pn+1 = 0 where pn = g =
5Section 2 of “Computing Time Analyses for some Arithmetic and Algebraic Algo-

rithms”, in R. G. Tobey (ed.), Proc. 1968 Summer Institute on Symbolic Mathematical
Computation, IBM Programming Laboratory Report FSC69-0312, June 1969.

29

gcd(a, b). The remainders satisfy

pi−1 = piqi + pi+1, (1 ≤ i ≤ n− 1)
> pi+1qi + pi+1 = pi+1(qi + 1),

and hence
n−1∏
i=1

pi−1 >
n−1∏
i=1

pi+1(qi + 1).

Cancelling
∏n−2

i=2 pi > 0 simplifies this to

p0p1 > pn−1pn

n−1∏
i=1

(qi + 1) = p2
nqn

n−1∏
i=1

(qi + 1)

(because pn+1 = 0 ⇒ pn−1 = pnqn). Substituting now p0 = a, p1 = b, pn =
g and using qi ≥ 1, 1 ≤ i ≤ n− 1 (because pi−1 > pi), and qn ≥ 2 (because
pn−1 > pn), gives

ab > g22.2n−1 ≥ 2n

(because g ≥ 1). If a ≥ b then a2 ≥ ab > 2n and hence n < 2 lg a, so we
have proved

Theorem 6 Let a, b ∈ N, N ≥ a ≥ b ≥ 0; then Euclid’s algorithm computes
gcd(a, b) in < 2 lg N = O(lg N) iterations.

The tightest possible bound, due to Lamé, of 1.44 lg N is intimately
related to Fibonacci numbers.

However, this number of iterations is not a true measure of complexity if
long integers are involved. If a long integer N has n digits in some base, then
O(lg N) = O(n) bounds the number of iterations, and each iteration involves
a division operation, the complexity of which is certainly bounded by O(n2),
giving an overall complexity of O(n3). With a bit more care this bound can
in fact be reduced to O(n2) (or in principle a bit less). Nevertheless, gcd
computations are quite costly, and so should be avoided if possible!

8 Lowest common multiples

A lowest common multiple (lcm) of the elements a, b 6= 0 of an integral
domain D is an element ` ∈ D such that:

1. a | `, b | `;

30

2. a | c, b | c ⇒ ` | c.

It can be computed as

lcm(a, b) = ab/ gcd(a, b)

and a distinguished lcm can be chosen as for gcds.

9 Rational arithmetic

Given the above algorithms for performing long integer arithmetic, it is
straightforward to construct algorithms for performing rational arithmetic.
The set of rational numbers Q is the quotient field (field of quotients or
fractions) of the integers Z, so we must implement the operations required by
the construction of a quotient field. As I discussed in Notes 1, it is convenient
to use a canonical representation, and a rational number is formally an
equivalence class of pairs of integers [(a, b)], b 6= 0, among which we want to
choose a distinguished (canonical) representative. Because, as we have just
seen, it is advantageous to keep the integers with which we work as small
as possible in order to minimize computing times, we choose the canonical
rational representation of [(a, b)] to have a, b as small as possible, which
means dividing out their gcd. In doing so, we choose the sign of the gcd so
as to make the denominator of the canonical representative strictly positive.
This gives the following canonicalization algorithm:

a

b
→ sign(b).a/ gcd(a, b)

|b|/ gcd(a, b)
.

All routines that manipulate rational numbers, including input routines,
should return canonical representations. One could compute arithmetic op-
erations on rational numbers in the standard way and then canonicalize the
result, but this can involve computing gcds of larger numbers than necessary,
and slightly less obvious algorithms can be faster. For example, to compute

a

b
× c

d
=

p

q

one could compute p = ac, q = bd and then canonicalize, which requires
gcd(p, q) = gcd(ac, bd). But if the input numbers were already canoni-
cal, then a, b are relatively prime and so are c, d, and hence gcd(p, q) =
gcd(ac, bd) = gcd(a, d) gcd(b, c). Therefore, it is better to compute

p =
a

gcd(a, d)
· c

gcd(b, c)
, q =

b

gcd(b, c)
· d

gcd(a, d)

31

which is then canonical.
Similarly, to compute

a

b
+

c

d
=

p

q

one could compute p = ad+ bc, q = bd and then canonicalize, which requires
gcd(p, q) = gcd(ad + bc, bd). But it is better to use the lcm rather than
simply the product of the denominators as the initial denominator of the
sum, and so to compute

p = a · d

gcd(b, d)
+ c · b

gcd(b, d)
, q = lcm(b, d) =

bd

gcd(b, d)
,

and then canonicalize p/q.

10 Exercises

The assessed questions in this set of exercises are the first four.

1. (** Assessed **)
Give an example subtraction in which a carry propages through all
digit positions, analogous to the additive example given in the notes
above.

2. (** Assessed **)
Using base-10 representation, run the Euclidean division algorithm in
detail by hand for a = 12345, b = 78.

3. (** Assessed **)
Show how the binary method computes the power x15, and in partic-
ular show how many multiplications it requires. Devise an algorithm
to compute this particular power using fewer multiplications, thereby
demonstrating that the power method is not necessarily optimal.

4. (** Assessed **)
Run the extended Euclidean gcd algorithm by hand to compute g, s, t
in the relation

gcd(286, 91) = g = 286s + 91t.

5. Design two recursive algorithms (a) and (b) to perform addition of
long integers using a list representation with the digits in decreasing
weight order, such that (a) generates the sum list in the natural order,

32

i.e. by prepending cells representing digits of higher weight to the
front of the list, and (b) outputs the digits of the sum in decreasing
weight order without first constructing it as a list. Try the same for
multiplication. Implement them – Lisp or symbolic-mode REDUCE
would be convenient languages, otherwise you may also have to write
the list processor, which is not trivial!

6. Using base-10 representation, run the two multiplication algorithms by
hand for a = 12345, b = 6789, and compare them with the conventional
method of performing long multiplication by hand. Compare the space
complexities of the methods.

7. Develop explicit algorithms for performing rational arithmetic and re-
turning canonical results. Implement and test them, which is easy in
almost any language including FORTRAN, but slightly more elegant
in a language that provides structured data types such as Pascal or C.

8. Implement and test some or all of the algorithms discussed in the
notes in your favourite programming language – if that happens to be
FORTRAN you will have trouble with the recursive algorithms unless
you have access to FORTRAN 90. But even in FORTRAN it is fun to
write a set of routines to compute exact factorials of large numbers –
much larger than supported by the standard number representations.
To do that you will need to design and implement I/O routines in
addition to those discussed here.

33

