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4: Polynomial algebra

1 Definitions

Let {x1, x2, . . . , xn} be a (finite) set of n symbols and let R be a commutative
ring with unity.

Definition 1 The polynomials over R in the variables x1, x2, . . . , xn are
the formal sums

p =
∑

i1,...,in∈N
pi1,...,inxi1

1 · · ·x
in
n ,

where the coefficients pi1,...,in are elements of R and only a finite num-
ber of them are nonzero. The set of all such polynomials is denoted by
R[x1, x2, . . . , xn].

A polynomial of the form pi1,...,inxi1
1 · · ·xin

n with precisely one nonzero
coefficient is called a monomial. The monomorphism R → R[x1, x2, . . . , xn],
c 7→ cx0

1 · · ·x0
n, identifies the ground ring R with a subset of R[x1, x2, . . . , xn],

and therefore a monomial of the form cx0
1 · · ·x0

n is denoted simply c and
called a constant (or occasionally a constant polynomial).

If m,n ∈ N, 1 ≤ m < n, there is a natural isomorphism

R[x1, . . . , xm][xm+1, . . . , xn] ∼ R[x1, x2, . . . , xn].

The notation can be simplified by defining∑
i

pix
i =

∑
i1,...,in∈N

pi1,...,inxi1
1 · · ·x

in
n
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in terms of the multi-index i = (i1, . . . , in), where

i + j = (i1 + j1, . . . , in + jn) and xi = xi1
1 · · ·x

in
n .

Then if p, q ∈ R[x1, x2, . . . , xn], c ∈ R, polynomial addition and multi-
plication are defined by

p + q =
∑
i

(pi + qi)xi, pq =
∑
k

 ∑
i,j, i+j=k

(piqj)xk

 ,

where special cases of multiplication are

cp =
∑
i

(cpi)xi, − p =
∑
i

(−pi)xi.

With these operations R[x1, x2, . . . , xn] is a commutative ring with a unity
element which is the constant polynomial p = 1.

If p =
∑

i pix
i is nonzero (i.e. at least one coefficient is nonzero) then the

total degree of p is

deg p = max{i1 + · · ·+ in | pi 6= 0}

and the partial degree of p with respect to xj is

degxj
p = max{ij | pi 6= 0},

which is sometimes also denoted degj p.

2 Arithmetic, simplification and rational expres-
sions

In an algebraic context there is no difference between performing arithmetic
operations and simplifying arithmetic expressions. Assuming that a canoni-
cal representation is being used, then an arithmetic expression composed of
rational expressions is in general not in canonical form, even if the compo-
nent rational expressions themselves are. The process of simplifying such an
expression requires any arithmetic operations to be performed first. If nec-
essary, the result must then be put into canonical representation, although
probably the result of performing the arithmetic will already be canonical.

Arithmetic on rational functions is completely analogous to arithmetic
on rational numbers, if the integer operations underlying rational arithmetic
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are replaced by operations on (possibly multivariate) polynomials. Hence,
arithmetic on rational expressions is straightforward, given algorithms to
perform multivariate polynomial addition, subtraction, multiplication and
gcd computations, and I will not discuss it in further detail.

Univariate polynomial arithmetic is analogous to integer arithmetic in
which the integer base B is replaced by the polynomial variable, which I will
call x. However, a polynomial has more structure than an integer, which
actually makes polynomial arithmetic simpler because there are no carries
between different powers of x. I will assume that the polynomials have
coefficients in some ring R, which might in fact be a field, and might be
either infinite or finite. Assuming the existence of algorithms to perform
arithmetic in the coefficient ring, the algorithms to perform the polynomial
ring operations are independent of the details of the coefficient ring R. I will
discuss the complexity of polynomial arithmetic in terms of the number of
arithmetic operations required in R, but this is not the true total complexity,
which does depend on the details of the R, and may depend on the size of
the coefficients, as we saw would be the case if R = Z.

2.1 Polynomial addition and subtraction

In the univariate case, the algorithm to add two polynomials p, q is essentially
the same as the integer algorithm, and just requires a loop to run through
the terms of the polynomials, in which the number of coefficient operations
is min(deg p, deg q) + 1. (Since there are no carries there is no compelling
reason to increase this bound to max(deg p, deg q) + 1 as there was in the
integer case.) Just as for integers, subtraction can be performed using p−q =
p+(−q). If it is reasonable to assume that negating the coefficients is a trivial
operation then the number of coefficient operations is min(deg p, deg q) + 1
as for addition, otherwise it is deg q+1. The number of coefficient operations
for either addition or subtraction is certainly O(max(deg p, deg q)).

2.2 Polynomial multiplication

Classical univariate polynomial multiplication follows the first (unsatisfac-
tory) integer multiplication algorithm. If m = deg p, n = deg q then there are
(m+1)(n+1) coefficient multiplications and (m+1)(n+1)−(m+n−1) coef-
ficient additions, so the number of coefficient operations required is O(mn).
There are significantly faster polynomial multiplication algorithms based on
the fast Fourier transform (FFT), and analogous to the fastest integer multi-
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plication algorithms. However, these fast algorithm are only asymptotically
faster, which in practice means only for very high degrees.

2.3 Multivariate polynomials

Arithmetic on multivariate polynomials (multinomials) is accomplished by
taking advantage of the natural isomorphism referred to above, and regard-
ing R[x1, x2, . . . , xr] as R[x1, . . . , xr−1][xr]. Then arithmetic on polynomials
in r variables is carried out by recursion on r; the routines call themselves
if r 6= 0 or call their analogues for performing arithmetic in the appropriate
coefficient domain if n = 0 (which is the base case that terminates the recur-
sion). Note that this recursive approach to multinomial arithmetic matches
nicely with the recursive representation discussed in Notes 1.

In order to bound the complexity of multinomial arithmetic, let us as-
sume that the partial degrees of p, q ∈ R[x1, x2, . . . , xr] with respect to any
variable are bounded respectively by m,n; then p, q contain respectively
at most (m + 1)r and (n + 1)r monomials. The complexity of multivariate
arithmetic depends on the number of terms in each polynomial as in the uni-
variate case, and hence the number of coefficient operations required to add
or subtract p and q is O(max(m,n)r), and to multiply them is O((mn)r).

3 Euclidean division and pseudo-division

Addition, subtraction and multiplication of polynomials is fairly straightfor-
ward, but as in the case of the integers division is a little trickier. For one
thing, it makes a significant difference when dividing what domain the co-
efficients lie in, because it determines whether or not they divide in general.
Initially I will consider univariate polynomials whose coefficients are ele-
ments of a field, i.e. elements of F [x], which we know is a Euclidean domain.
Hence the Euclidean division property applies to all pairs of such polyno-
mials, and the task is to construct an algorithm to compute the quotient
and remainder polynomials. In a general Euclidean domain the quotient
and remainder are not unique, but in F [x] they are. The division algorithm
is essentially the same as for long integers, but simpler, assuming that we
have algorithms to perform the required coefficient arithmetic, in particular
division.

Theorem 1 Given two polynomials u(x) and v(x) over a field, with v(x) 6=
0, there exist unique polynomials q(x) and r(x) satisfying the Division Prop-
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erty
u(x) = q(x)v(x) + r(x), deg(r) < deg(v).

Proof Existence is proved by the algorithm given below (which could be
phrased more formally).

To prove that the division property is unique, suppose to the contrary
that it holds for both (q1(x), r1(x)) and (q2(x), r2(x)). Then q1(x)v(x) +
r1(x) = q2(x)v(x) + r2(x), so (q1(x) − q2(x))v(x) = r2(x) − r1(x). Now
if (q1(x) − q2(x)) is nonzero, we have deg((q1 − q2)v) = deg(q1 − q2) +
deg(v) ≥ deg(v) > deg(r2 − r1), a contradiction; hence q1(x) − q2(x) = 0
and r2(x)− r1(x) = 0.1 2

Here is the Euclidean division algorithm:

input: u(x) = umxm + · · ·+ u0, v(x) = vnxn + · · ·+ v0 ∈ F [x], vn 6= 0
q0 := 0; for i := 0 to m do ri := ui;
for k := m− n step −1 to 0 do
begin

qk := rn+k/vn; {the only coefficient division}
{Division loop:}
for j := n + k − 1 step −1 to k do rj := rj − qkvj−k

{rn+k := 0, but it will be ignored}
end.
output: q(x) = qm−nxm−n + · · ·+ q0, r(x) = rn−1x

n−1 + · · ·+ r0 ∈ F [x]
such that u(x) = q(x)v(x) + r(x), deg(r) < deg(v)

Note that the division loop amounts to replacing u(x) by u(x) − qkx
kv(x),

a polynomial of degree < n + k. This algorithm is usually called “synthetic
division”, for no very obvious reason!

The main loop in the above algorithm is executed m− n + 1 times, and
consists of one coefficient division and n coefficient multiplications and n
coefficient subtractions in the inner loop. Hence the complexity in terms of
coefficient operations is O(n(m − n)). As in the long integer case, this is
essentially the time to compute the product q(x)v(x).

The only actual divisions that occur anywhere in this algorithm are
divisions by the leading coefficient vn of the divisor polynomial. Hence it
is not necessary for division that the polynomials have coefficients in a field
and it is sufficient that vn be a unit; it may be preferable to invert vn once

1Knuth writes r1(x) = 0 here, but I believe that is an error!
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and then multiply by the inverse. Hence two polynomials over an arbitrary
commutative ring with identity can be divided if the leading coefficient of
the divisor is a unit, and in particular if the divisor is monic, whereas two
polynomials over a field can be divided provided only that the divisor is
non-zero.

The importance of monic polynomials is that any polynomial can be
divided by a monic polynomial, so that the remainder in the division is
always defined, and therefore equivalence modulo a monic polynomial is
well defined regardless of the coefficient domain.

Division of multivariate polynomials can in principle be performed by re-
garding R[x1, . . . , xr−1, xr] as R[x1, . . . , xr−1][xr] and applying the univari-
ate division algorithm recursively. However, it is necessary that the leading
coefficient of the divisor be a unit (at every level of recursion) and hence
an element of the ground ring R. Therefore, actual polynomial division is
only necessary with respect to one (distinguished) polynomial variable, and
the only multivariate operations will be the multiplications and subtractions
required on the coefficients of powers of the distinguished variable, so the
polynomial division algorithm itself can never be applied recursively. Hence,
division is possible only if the leading coefficient with respect to at least one
of the variables is a unit of R (and hence independent of the other variables),
and divisions with respect to two such variables will generally be different.

3.1 Pseudo-division

Euclidean division is always possible by extending from D[x] to Q(D)[x],
i.e. by computing in the field of fractions of the coefficient ring if it is not
already a field. But this is inelegant in principle, because a problem that
can be posed and has a solution within a particular algebraic system should
be solvable by computing within that algebraic system without the need
to extend it. Moreover, it is undesirable in practice because computations
in a field of fractions are more complex than in the underlying integral
domain, mainly because of the need to perform gcd computations in order
to make representations canonical, and we have seen that gcd computations
are inherently complex.

Frequently, one is really interested in the variable (primitive) parts of
polynomials rather than their overall numerical factors (contents), in which
case there is no reason to be constrained by the fact that the leading coeffi-
cient of v(x) is not a unit when attempting to divide u(x) by v(x). In fact,
it need not be a unit at all provided that it divides the leading coefficient
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of the remainder at each stage of the division. A total of m− n + 1 distinct
intermediate remainders occur during the algorithm, including the initial
remainder u(x).

Let ` denote the leading coefficient of v(x). If u(x) is multiplied by
`m−n+1 then each of the m − n + 1 divisions by ` must be possible. This
is equivalent to multiplying the dividend by the common denominator that
we expect to arise if we work in the field of quotients, and then working in
the ring. In fact, the algorithm does not require any explicit multiplications
at all, which proves that it is possible over any ring. The following version
is essentially as given by Knuth:

input: u(x) = umxm + · · ·+ u0, v(x) = vnxn + · · ·+ v0 ∈ R[x], vn 6= 0
q0 := 0;
for i := 0 to m− n− 1 do ri := vm−n−i

n ui;
for i := m− n to m do ri := ui;
for k := m− n step −1 to 0 do
begin

qk := rn+kv
k
n;

{Multiplication loop:}
for j := n + k − 1 step −1 to k do rj := vnrj − rn+kvj−k

{rn+k := 0, but it will be ignored}
end.
output: q(x) = qm−nxm−n + · · ·+ q0, r(x) = rn−1x

n−1 + · · ·+ r0 ∈ F [x]
such that vm−n+1

n u(x) = q(x)v(x) + r(x), deg(r) < deg(v)

The division of vn
m−n+1u(x) (or some other suitable multiple of u(x)) by

v(x) is called pseudo-division, and produces a pseudo-quotient and pseudo-
remainder. Of course, this will frequently produce results with larger nu-
merical factors (contents) than necessary, but to avoid this would require
gcd computations. One of the main uses of pseudo-division is as a basis for
a generalized or “pseudo-Euclidean” algorithm to compute gcds of polyno-
mials over rings, which will be considered further in the next set of notes.

The following theorem can be proved in an analogous way to that de-
scribing the division property for polynomials over a field:

Theorem 2 Given two polynomials u(x) and v(x) over an integral domain,
with v(x) 6= 0, where ` is the leading coefficient of v(x) and δ = max{deg u−
deg v + 1, 0} there exist unique polynomials q(x) and r(x) satisfying the
Pseudo-Division Property

`δu(x) = q(x)v(x) + r(x), deg(r) < deg(v).
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4 Irreducible factorization and polynomial content

The purpose of this section is to revise some properties of polynomials which
I introduced earlier in a more abstract setting and which are important
in the theory of general (multivariate) polynomial factorization and gcd
computation.

Let us assume that the coefficient ring is an integral domain D, in which
case D[x] is also an integral domain. In general, a nonzero element d ∈ D
is said to be irreducible (or prime) if and only if the quotient ring D/(d)
is also an integral domain. Then, in particular, a polynomial p ∈ D[x] is
irreducible if and only if D[x]/(p) is an integral domain.

Two elements d1, d2 ∈ D are said to be associates or associated if and
only if d1 = ud2 where u is a unit in D, i.e. u is invertible. Then, in
particular, two polynomials p1, p2 ∈ D[x] are associated if and only if p1 =
up2, where u is a unit in D[x] and hence must also be a unit element of the
ground ring D.

4.1 Irreducible factorization when D is a field F

A polynomial p ∈ F [x] is irreducible if and only if deg p > 0 (i.e. p is not a
constant) and p has no divisor q ∈ F [x] such that deg p > deg q > 0. There-
fore every non-constant polynomial f ∈ F [x] has at least one irreducible
divisor, namely any divisor of minimal nonzero degree, which might be f
itself if f is irreducible.

Proposition 3 A non-constant polynomial p ∈ F [x] is irreducible if and
only if the quotient ring F [x]/(p) is a field.

Theorem 4 Any nonzero polynomial f ∈ F [x] admits a decomposition of
the form

f = c
k∏

i=1

pαi
i , c ∈ F, αi > 0,

where the polynomials pi are irreducible and unassociated.
Moreover, if

f = c′
k′∏

j=1

q
βj

j , c′ ∈ F, βj > 0,

then k′ = k and there exists a permutation σ of the index set I = {1, . . . , k}
such that βσ(i) = αi and qσ(i) is associated to pi for each i ∈ I.
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4.2 Polynomial content

An integral domain is said to be a unique factorization domain (UFD) (or a
factorial ring) if each of its nonzero elements admits a unique decomposition
into a product of irreducible elements, up to the order of the factors and up
to associates. Hence, for example, by Theorem 4, F [x] is a UFD.

Let D be a UFD, Q = Q(D) be its field of fractions, and p be a given
irreducible (i.e. prime) element of D. Then any nonzero element a ∈ Q can
be written uniquely as

a = prb, b ∈ Q, r ∈ Z,

where b is the quotient of two elements of D, neither of which is divisible
by p. This follows from the unique prime factorization of the numerator n
and denominator d of a, which must be relatively prime. Then for any given
prime p precisely one of the following is true: p appears

1. as pr for some r ∈ Z+ in the factorization of n, or

2. as pr′
for some r′ ∈ Z+ in the factorization of d giving r = −r′, or

3. in neither giving r = 0.

For example, Z is a UFD and Q is its field of fractions. Then for successive
small primes 2, 3, 5, 7:

a =
9
11

= 20 9
11

= 32 1
11

= 50 9
11

= 70 9
11

;

a =
11
15

= 20 11
15

= 3−1 11
5

= 5−1 11
3

= 70 11
15

.

The integer r is called the order of a at p and denoted ordp(a), and is
somewhat analogous to logp(a). For example, it satisfies

ordp(aa′) = ordp(a) + ordp(a′).

[By convention, the definition is extended so that ordp(0) = +∞, and there-
fore the above product rule is satisfied if a or a′ is zero.]

If f = fnxn + · · · + f0 is a nonzero polynomial with coefficients in the
field of fractions Q then its order is defined by

ordp(f) = min{ordp(fi) | fi 6= 0}.
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[In fact, just ordp(f) = min{ordp(fi)} suffices with the definition ordp(0) =
+∞.]

Now let ℘ denote a system of representatives of the irreducible elements of
D, meaning that every element of ℘ is irreducible, every irreducible element
of D has an associate in ℘ and no two elements of ℘ are associated. For
example, if D = Z then ℘ could be taken as the set of all prime integers,
which by convention are positive.

Definition 2 The content of f ∈ Q[x] (relative to ℘) is defined by

cont℘(f) =
∏
p∈℘

pordp(f).

(The subscript ℘ is omitted if it is unambiguous.)

To see how this works, consider

f =
3
2
x2 +

15
4
∈ Q[x], Q = Q(Z)

and take ℘ to be the positive prime integers. Then

ord2

(
3
2

)
= −1, ord2

(
15
4

)
= −2 ⇒ ord2(f) = min(−1,−2) = −2;

ord3

(
3
2

)
= 1, ord3

(
15
4

)
= 1 ⇒ ord3(f) = min(1, 1) = 1;

ord5

(
3
2

)
= 0, ord5

(
15
4

)
= 1 ⇒ ord5(f) = min(0, 1) = 0;

and ordp(f) = 0 for p > 5. Hence

cont℘(f) = 2−2 × 31 × 50 × 70 × · · · = 3
4
.

Now note that by regarding f ∈ Q[x] as f ∈ Q(Z[x]) and then factoring out
the gcd of the coefficients of the numerator polynomial we have

f =
3
2
x2 +

15
4

=
3.2x2 + 15

4
=

3
4
(2x2 + 5),

which has precisely the form cont(f) times a polynomial over Z.
The following result is central to the computation of gcds of multinomi-

als:
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Lemma 5 (Gauss’ Lemma) Let D be a UFD and Q its field of fractions.
If f, g are nonzero polynomials with coefficients in Q then

cont(fg) = cont(f) cont(g).

Proof From the definition of content, the lemma follows if for every irre-
ducible element p ∈ D we can prove that

ordp(fg) = ordp(f) + ordp(g).

Let us put r = ordp(f), s = ordp(g). Then from the definition of the order
of a polynomial, the coefficients of f have a common factor of pr which
can be divided out to leave a polynomial with coefficients in Q that have
no factors of p in their denominators (because the order of a polynomial is
the minimum order of its coefficients). This polynomial can therefore be
written (non-uniquely) in the form uf1 where u ∈ Q, ordp(u) = 0 and f1

has coefficients in D, ordp(f1) = 0.
Applying a similar argument to g, there exist nonzero polynomials f1, g1

with coefficients in D and nonzero u, v ∈ Q such that

f = uprf1, g = vpsg1,

where
ordp(f1) = ordp(g1) = 0, ordp(u) = ordp(v) = 0.

Then ordp(fg) = ordp(uvprpsf1g1) = r + s + ordp(f1g1) and it remains to
prove that ordp(f1g1) = 0.

Map D to its homomorphic image D/(p), which is also an integral do-
main because (p) is a prime ideal.2 The images f ′1, g

′
1 of f1, g1 under the

epimorphism defined to be the natural map D → D/(p) are nonzero be-
cause D/(p) has characteristic p and at least one coefficient of each of f1

and g1 has no factor of p. Moreover, because D/(p) is an integral domain,
the product f ′1g

′
1 must also be nonzero, and therefore at least one coefficient

of f1g1 has no factor of p, and hence ordp(f1g1) = 0. 2

We will make serious use of Gauss’ Lemma to compute gcds in the next
set of notes. One can also use it to prove, for example:

Theorem 6 If D is a unique factorization domain (UFD) and F is a field
then D[x1, . . . , xn] and F [x1, . . . , xn] are both UFDs for any n ∈ Z+.

2Actually, this is not true in every integral domain, but it is certainly true in a PID
such as the integers, which in practice is our main interest, when in fact D/(p) is a field.
I do not know whether it is also sufficient for D to be a UFD.
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5 Polynomial functions and roots of polynomials

The main purpose of this section is to raise the important logical distinction
between a polynomial, in which the variables are purely symbolic objects,
and a polynomial function, in which the variables take values in some set.

Let f ∈ A[x1, . . . , xn],

f =
∑

fi1,...,inxi1
1 · · ·x

in
n ,

and let B be an extension ring of A.

Definition 3 The polynomial function f∗ : Bn → B is defined by

f∗(b1, . . . , bn) =
∑

fi1,...,inbi1
1 · · · b

in
n .

In the polynomial function, a value bi has been substituted for each variable
xi. However, to simplify the notation the ∗ is often omitted.

The following properties are obvious, and relate operations in the ring
A[x1, . . . , xn] (on the left) to those in the ring B ≥ A (on the right). If
f, g ∈ A[x1, . . . , xn] then

(f + g)∗ = f∗ + g∗, (fg)∗ = f∗g∗, (af)∗ = af∗ if a ∈ A ≤ B.

As an example of the difference between f and f∗, note that the map
ϕ : f 7→ f∗ may not be one-to-one. For example, if A = B is the ring of
integers mod 2, i.e. Z2 = {0, 1}, and f = x2 − x then f∗ takes the value 0
on every element of its domain, and hence it is the zero function 0 : x 7→ 0,
as is the image under ϕ of any multiple of f . However, if A is an infinite
integral domain then ϕ is one-to-one, in which case one can safely identify
a polynomial with its associated polynomial function.

5.1 Roots of polynomials

Let f(x) ∈ R[x] and α ∈ R, R a commutative ring. If f(α) = 0 then we call
α a root or zero of f(x). Roots are intimately related to linear factors, as
follows.

Theorem 7 (Factor Theorem) Let f ∈ R[x] and α ∈ R; then

α is a root of f(x) ⇐⇒ (x− α) | f(x).
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Proof ( ⇒ ) Let f(α) = 0. Since the leading coefficient of x− α is a unit
we can divide f(x) by x− α to obtain

f(x) = (x− α)q(x) + r(x)

where deg r(x) < deg(x−α) = 1. Hence r(x) ∈ R. Moreover, since r(x) = r
is independent of x, we can compute it by substituting any value for x in
the division relation, in particular x = α, giving

r = r(α) = f(α)− (α− α)q(α) = 0− 0 = 0.

Hence (x− α) | f(x).
( ⇐ ) f(x) = (x− α)q(x) ⇒ f(α) = 0q(α) = 0. 2

Corollary 8 (Remainder Theorem) Let f ∈ R[x] and α ∈ R; then the
remainder on dividing f(x) by (x− α) is f(α).

Proof By the Factor Theorem, (x− α) | f(x)− f(α), so that f(x) = (x−
α)q(x) + f(α), and hence f(α) is the unique remainder. 2

5.2 Order and multiplicity of roots

If f(x) ∈ R[x], α ∈ R is called a root of order m of f is f is divisible by
(x− α)m but not by (x− α)m+1. Since a linear factor must be irreducible,
this terminology is consistent with its usage in the previous section, because
(in Q(R[x]) and assuming that R is a UFD)

ord(x−α) f(x) = m.

If m ≥ 1 it is called the multiplicity of the root. If m = 1 then α is called a
simple root; otherwise it is called a multiple root.

Proposition 9 If α is a root of f(x) of order m then

f(x) = (x− α)mq(x), q(α) 6= 0.

Proof By the definition of order, f(x) = (x − α)mq(x). If q(α) = 0 then,
by the Factor Theorem, (x− α) divides q(x), and hence (x− α)m+1 divides
f(x), contrary to the definition of order. Hence q(α) 6= 0. 2
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Theorem 10 Let D be an integral domain and let f(x) ∈ D[x] be a nonzero
polynomial. Then the sum of the multiplicities of the roots of f(x) that lie
in D is at most equal to the degree of f(x).

Proof is by induction on n = deg f(x).
Basis (n = 0). A nonzero polynomial of degree 0 is a (nonzero) constant

in D, and hence trivially has no roots.
Induction. Assume the statement of the theorem for all polynomials of

degree < n, and let f(x) ∈ D[x] have degree n. If f(x) has a root α of
multiplicity m ≥ 1 then

f(x) = (x− α)mq(x), q(α) 6= 0, deg q(x) = n−m.

If f(x) has another root β 6= α then

0 = f(β) = (β − α)mq(β).

Since β 6= α we must have q(β) = 0 because D has no zerodivisors. Hence
the only roots of f(x) are α of multiplicity m and those of q(x). By the
induction hypothesis, q(x) has roots of total multiplicity at most n − m.
Hence f(x) has roots of total multiplicity at most (n−m) + m = n. 2

Corollary 11 A nonzero polynomial in D[x] of degree n has at most n
distinct roots.

This theorem shows the importance of a polynomial coefficient domain
being integral. For example, over Z16, which is not an integral domain, the
quadratic polynomial x2 + 12 has the 4 roots 2, 6, 10, 14.

5.3 Formal derivatives

Let R be a commutative ring, and let f(x) ∈ R[x] be

f(x) =
n∑

i=0

fix
i.

Definition 4 The (formal) derivative of f(x) is

f ′(x) =
n∑

i=1

ifix
i−1 =

n−1∑
i=0

(i + 1)fi+1x
i.
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Note that this definition agrees with the derivative arising from infinitessimal
calculus, but does not involve any arguments relying on continuity, which
are not appropriate in arbitrary commutative rings. The standard prop-
erties of derivatives of sums, products, numerical multiples and composed
polynomials can easily be established from the above definition.

The formal derivative relates to multiple roots as follows.

Theorem 12 Let α ∈ R be a root of f(x) ∈ R[x]; then α is a multiple root
of f(x) if and only if f ′(α) = 0.

Proof By Proposition 9

f(x) = (x− α)mq(x), m ≥ 1, q(α) 6= 0,

and formally differentiating gives

f ′(x) = (x− α)mq′(x) + m(x− α)m−1q(x).

If m > 1 then f ′(α) = 0 trivially. If m = 1 then f ′(α) = q(α) 6= 0. 2

More generally, put f0 = f , f (k) = (f (k−1))′ for any k ∈ Z+.

Proposition 13 Let α ∈ R be a root of multiplicity m of f(x) ∈ R[x]; then
f (k)(α) = 0 for 0 ≤ k < m.

Proof From the proof of the previous proposition

f ′(x) = (x− α)m−1((x− α)q′(x) + mq(x)).

Hence (x − α)m | f0(x) ⇒ (x − α)m−1 | f1(x), and by induction (x −
α)m−k | fk(x) for 0 ≤ k < m. 2

6 The resultant and discriminant

It is frequently necessary to find a condition that two univariate polynomial
functions f(x) and g(x) have a non-trivial common factor or common zero,
without explicitly finding it. This condition is provided by the vanishing
of the resultant of f(x) and g(x), denoted Res(f, g), or Resx(f, g) if the
polynomial variable would otherwise be ambiguous. If the condition is met
then the common factor or common zero could be found, e.g. by a gcd
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computation, and hence a resultant computation is related to, but not the
same as, a gcd computation.

It is also frequently necessary to find a condition that a univariate poly-
nomial function f(x) has a multiple root. This condition is provided by
the vanishing of the discriminant of f(x), denoted Disc(f) or Discx(f).
But a multiple root of f(x) is also a root of its derivative f ′(x), in which
case Resx(f, f ′) = 0. There is therefore an intimate relationship between
Discx(f) and Resx(f, f ′).

If f(x) = 0 and g(x) = 0 for the same value of x then one can eliminate
x between the two equations to give one equation that is independent of x
and expresses a condition on the functions f and g that the common root x
exists, e.g. it provides an equation that must be satisfied by the coefficients
of the polynomials f and g. However, whilst this is an interpretation of a
resultant, it provides neither a general systematic formulation nor a good
computational algorithm, which is the main purpose of this section.

6.1 The resultant and the Sylvester matrix

Let f, g be polynomials in x over a coefficient ring R:

f(x) =
m∑

i=0

fix
i, g(x) =

n∑
i=0

gix
i,

where fi, gi ∈ R. Suppose that f, g have a non-trivial common factor h, so
that f = Fh, g = Gh. Then the equation

uf + vg = (uF + vG)h = 0

(subject to deg u < deg g, deg v < deg f to avoid trivial common factors of
u and v) has the solution u = G, v = −F , and conversely the existence of
such a solution implies that f, g have a common factor. Written out fully,
the equation uf + vg = 0 becomes

(un−1x
n−1 + · · ·+ u1x + u0)(fmxm + · · ·+ f1x + f0) +

(vm−1x
m−1 + · · ·+ v1x + v0)(gnxn + · · ·+ g1x + g0) = 0,
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and hence
un−1(fmxm+n−1 + fm−1x

m+n−2 + · · ·+ f0x
n−1) +

un−2(fmxm+n−2 + · · ·+ f1x
n−1 + f0x

n−2 ) +
. . .

u0(fmxm+ · · · + · · · + f1x + f0) +
vm−1(gnxm+n−1 + gn−1x

m+n−2 + · · ·+ g0x
m−1) +

vm−2(gnxm+n−2 + · · ·+ g1x
m−1 + g0x

m−2) +
. . .

v0(gnxn+ · · · + · · · + g1x + g0) = 0.

Equating coefficients of xi,m + n − 1 ≥ i ≥ 0, gives the following system
of m + n linear homogeneous equations expressed in matrix form, where
column j of the coefficient matrix corresponds to xm+n−j and T denotes the
transpose of a matrix:

un−1

un−2
...

u1

u0

vm−1

vm−2
...
v1

v0



T 

fm fm−1 · · · f1 f0 0 · · · 0 0
0 fm fm−1 · · · f1 f0 0 · · · 0
...

. . . . . . . . .
...

. . . . . . . . .
...

0 · · · 0 fm fm−1 · · · f1 f0 0
0 0 · · · 0 fm fm−1 · · · f1 f0

gn gn−1 · · · g1 g0 0 · · · 0 0
0 gn gn−1 · · · g1 g0 0 · · · 0
...

. . . . . . . . .
...

. . . . . . . . .
...

0 · · · 0 gn gn−1 · · · g1 g0 0
0 0 · · · 0 gn gn−1 · · · g1 g0



= 0T .

The (m + n) × (m + n) coefficient matrix is the Sylvester matrix S(f, g)
of f and g, which consists of n rows of the coefficients fi of f in “esche-
lon formation”, followed by m rows of the coefficients gi of g in “eschelon
formation”. More precisely, the elements of S are given by the following
algorithmic specification:

sij = if 1 ≤ i ≤ n then
if m + i− j mod m + n ≤ m then fm+i−j else 0

else {n + 1 ≤ i ≤ n + m}
if i− j mod m + n ≤ n then gi−j else 0.

This system of linear homogeneous equations has a non-trivial solution
for the coefficients of the polynomials u and v if and only if the determinant
of the Sylvester matrix is zero. This leads to the following
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Definition 5 The resultant of f and g is the determinant of the Sylvester
matrix of f and g, i.e.

Res(f, g) = det S(f, g).

6.2 Properties of resultants

These properties are useful in relating resultants to discriminants, and in
developing efficient algorithms to compute resultants and discriminants.

Proposition 14 If f, g ∈ R[x] then Resx(f, g) ∈ R.

Proof A determinant of a matrix over a ring R is defined using only ring
operations to be a sum of products of elements, and so is itself an element
of the ring R. 2

Proposition 15 If c is a constant then Res(f, c) = cm where m = deg f ,
and in particular Res(f, 0) = 0.

Proof By definition, if g(x) = g0 = c then the Sylvester matrix of f, g
consists of zero rows composed of the coefficients of f followed by m rows
with g0 = c on the leading diagonal. 2

Proposition 16 Res(f, g) = (−1)mn Res(g, f) where m = deg f , n = deg g.

Proof This follows from exchanging the f and g rows in the Sylvester
matrix. It requires m + n − 1 exchanges of adjacent rows to move the top
row of an (m+n)×(m+n) matrix to the bottom, without changing the order
of the remaining rows, and it therefore requires n× (m+n−1) exchanges to
move all n of the f rows below all of the g rows. Each exchange introduces a
factor of (−1), so the overall factor is (−1)nm+n(n−1) = (−1)nm(−1)n(n−1).
But n(n− 1) is even for all n. 2

Proposition 17 If R[x] is a Euclidean domain, 1 ≤ m ≤ n where m =
deg f , n = deg g, and h is the remainder in the Euclidean division of g by
f then3

Res(f, g) = fn−p
m Res(f, h) where p = deg h ≤ m− 1.

3Mignotte states this proposition with p replaced by m, but I believe that both his
proposition and his proof of it are wrong! Davenport et al. give a very brief but correct
discussion.
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Remark If the coefficient ring R is a field then R[x] is a Euclidean domain.
The above result also holds in the special case that the Euclidean division
is possible in a non-Euclidean domain, as discussed earlier; otherwise a very
similar result holds where the division is replaced by a pseudo-division.

Proof The Euclidean division property gives g = fq + h, deg h < deg f .
If the coefficients of g in S(f, g) are replaced by the coefficients of h =
g − fq, without otherwise changing the structure of the matrix, then the
determinant is not changed because the operation corresponds to subtracting
linear combinations of the rows of f coefficients, as I will show in more detail
below. Then the elements that were the leading n − p coefficients of b in
each row become zero.

The result is a matrix of the form

S′ =

(
Tn−p ∗

0 S(f, h)

)

where Tn−p is an (n−p)×(n−p) upper triangular submatrix with every diag-
onal element equal to fm and S(f, h) is an (m+p)×(m+p) submatrix which
is the Sylvester matrix of f and h. Then clearly det S′ = fn−p

m det S(f, h),
which proves the proposition. (The submatrix denoted by ∗ is irrelevant
because it does not contribute to the determinant.) 2

As a more detailed example of the transformation S → S′, suppose
m = n = 3 giving

S =



f3 f2 f1 f0 0 0
0 f3 f2 f1 f0 0
0 0 f3 f2 f1 f0

g3 g2 g1 g0 0 0
0 g3 g2 g1 g0 0
0 0 g3 g2 g1 g0


.

If p = 2 then

S → S′ =



f3 f2 f1 f0 0 0
0 f3 f2 f1 f0 0
0 0 f3 f2 f1 f0

0 h2 h1 h0 0 0
0 0 h2 h1 h0 0
0 0 0 h2 h1 h0


,
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whereas if p = 1 then

S → S′ =



f3 f2 f1 f0 0 0
0 f3 f2 f1 f0 0
0 0 f3 f2 f1 f0

0 0 h1 h0 0 0
0 0 0 h1 h0 0
0 0 0 0 h1 h0


.

Now let us see why replacing the coefficients of g in S(f, g) by the coef-
ficients of h = g − fq corresponds to subtracting linear combinations of the
rows of f coefficients. The quotient polynomial q has degree at most n−m,
and so the polynomial product qf has the form

(qn−mxn−m + · · ·+ q1x + q0)(fmxm + · · ·+ f1x + f0) =

qn−m(fmxn + fm−1x
n−1 + · · ·+ f0x

n−m) +
qn−m−1(fmxn−1 + · · ·+ f1x

n−m + f0x
n−m−1) +

. . .
q0(fmxm+ · · · + · · · + f1x + f0).

Letting column number represent the power of x as in the derivation
of the Sylvester matrix above, the row matrix representing this product
polynomial is a linear combination of the bottom n −m + 1 ≤ n adjacent
rows of f coefficients in S. Hence S′(f, g) can be derived from S(f, g) by
subtracting this linear combination from the last row of g coefficients, and
then repeating the operation with all rows involved shifted up by 1, because
there are precisely m distinct blocks of n − m + 1 adjacent rows within
the total of n rows of f coefficients, one block for each of the m rows of g
coefficients.

Proposition 18 Res(f, g) = 0 if and only if f and g have a non-trivial
common factor.

Proof Construct the polynomial pseudo-remainder sequence generated by
f and g, which will terminate with a degree-zero polynomial (i.e. a constant)
c that is zero if and only if f and g have a non-trivial common factor. By
Propositions 16 and 17, Res(f, g) is proportional to Res(p, c) where p is the
penultimate element of the remainder sequence. Then by Proposition 15,
Res(p, c) = cdeg p is zero if and only if c = 0. 2
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Proposition 19 If the coefficient ring R is an integral domain, {αi}m
i=1

are the roots of f and {βj}n
j=1 are the roots of g, then (in the appropriate

extension field of R)

Res(f, g) = fn
m

m∏
i=1

g(αi) = (−1)mngm
n

n∏
j=1

f(βj) = fn
mgm

n

m∏
i=1

n∏
j=1

(αi − βj).

Remark The requirement that the coefficient ring R be an integral domain
(i.e. has no zerodivisors) is so that it can be extended first to its quotient
field, and then to a field containing the root fields of f and g.

Proof [Davenport et al. attribute this proof to Dominique Duval.] Denote

Rα(f, g) = fn
m

m∏
i=1

g(αi), Rβ(f, g) = (−1)mngm
n

n∏
j=1

f(βj),

Rαβ(f, g) = fn
mgm

n

m∏
i=1

n∏
j=1

(αi − βj).

Clearly, Rβ(f, g) = Rα(f, g) by exchanging the rôles of f and g and applying
Proposition 16. In its root field,

g(x) = gn

n∏
j=1

(x− βj) ⇒ g(αi) = gn

n∏
j=1

(αi − βj).

Hence

Rα(f, g) = fn
m

m∏
i=1

g(αi) = fn
m

m∏
i=1

gn

n∏
j=1

(αi − βj)

 = Rαβ(f, g).

Therefore Rβ(f, g) = Rα(f, g) = Rαβ(f, g). Their equality to Res(f, g) is
proved by induction on min(m,n) as follows.

If n = 0 then g(x) = c is constant and Rβ(f, c) = cm, and also Res(f, c) =
cm by Proposition 15. This is the base case for the induction.

If f and g are exchanged, then (obviously) Rαβ(f, g) = (−1)mnRαβ(g, f)
and also Res(f, g) = (−1)mn Res(g, f) by Proposition 16. Therefore we need
now consider only the case that 1 ≤ m ≤ n.

If f and g have a non-trivial common factor then they have at least one
root in common, so that αi = βj for some i, j and therefore Rαβ(f, g) = 0,
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and also Res(f, g) = 0 by Proposition 18. Otherwise, g = fq + h where
h 6= 0 and p = deg h ≤ m − 1, because we are working in an extension
field F of R which ensures that F [x] is a Euclidean domain. Then g(αi) =
f(αi)q(αi) + h(αi) = h(αi) since f(αi) = 0, and hence

Rα(f, g) = fn
m

m∏
i=1

g(αi) = fn−p
m fp

m

m∏
i=1

h(αi) = fn−p
m Rα(f, h),

and also Res(f, g) = fn−p
m Res(f, h) by Proposition 17.

Then from Rβ(f, g) = Rα(f, g) = Rαβ(f, g) = Res(f, g) as induction
hypothesis for deg g ≤ m − 1 we have proved that it is true for deg g = m.

2

6.3 The discriminant

When considering the multiplicity of roots of polynomials, as mentioned at
the beginning of this section, the following function is useful.

Definition 6 The discriminant of a polynomial f of degree m having roots
{αi}m

i=1 (in its root field) is

Disc(f) = f2m−2
m

m∏
i=1

m∏
j=1,j 6=i

(αi − αj),

where fm is the leading coefficient of f .

The discriminant clearly vanishes if and only if two (or more) roots are equal,
because it is explicitly defined as the product of the differences between all
pair of roots.

Proposition 20 Res(f, f ′) = fm Disc(f) and Disc(f) ∈ R, the coefficient
ring of f .

The latter property is one reason for the choice of the constant factor in
the definition of the discriminant. Note also that a discriminant is always a
perfect square.

Proof In terms of its m roots, the polynomial f can be expressed as

f(x) = fm

m∏
j=1

(x− αj).
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The product rule for a derivative gives the derivative of f to be

f ′(x) = fm

m∑
k=1

m∏
j=1,j 6=k

(x− αj) ⇒ f ′(αi) = fm

m∑
k=1

m∏
j=1,j 6=k

(αi − αj).

But each product within this sum has a factor with j = i that therefore
vanishes, unless k = i so that the factor that vanishes is absent. Therefore

f ′(αi) = fm

m∏
j=1,j 6=i

(αi − αj).

Using in Proposition 19 the fact that deg f ′ = m− 1 gives

Res(f, f ′) = fm−1
m

m∏
i=1

f ′(αi) = fm−1
m

m∏
i=1

fm

m∏
j=1,j 6=i

(αi − αj)


= f2m−1

m

m∏
i=1

m∏
j=1,j 6=i

(αi − αj) = fm Disc(f).

Now consider the definition Res(f, f ′) = det S(f, f ′). If the leading term
of f(x) is fmxm then the leading term of f ′(x) is mfmxm−1, and so the
first column of the Sylvester matrix S(f, f ′) is (fm, 0, . . . , 0,mfm, 0, . . . , 0)T .
Then a cofactor expansion of det S(f, f ′) about the first column leads to
det S(f, f ′) = fmA + mfmB where A,B ∈ R are the appropriate cofactors,
and hence Res(f, f ′) = fmC where C = A + mB ∈ R. Therefore Disc(f) =
Res(f, f ′)/fm = C ∈ R. 2

6.4 Computation of resultants and discriminants

It is trivial to compute a discriminant in terms of a resultant using Propo-
sition 20, so I will explicitly consider only resultant computation. The re-
sultant is defined in terms of a determinant, but general determinant eval-
uation has a rather high complexity, and so a method that takes account of
the special structure of the Sylvester matrix is preferable. One way to eval-
uate a determinant is to reduce the matrix to triangular form by Gaussian
elimination, and the analogue of this for a Sylvester matrix is provided by
Proposition 17.

If R[x] is a Euclidean domain, then Propositions 15, 16 and 17 imme-
diately lead to the following recursive algorithm (essentially as given by
Davenport et al.), which is very similar to Euclid’s algorithm for computing
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a gcd. I assume that the return instruction both terminates execution of
the procedure and assigns a value to it, thereby avoiding a deeply nested
if-then-else construct.

input: f, g ∈ R[x], a Euclidean domain
procedure Resultant(f, g);
m := deg f ; n := deg g;
if m > n then return (−1)mnResultant(g, f);
` := lc(f); {leading coefficient}
if m = 0 then return `n;
h := remainder(g, f); {g mod f}
if h = 0 then return 0;
p := deg h;
return `n−p Resultant(f, h).
output: Res(f, g)

If R[x] is not a Euclidean domain, but R is an integral domain, then
one could work in the quotient field of R within the algorithm, because
Proposition 14 ensures that the result is in R, or one could use an analogue
of the above algorithm based on pseudo-division. The second approach will
generally be more efficient, because it avoids the gcd computations required
when computing in a quotient field. More sophisticated techniques are also
possible – see the remarks and references in Davenport et al.

6.5 Complexity of resultants

Here I consider not the complexity of resultant computation but the com-
plexity of the resultant itself, because regardless of how they are calculated,
resultants can be quite complex. For example, if the polynomial coefficients
fi, gj are integers bounded in magnitude respectively by A,B then the mag-
nitude of the resultant is bounded by (m + 1)n/2(n + 1)m/2AnBm, and can
in practice come quite close to this bound. Similarly, if fi, gj are themselves
polynomials of degrees bounded respectively by α, β then the resultant is a
polynomial of degree bounded by nα + mβ. This potential explosion in the
complexity of resultants is something to watch out for when using them in
practice, and reducing the complexity of the input polynomials f and g in
any way possible is worth considering!

The above bounds are stated without proof in Davenport et al. One way
to see where they comes from is to consider the Sylvester matrix S(f, g).
Suppose every coefficient of f is ±A and every coefficient of g is ±B. Then
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each of the n rows of f coefficients of S(f, g) contains a common factor of
A, and each of the m rows of g coefficients contains a common factor of
B. Therefore det S(f, g) = AnBm det S′ where S′ is the matrix S(f, g) with
every coefficient replaced by ±1. Now if A is a polynomial of degree α and B
is a polynomial of degree β then det S(f, g) is clearly a polynomial bounded
by degree nα + mβ, as asserted above.

If A,B are positive integers bounding the magnitudes of the coefficients
of f, g respectively, then we still need to bound the magnitude of det S′.
In order to deal with the unknown signs, compute the matrix S′ × S′T ,
whose determinant is (detS′)2. The elements on the leading diagonal of
this matrix are all > 0 and have the largest magnitude within each row,
because all the non-zero elements in the corresponding row of S′ and column
of S′T match up – elsewhere some non-zero elements are multiplied by zero
elements thereby giving a smaller sum.

Moreover, the n diagonal elements corresponding to f -rows each have
the value m + 1, because there are m + 1 non-zero elements in each f -
row, and similarly the m diagonal elements corresponding to g-rows have
the value n + 1. A determinant is defined to be the sum of all possible
distinct products of elements, one from each row and column, with a sign
determined by the choice of element. The product of elements on the leading
diagonal always contributes with a positive sign, and in this case is the
largest term in the sum. Other terms contribute smaller magnitudes with
varying signs, and therefore it is plausible that the value of (detS′)2 is
bounded by (m + 1)n(n + 1)m, from which follows the overall bound on the
magnitude of the resultant quoted above.

7 Exercises

The assessed questions in this set of exercises are the first three.

1. (** Assessed **)
Showing all details of the computation, perform the Euclidean division
of x2 + x + 1 by 3x− 2 over Q, and then the pseudo-division over Z.

2. (** Assessed **)
From their basic definitions, compute all the non-zero orders of 2/3
and 4/15 (with respect to the conventional prime numbers), and hence
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compute the content of the polynomial

2
3
x3 − 4

15
x.

3. (** Assessed **)
If f(x) = ax2 + bx + c, express Res(f, f ′) as a determinant and hence
compute its value. Compute the value also by applying the recursive
algorithm (by hand). Show that the condition Res(f, f ′) = 0 is the
same as that obtained by explicitly eliminating x from f(x) = f ′(x) =
0. Finally, express a, b, c in terms of the roots α, β of f(x) = 0 and
hence prove that Res(f, f ′) = 0 if and only if α = β.

4. In Z8[x], prove that u(x) = 5x4 + 2x3 + 4x2 + 7x + 2 can be divided
by v(x) = 3x2 +5, and compute the quotient q(x) and remainder r(x)
by performing by hand and displaying the details of the Euclidean
division. [You can check it by computer if you wish!]

5. Show that there is only one way to divide x2 + y2 by x − 2y over Z,
but that over Q there are two way, and perform the two divisions.
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