
Mathematics and Algorithms for Computer Algebra

Part 1 c© 1992 Dr Francis J. Wright – CBPF, Rio de Janeiro

July 9, 2003

5: Polynomial GCDs and remainder
sequences

The first and last sections are applications of gcds; the intermediate
sections are about how to compute polynomial gcds.

1 Squarefree decomposition

This provides a restricted factorization of a polynomial and so could also
be called squarefree factorization, except that factorization usually implies
factorization into irreducible factors, which a squarefree decomposition is
not. Squarefree decomposition is much simpler and therefore faster than
full factorization and requires only formal derivatives and gcds. It is an
obvious precursor to a full factorization, but there are many situations in
which a squarefree decomposition is sufficient – for example, to determine
whether a polynomial is a perfect nth power, and if so to find its nth root.
This section is based on Mignotte.

1.1 The basic theory

Let F be a field, either infinite or finite, which requires a slightly more
general formulation than is required for the infinite case alone. The infinite
field case can trivially be generalized to an integral domain by dropping the
condition that polynomials be monic.

Definition 1 f ∈ F [x] is squarefree if it is not divisible by the square of
any non-constant polynomial over F , or equivalently if f has only simple
roots in any field that contains F .

1

Note that squarefree does not imply irreducible, although irreducible
does imply squarefree. For example, over Q:

• x2 + 3x + 1 is squarefree and irreducible;

• x2 + 3x + 2 = (x + 1)(x + 2) is squarefree but not irreducible;

• x2 + 2x + 1 = (x + 1)2 is neither squarefree nor irreducible.

Let f ′ be the (formal) derivative of f and let g = gcd(f, f ′) be their
monic gcd. If g = 1 then there does not exist any non-constant polynomial
that divides both f and f ′, and hence f is squarefree. Conversely, if f is
not squarefree and possesses, over some field E ≥ F , the decomposition

f = λme1
1 · · ·mek

k , e1 ≥ 2, ei6=1 ≥ 1,

where the mi are distinct monic polynomials over E, then the derivative

f ′ = λme1−1
1 · · ·mek−1

k s where s =
k∑

i=1

eim1 · · ·mi−1mi+1 · · ·mk.

Therefore, the polynomial

me1−1
1 · · ·mek−1

k 6= 1

because e1 ≥ 2 and it divides g = gcd(f, f ′), so f, f ′ are not coprime.
Moreover, the quotient f/g divides the product m1 · · ·mk and therefore f/g
is squarefree.

Hence we have proved

Proposition 1 Let f be a non-constant polynomial, with coefficients in
some field F . Then f is squarefree if and only if f and its derivative f ′

are relatively prime. Moreover, the polynomial h = f/ gcd(f, f ′) is always
squarefree, and if f ′ 6= 0 and gcd(f, f ′) 6= 1 then h is a non-trivial factor of
f .

1.2 Squarefree decomposition in characteristic zero

If F has characteristic zero then none of the ei in s can vanish and hence
f ′ 6= 0 and no mi divides s. Therefore

g = gcd(f, f ′) = me1−1
1 · · ·mek−1

k 6= 1

2

because e1 ≥ 2, and
h = f/g = λm1 · · ·mk

is a squarefree polynomial, which is the product of all the distinct squarefree
factors of f .

The aim of squarefree decomposition over a field is to compute a set of
monic coprime polynomials mi such that the polynomial f , now assumed
for convenience to be monic, has the decomposition

f = m1m
2
2 · · ·mk

k, k ≥ 1.

If no squarefree factor occurs raised to the power i then mi = 1 and so can
be omitted from the product. It is trivial to make f monic by dividing by
its leading coefficient if necessary.

1.3 Algorithms for characteristic zero

Yun1 has analysed this problem is detail, and gives three algorithms. The
first is due to Tobey and Horowitz:

input: monic f ∈ F [x]
g1 := gcd(f, f ′); h1 := f/g1; i := 1;
while gi 6= 1 do
begin

gi+1 := gcd(gi, g
′
i); hi+1 := gi/gi+1;

mi := hi/hi+1; i := i + 1
end.
output: monic mi ∈ F [x] such that f = m1m

2
2 · · ·mk

k

It works as follows. If
f = m1m

2
2m

3
3 · · ·mk

k

then
g1 = m2m

2
3 · · ·mk−1

k , h1 = m1m2 · · ·mk,

where h1 is “the squarefree part” of f . For i > 1,

gi = mi+1m
2
i+2 · · ·mk−i

k , hi = mimi+1mi+2 · · ·mk,

and hence as claimed
hi/hi+1 = mi.

1D. Y. Y. Yun, “On squarefree decomposition algorithms”, in Proc. 1976 AMS Symp.
on Symbolic and Algebraic Computing, Yorktown Heights, NY, ed. R. D. Jenks.

3

This algorithm literally repeats the same basic algorithm for extracting the
squarefree part. However, the repeated differentiation is not necessary, and
is avoided in the following modification due to D. Musser, which leads to
exactly the same intermediate variable values as the previous algorithm:

input: monic f ∈ F [x]
g1 := gcd(f, f ′); h1 := f/g1; i := 1;
while hi 6= 1 do
begin

hi+1 := gcd(gi, hi); gi+1 := gi/hi+1;
mi := hi/hi+1; i := i + 1

end.
output: monic mi ∈ F [x] such that f = m1m

2
2 · · ·mk

k

Yun shows that Musser’s algorithm is more efficient than the first, and
also gives another algorithm of his own, which is more complicated but also
more efficient than Musser’s.

1.4 Squarefree decomposition in nonzero characteristic

Mignotte shows that none of the three algorithms referred to above works
correctly in nonzero characteristic, for which everything is more complicated.
Suppose that F has characteristic p, and that as before f possesses the
decomposition

f = λme1
1 · · ·mek

k , e1 ≥ 2, ei6=1 ≥ 1,

and hence

f ′ = λme1−1
1 · · ·mek−1

k s where s =
k∑

i=1

eim1 · · ·mi−1mi+1 · · ·mk.

Then a polynomial mi divides s if and only if p divides ei, so that the term
of the sum s in which the factor mi would be absent is itself absent.

If p does not divide all the exponents ei then suppose that it divides only
the first h for 0 ≤ h < k. Then f ′ 6= 0,

g = gcd(f, f ′) = me1
1 · · ·meh

h m
eh+1−1
h+1 · · ·mek−1

k

and
f/g = λmh+1 · · ·mk.

4

Alternatively, p divides all the exponents ei if and only if f ′ = 0. If
f =

∑
fix

i and f ′ =
∑

ifix
i−1 = 0 then p divides each i for which fi 6= 0.

Let pe be the greatest power of p that divides the gcd of all the i such that
fi 6= 0. Then e ≥ 1 and f can be written as a composition of the form

f = H(xpe
), H ∈ F [x].

Conversely, if f has such a form then clearly f ′ = 0.
Suppose that F is the Galois Field Fpn = GF (pn). (Any finite field of

characteristic p must be isomorphic to Fpn for some n ∈ Z+.) Clearly pe

and pn − 1 are coprime, so

∃u, v, upe + v(pn − 1) = 1, 1 ≤ u < pn.

Now recall that F∗
pn is a cyclic group of order pn−1. Then for every a ∈ Fpn

we have that either a = 0 or apn−1 = 1, and hence

(au)pe
= a1−v(pn−1) = a,

i.e. au is a root of order pe of a. In other words, we can solve the equation
Ape

= a as A = au.
Recall that in characteristic p, for any e ∈ N,

(a + b)pe
= ape

+ bpe

and hence inductively

(a + b + c + · · ·)pe
= ape

+ bpe
+ cpe

+ · · · .

If H1(x) =
∑

Aix
i then

H1(x)pe
=

(∑
Aix

i
)pe

=
∑

Ape

i (xi)pe
.

Therefore,
f(x) = H(xpe

) =
∑

ai(xpe
)i = H1(x)pe

where
Ai = au

i ,

and f is clearly neither squarefree nor irreducible.
This last computation is a good opportunity to apply the binary method

for computing powers, in which case it requires at most 2 lg u < 2n lg p

5

multiplications since u < pn. Hence the computation of H1 from H requires
at most O(deg H.n lg p) multiplications2 in the finite field Fpn .

Proposition 1 together with the above analysis proves the following:

Proposition 2 Every irreducible polynomial over a finite field or a field of
characteristic zero is squarefree and therefore has nonzero derivative.

Note that this does not apply over an infinite field with finite charac-
teristic. For example, if f(x) = yxp − 1 is a polynomial with coefficients in
Fp(y), the field of rational functions in y with coefficients in the finite field
of p elements, then f ′ = 0 but f is nevertheless irreducible. To see this,
observe that in a suitable extension field, such as C(y1/p), f has the linear
factorization

f(x) =
p∏

i=1

(y1/px− ωi) where ωp = 1,

but the product of any proper subset of these factors contains at least one
coefficient that is a non-integer power of y and so 6∈ Fp(y).

1.5 A more general squarefree decomposition algorithm

This algorithm, given by Mignotte, works over a field of characteristic zero or
a finite field of characteristic p. Let f ∈ F [x] be a non-constant polynomial
and f ′ its (formal) derivative.

If f ′ 6= 0 then compute g = gcd(f, f ′). If g = 1 then f is squarefree, other-
wise f = gh where h is squarefree and 0 < deg h < deg f . Now apply
the algorithm to g. [This is precisely the Tobey-Horowitz algorithm.]

If f ′ = 0 then compute g ∈ Fpn [x] such that

f = gpe
, e ≥ 1, g′ 6= 0

as described above – this can happen only in finite characteristic. Now
apply the algorithm to g. [It is in this case that the algorithms de-
scribed by Yun all fail, because they assume f ′ 6= 0.]

2Mignotte gives this bound as O(deg H.pen ln p) without explanation, and I do not see
why.

6

2 GCDs in unique factorization domains

Polynomials over a field form a Euclidean domain, in which Euclid’s algo-
rithm using polynomial division can be used to compute polynomial gcds in
complete analogy with the computation of integer gcds. However, neither
polynomials over the integers nor multivariate polynomials over a field form
Euclidean domains, although they form integral domains and hence gcds
are defined. The question is how to compute gcds in these domains. It is
not sufficient to simply compute in the field of fractions of the coefficient
domain because, for example,

gcd(6x2y, 15xy2 + 21x3y2) =

3xy in Z[x, y],
xy in Q[x, y] because 3 is a unit,
x in Q(y)[x] because 3y is a unit.

The general situation that I want to consider is that the coefficients are
elements of a unique factorization domain (UFD), which as I defined earlier
is an integral domain in which every nonzero element is either a unit or has a
representation as a product of primes that is unique up to order and factors
of units. A nonunit element p is prime if p = rq ⇒ either q or r is a unit.
A field is a trivial UFD in which every nonzero element is a unit and there
are no primes.

Proposition 3 Polynomials over a UFD form a UFD, and hence multi-
variate polynomials over a UFD form a UFD.

A polynomial that is “prime” is usually called “irreducible”. A set of
elements of a UFD is called relatively prime if no prime of that UFD divides
all of them.

2.1 Primitive polynomials

Definition 2 A polynomial over a UFD is called primitive if its coefficients
are relatively prime.

The following lemma due to Gauss is quoted in different forms by differ-
ent authors, but one version implies another.

Lemma 4 (Gauss’s Lemma) The product of primitive polynomials over
a UFD is primitive.

7

Proof Let u(x) = umxm + · · ·+u0 and v(x) = vnxn + · · ·+ v0 be primitive
polynomials. If p is any prime element of the UFD we need to prove that
it does not divide all coefficients of u(x)v(x). Because u, v are primitive
there are indices i, j such that p does not divide ui, vj . Choose i, j to be the
smallest possible such indices, so that p does divide ui′<i and vj′<j . Then
the coefficient of xi+j in u(x)v(x) is u0vj+i + u1vj+i−1 + · · · + ui−1vj+1 +
uivj +ui+1vj−1 + · · ·+ui+j−1v1 +ui+jv0 which is not divisible by p because
uivj is not, but all the other terms are. 2

If a nonzero polynomial over a UFD is not primitive, then primes com-
mon to all the coefficients can be successively factored out until the polyno-
mial factor is primitive; in fact, this will factor out the gcd of the coefficients,
which is unique up to a unit. This leads to the following

Lemma 5 Any nonzero polynomial u(x) over a UFD S can be factored in
the form u(x) = cv(x), c ∈ S where v(x) is primitive. This factorization is
unique up to a factor of a unit.

Proof Existence is proved by the argument preceding the Lemma. To prove
uniqueness, assume to the contrary that c1v1(x) = c2v2(x), where v1(x) and
v2(x) are primitive and c1 is not a unit multiple of c2. Then, by unique
factorization, there exists a prime p ∈ S and k ∈ Z+ such that pk divides c1

but not c2. Then pk must divide all the coefficients of v2(x), contradicting
the assumption that v2(x) is primitive. 2

Therefore, any nonzero polynomial u(x) can be decomposed essentially
uniquely as

u(x) = cont(u) · pp(u(x)),

where cont(u) ∈ S is the “content”, and pp(u(x)), a primitive polynomial
over S, is the “primitive part”. When u(x) = 0 it is convenient to define
cont(u) = pp(u(x)) = 0.

Gauss’s Lemma and Lemma 5 together imply

cont(uv) = a cont(u) cont(v),
pp(u(x)v(x)) = b pp(u(x)) pp(v(x)),

(1)

where a, b are inverse units in S (ab = 1) that depend on u, v. The only units
in Z are ±1 and for polynomials over Z it is conventional to define pp(u(x))
so that its leading coefficient is positive and hence cont(u) is the gcd of

8

the coefficients of u(x) with the sign of the leading coefficient. All nonzero
elements of a field are units and for polynomials over a field it is conventional
to define pp(u(x)) so that its leading coefficient is monic and hence cont(u)
is the leading coefficient of u(x). With these definitions, relations (1) hold
with a = b = 1 for all u, v.

However, since there are no prime elements in a field, no prime can divide
the coefficients of any polynomial over a field, and hence every polynomial
over a field is primitive. Therefore, one is free to choose some other rule for
splitting a polynomial over a field into its content and primitive part. For
example, the definition of content of a polynomial over the field of fractions
of an integral domain can be used, as given in the previous set of notes, which
has the advantage for some purposes that the primitive part is a polynomial
over an integral domain rather than a field, and an integral domain that is
not a field has non-trivial homomorphic images that can be used to facilitate
some computations.

2.2 GCDs in terms of content and primitive part

The following proposition splits the polynomial gcd problem into a univari-
ate polynomial problem and a coefficient domain problem.

Proposition 6

cont(gcd(u, v)) = a gcd(cont(u), cont(v)),
pp(gcd(u(x)v(x))) = b gcd(pp(u(x)),pp(v(x))),

where a and b are units.

Proof If g = gcd(u, v) then u = gu′, v = gv′ where gcd(u′, v′) = 1. Then
by (1),

cont(u) = a cont(g) cont(u′), cont(v) = a cont(g) cont(v′),

and hence
gcd(cont(u), cont(v)) = a cont(g),

because gcd(u′, v′) = 1 ⇒ gcd(cont(u′), cont(v′)) = 1. The argument for
the primitive part is identical. 2

Note that the content of the polynomial gcd on the left, gcd(u(x)v(x)),
is irrelevant because it is discarded, and the polynomial gcd computation is

9

reduced to one of finding a gcd of primitive polynomials. Proposition 6 pro-
vides a way of computing gcds of polynomials over UFDs that do not form
Euclidean domains by performing the polynomial division over the field of
fractions of the coefficient domain. To compute gcd(u, v), where u, v ∈ S[x]
and S is a UFD, compute cont(u), cont(v) as the gcds of their coefficients and
then compute gcd(cont(u), cont(v)), which requires only gcd computations
in S. Then compute gcd(pp(u(x)),pp(v(x))) over Q(S), discard any com-
mon denominator, take the primitive part of the result over S and multiply
it by the content, found separately.

For example, let us use this technique to compute gcd(6x2y, 15xy2 +
21x3y2) in Z[y][x]. Over Z[y], cont(6x2y) = 6y, cont(15xy2 +21x3y2) = 3y2,
and their gcd is 3y. The primitive parts are respectively x2 and 5x + 7x3,
the gcd of which is x, and hence the overall gcd is 3yx.

2.3 Multivariate GCD computation

If the coefficient domain is itself a ring of polynomials then the polynomial
gcd algorithm is called recursively, until finally the coefficient domain is
numerical. Suppose that we have a procedure Euclid0(u, v) that computes
the (distinguished) gcd of two elements u, v of the ground ring. In practice,
this will normally be either the integers, which form a Euclidean domain, or a
field in which case the (distinguished) gcd is trivially 1. Suppose also that we
have a procedure Euclid1(u, v, x) that computes a gcd of u, v ∈ S[x] by using
any convenient method, such as computing over the field of fractions of the
coefficient domain, and returns a gcd in S[x] with arbitrary content. Later
we will consider various alternative ways that Euclid1 could operate. Then,
in terms of these two Euclidean procedures that do the real gcd computation,
a procedure to recursively compute the gcd of two polynomials in r variables
can be written as follows.

input: u, v ∈ R[x1, . . . , xr], R a UFD.
procedure gcd(u, v, r);
if r = 0 then return Euclid0(u, v) else
begin

uc := cont(u, r); up := u/uc;
vc := cont(v, r); vp := v/vc;
return gcd(uc, vc, r − 1)× pp(Euclid1(up, vp, xr), r)

end;
output: gcd(u, v) ∈ R[x1, . . . , xr]

10

procedure pp(u, r); u/cont(u, r);

input: u ∈ R[x1, . . . , xr−1][xr], R a UFD.
procedure cont(u, r);
begin

c := coeff(u, xr, 0); i := 1;
while i < deg(u, xr) and c 6= 1 do
begin

c := gcd(c, coeff(u, xr, i), r − 1);
i := i + 1

end;
return c

end;
output: cont(u) ∈ R[x1, . . . , xr−1]

Because only the primitive part of the polynomial returned by Euclid1 is
used, the contents of the polynomials supplied to it as arguments are irrele-
vant, but making the argument polynomials primitive as above reduces the
complexity of the input. If Euclid1 is arranged always to return the primitive
part of the gcd then procedure pp in the above algorithm is unnecessary.

Procedure content assumes the existence of an operator coeff(u, x, i) that
returns the coefficient of xi in the polynomial u(x), and for efficiency the
loop stops as soon as a content of 1 is detected. If u is a constant then this
procedure returns cont(u, r) = u, and hence pp(u, r) = 1. Therefore, the
procedures work correctly when one of u and v is a constant, although they
could perhaps be made more efficient by including some special-case code.

The above discussion provides an approach to general gcd computation
that works. However, it has the serious problems elaborated in Davenport et
al. that it is highly recursive, the sizes of integers appearing in intermediate
coefficients become very large, and the degrees of intermediate polynomials
in the multivariate case also become very large. Nevertheless, it provides
a basis for more sophisticated methods such as those using modular arith-
metic.

3 Polynomial remainder sequences (PRSs)

The main purpose of this section is to consider alternatives to computing
over the field of fractions of the coefficients, which requires many gcd com-
putations, when applying Euclid’s algorithm to polynomials.

11

Euclid’s algorithm applied to two univariate polynomials p1(x), p2(x),
deg p2(x) < deg p1(x), over a field generates a sequence of polynomials, each
of which is the remainder of the previous two. This is called a Euclidean
sequence or a polynomial remainder sequence, abbreviated to PRS. The gen-
eral formulation is that the remainder sequence {pi(x)}, i ≥ 3 is generated
by

pi(x) = pi+1(x)qi(x) + pi+2(x), deg pi+2(x) < deg pi+1(x), 1 ≤ i ≤ h− 1,

ph+1(x) = 0, gcd(p1(x), p2(x)) = ph(x).

But this applies only to polynomials over a field, which form a Euclidean
domain. For polynomials over a ring only pseudo-division rather than true
polynomial division is generally possible, and pseudo-division leads to a
pseudo-remainder sequence. This means that pi(x) on the left of the above
division relation is multiplied by the constant needed to ensure that it is
divisible by pi+1(x). However, it is also possible to rescale the result pi+2(x)
before re-using it. This leads to a generalized PRS in which the division
relation has the form

Li+1
di−di+1+1pi(x) = pi+1(x)qi(x) + βipi+2(x),

where Li+1 represents the leading coefficient of pi+1(x) and di = deg pi(x).
In general, the primitive part of a gcd determined by this generalized

PRS will be correct, but its content will have been changed in a fairly arbi-
trary way by the rescalings. However, since we only need the primitive part
this does not matter.

3.1 Alternative polynomial remainder sequences

The simplest polynomial pseudo-remainder sequence, which does not rescale
pi+2(x) and so corresponds to taking βi = 1, is usually called the Euclidean
PRS. It has the disadvantage that the polynomial coefficients generally
increase in length exponentially with respect to the degrees of the initial
polynomials. One solution is to divide out the content of each polynomial
and replace it by its primitive part, which corresponds (loosely) to taking
βi = cont(pi+2(x)), to give a primitive PRS. This gives the least possible
coefficient growth, but has the disadvantage that it involves a lot of gcd
computations to compute the contents.

The best compromise is obtained from an algorithm usually called the
sub-resultant algorithm, which corresponds to a rescaling such that the co-
efficient growth is only linear, and no gcd computations are required. The

12

result is usually called a sub-resultant PRS. The method was discovered
independently and published by Collins in 1967 and Brown in 1971, but it is
related to work by Sylvester (on resultants) in 1853 which was generalized
by Habicht in 1948. It is the best gcd algorithm based on Euclid’s algorithm,
although more advanced modular methods are better still. (It is discussed
in great detail by Akritas, together with an alternative method of his own.)

The sub-resultant algorithm consists of using the following rescalings,
i.e. dividing the factor βi, defined as follows, out of pi+2(x) before re-using
it. Let δi = deg pi(x)− deg pi+1(x) and Li = lc pi(x), and take

β1 = (−1)δ1+1, βi = (−1)δi+1LiH
δi
i , i ≥ 2,

where
H1 = 1, Hi = L

δi−1

i H1−δi−1
i−1 , i ≥ 2.

A PRS is called complete if the degree of each element is one less than
that of the previous element, so that ∀i, δi = 1. This possibility is most
important for Sturm sequences, to be discussed next week, but there is no
way to determine a priori whether a PRS is going to be complete. However,
if it is complete the above rescaling simplifies considerably to

β1 = 1, βi = Lδi+1
i , i ≥ 2,

which corresponds to Sylvester’s original algorithm; it can be used with an
incomplete PRS but gives faster than optimal coefficient growth.

3.2 Examples of polynomial remainder sequences

The following examples were all computed by implementing in REDUCE 3.4
the algorithms described above, and applying them to the following pair of
polynomials (as used in Davenport et el. §2.3.3, which I will abbreviate to
DST):

p1 = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5,

p2 = 3x6 + 5x4 − 4x2 − 9x + 21.

I will show the actual REDUCE output, which corresponds to the sequence
p3, p4, p5, p6. The most elementary PRS is the genuine remainder sequence
obtained by computing over the field of rational coefficients:

13

5 4 1 2 1
- ---*x + ---*x - ---,

9 9 3

117 2 441
- -----*x - 9*x + -----,

25 25

233150 102500
--------*x - --------,
19773 6591

1288744821
- ------------

543589225

This output agrees with that in DST except for the linear element, where
mine is 1/3 times that of DST – I do not know why.

All the subsequent sequences will be pseudo-remainder sequences; the
next most sophisticated, called Euclidean, uses pseudo-division as defined
last week with no additional rescaling, and gives

4 2
- 15*x + 3*x - 9

2
15795*x + 30375*x - 59535

1254542875143750*x - 1654608338437500

12593338795500743100931141992187500

This agrees with that in DST.
The smallest possible coefficients are obtained by making every polyno-

mial primitive:

4 2
- 5*x + x - 3

14

2
13*x + 25*x - 49

4663*x - 6150

1

DST do not give this sequence, but it is obviously primitive, and each ele-
ment is a (large) multiple of that in the Euclidean sequence.

Generally the algorithm with best overall performance, but the hard-
est to program, is the subresultant algorithm. It produces the following
sequence:

4 2
15*x - 3*x + 9

2
65*x + 125*x - 245

9326*x - 12300

260708

This agrees with DST, and is obviously a compromise between the Euclidean
and primitive sequences. The theory behind the subresultant PRS algorithm
is important because it is probably the main PRS used in practice, but it is
quite complicated so I will defer consideration of it until next week.

4 Bézout’s identity and its applications

Bézout’s identity provides a systematic technique for computing inverse ele-
ments in quotient rings, and also leads to an elegant technique for computing
partial fraction decompositions without needing to solve any equations. I
will discuss these two applications after a brief look at the background the-
ory.

Theorem 7 Two integer a, b are relatively prime if and only if there exist
integer s, t such that

sa + tb = 1.

15

This relation is attributed to Étienne Bézout (1730–83), who was an alge-
braic geometer (although Mignotte claims that it should be attributed to
Bachet de Méziriac).

Proof There exist s, t ∈ Z such that gcd(a, b) = sa+tb, and hence necessity
is proved. Sufficiency is proved by the fact that if the relation holds then any
integer that simultaneously divides a and b must also divide 1, and hence a
and b must be relatively prime. 2

The above theorem has the following corollary:

Theorem 8 (Euclid-Gauss) Let a, b ∈ Z be relatively prime. If c ∈ Z is
divisible by both a and b then it is also divisible by ab.

Proof ∃s, t ∈ Z, sa+ tb = 1. Then sac+ tbc = c, and since ab divides both
ac and bc, it must divide c. 2

Bézout’s identity generalizes to any Euclidean domain, and in particular
to polynomials over a field F . A slightly different point of view from that
which we have taken so far ties in with ideals; recall that a Euclidean domain
is a principal ideal domain (PID).

Theorem 9 Let f1, . . . , fr ∈ F [x]. Any generator g of the ideal (f1, . . . , fr)
is a gcd of the fi, and there exist polynomials u1, . . . , ur ∈ F [x] such that

u1f1 + · · ·+ urfr = g.

Moreover, g divides each fi, and any polynomial p that divides each of the
fi also divides g. Any other gcd of the fi has the form µg, where µ is a unit,
i.e. any nonzero element, in F . Euclid’s algorithm can be used to compute
g, and extended to compute the ui.

Hence:

Corollary 10 If the polynomials f1, . . . , fr ∈ F [x] are relatively prime then
there exist polynomials u1, . . . , ur ∈ F [x] such that Bézout’s identity holds:

u1f1 + · · ·+ urfr = 1.

However, Bézout’s identity is most often used with r = 2, as in the following
two applications. The coefficients s, t in Bézout’s identity are computed in
practice by using the extended Euclidean gcd algorithm, although in simple
examples they can often be guessed quite easily.

16

4.1 Computation of inverses in a quotient ring

Let D be a Euclidean domain. Then computation in the quotient ring
D/(m), where as usual (m) denotes a (principal) ideal, is the same as com-
putation “mod m”. The problem of computing inverses in D/(m) is the
same as finding solutions u of the congruence au ≡ 1 (mod m) for given
a,m ∈ D. A distinguished representative u of an equivalence class [u] in
D/(m) is chosen so that u = rm(u).

4.1.1 Theory

The simplest Euclidean domain is Z, in which the congruence 5u ≡ 1
(mod 8) has the (distinguished) solution u = 5, whereas 6u ≡ 1 (mod 8)
has no solution. The reason is the following:

Theorem 11 Let a,m ∈ D; then the congruence au ≡ 1 (mod m) has
a solution u ∈ D if and only if gcd(a,m) = 1, i.e. a and m are relatively
prime.

Proof Applying Bézout’s identity, gcd(m,a) = 1 ⇒ ∃s, t ∈ D such that
sm + ta = 1, and hence u = t is a solution. Conversely, if the congruence
has a solution then au + mv = 1 for some v ∈ D, and hence gcd(m,a) = 1.

2

Corollary 12 In D/(m), the element [a] = a+(m) is invertible if and only
if gcd(a,m) = 1.

From any particular solution we can compute all solutions:

Theorem 13 If v ∈ D is a particular solution of au ≡ 1 (mod m) then u
is a solution if and only if u ≡ v (mod m).

Proof Given that av ≡ 1 (mod m) for some v ∈ D then trivially u ≡ v
(mod m) ⇒ au ≡ 1 (mod m). Conversely, au ≡ 1 (mod m) ⇒ au ≡
av (mod m), and hence m | a(u− v). But gcd(a,m) = 1, so m | (u− v) and
hence u ≡ v (mod m). 2

If u ≡ v (mod m) then u mod m = v mod m, and hence v mod m is
the unique solution of u ≡ v (mod m) in the range of the mod m function.
This leads to

17

Corollary 14 Let m, a ∈ D with gcd(m,a) = 1. Then au ≡ 1 (mod m)
has a unique solution in the range of the mod m function on D.

This unique solution is denoted a−1 mod m.
Finally, the argument a can be reduced mod m before computing its

inverse:

Corollary 15 a−1 mod m = (a mod m)−1 mod m.

Proof Clearly, au ≡ 1 (mod m) ⇒ (a mod m)u ≡ 1 (mod m). Hence
the unique solutions to the two congruences in the range of the mod m
function must be the same. 2

The case that m is a prime or irreducible element of D is especially
important, because gcd(m,a) = 1 ⇐⇒ m - a. This reflects the fact that
D/(m) is a field if m is prime, and in D/(m), [a] 6= [0] ⇐⇒ m - a, in which
case [a] must be invertible.

4.1.2 Computation

The extended Euclidean gcd algorithm applied to {m,a} returns {g, s, t}
such that

gcd(m,a) ∼ g = sm + ta.

If g is not a unit in D (g 6∼ 1) then, by Theorem 11, a−1 mod m does not
exist. Otherwise, g ∼ 1 and hence

1 = g−1sm + g−1ta

and a−1 mod m = g−1t.
Since the value of t is not required, the extended Euclidean algorithm

can be streamlined slightly. The time to compute the inverse is essentially
the time to perform Euclid’s algorithm, which for “small” integers bounded
in magnitude by N is O(lg N), and for polynomials of degree bounded by
N is O(N2) assuming coefficient operations take constant [O(1)] time.

Some particularly important applications are computations of inverses
in the following fields:

• a−1 in the finite field Zp for prime p, in which case it is guaranteed
that gcd(p, a) = 1 because 0 ≤ a < p;

18

• a(x)−1 in the field F [x]m(x)
∼= F [x]/(m(x)) where m(x) is irreducible

over the field F and a(x) is first reduced mod m(x) so that deg a(x) <
deg m(x).

As an explicit example, 1/3 = −2 = 5 in Z7 by Bézout’s identity, a result
which is clearly correct because 3 · 5 = 15 = 1 mod 7.

4.2 Partial fraction decomposition

This is a useful technique for simplifying a complicated fraction or ratio-
nal expression n/d into a sum of simpler fractions, which can be useful
when a fraction is to be integrated or summed, for example. If the frac-
tion is improper, i.e. the degree of the numerator is not less than that of
the denominator, then a Euclidean division can be performed leading to a
polynomial quotient and a fractional remainder, so that the fraction can be
assumed to be proper. The first step is to factorize the denominator into
relatively prime factors – suppose that d = pq where gcd(p, q) = 1. Then
the problem is to express n/d in the form

n

d
=

n

pq
=

a

p
+

b

q
.

The standard technique is to construct a partial fraction decomposition with
unknown coefficients, clear denominators and then solve for the coefficients.
Bézout’s identity provides an alternative approach.

We can use the extended Euclidean algorithm to compute P,Q such that
(for relatively prime p, q) 1 = gcd(p, q) = Pp + Qq. This immediately gives
the decomposition

n

pq
=

n(Pp + Qq)
pq

=
nQ

p
+

nP

q
.

The partial fractions computed in this way will not necessarily be proper,
but if not they can simply be divided out. If the initial fraction was proper
then the improper parts of the partial fractions must cancel by subtraction,
so that their numerators can simply be replaced by the remainders when
they are divided by their denominators.

I assumed above that p, q were relatively prime but not necessarily that
they were irreducible. If any denominator is reducible then the procedure
can be repeated until a sum of partial fractions with irreducible denomina-
tors results, and this can be done systematically.

19

5 Exercises

The assessed questions in this set of exercises are the first three.

1. (** Assessed **)
Find the squarefree decomposition of x4+x3 by implementing by hand
both the Tobey-Horowitz algorithm and Musser’s algorithm, showing
all the steps. [The problem is intentionally trivial, so that it can be
easily done by hand!]

2. (** Assessed **)
Two polynomials p, q ∈ Z[x, y] are given by

p = xy − x + y − 1, q = x2y + 2x2 + 2xy + 4x + y + 2.

Write them explicitly as elements of (Z[y])[x] and hence find their
contents and primitive parts, regarding p, q as univariate polynomials
in x. By quoting the appropriate result for expressing polynomial gcds
in terms of content and primitive part, find gcd(p, q).

3. (** Assessed **)
Use Bézout’s identity to perform a partial fraction decomposition of
1/(x3 − x), showing the details of your calculation.

4. Design a polynomial squarefree decomposition algorithm that operates
over a coefficient ring that is not a field and returns the squarefree
decomposition as a product of powers of primitive factors, and also
returns the content without performing an explicit content computa-
tion.

5. Verify the polynomial remainder sequences quoted in the notes.

6. Implement the gcd algorithm for Z[x] given in the text using the var-
ious generalized PRSs described.

7. Find (by “inspection” or guessing) Bézout’s identity relating 3 and 5,
and hence compute 3−1 ∈ Z5. Find similarly Bézout’s identity relating
x+1 and x3−1 in Z[x], and hence compute (x+1)−1 in Z[x]/(x3−1).
State whether this quotient ring is a field, and prove your assertion.

20

