
Mathematics and Algorithms for Computer Algebra

Part 1 c© 1992 Dr Francis J. Wright – CBPF, Rio de Janeiro

July 9, 2003

6: Matrices, polynomials and equations

Matrix computation is important in its own right, but it is also an impor-
tant tool in understanding polynomial remainder sequences, because polyno-
mial division can be expressed in terms of Gaussian elimination in a matrix.
One of the techniques for isolating roots of a univariate polynomial uses a
“negative” remainder sequence.

1 Bareiss’ Gaussian elimination algorithm

The determinant of a matrix over a ring R also belongs to R, because a
determinant can be defined in terms only of ring operations. The normal
method of computing a determinant is to reduce the matrix to (upper)
triangular form by performing elementary (row) operations, which is called
Gaussian elimination. However, in its standard form, Gaussian elimination
requires division, which is not a ring operation. If R were an integral domain
then one could compute in its field of fractions, but this is unsatisfactory
because it requires expensive gcd computations, and if R is not an integral
domain then it does not have a field of fractions. An analogue of pseudo-
division is required, in which one effectively multiplies by a coefficient that
ensures that each division can then be performed, but it is desirable to
keep such coefficients as small as possible. Bareiss’ Gaussian elimination
algorithm achieves this.

For matrix elements that have bounded complexity, as with conventional
floating-point approximations to real numbers that use a fixed amount of
memory, Gaussian elimination is as fast as any algorithm for computing
determinants. However, as we have already seen for power computations,
the complexity of the data can have a large affect on the overall complexity

1

of an algorithm. For a matrix of integers or univariate polynomials, Bareiss’
algorithm is probably the fastest, but for multivariate polynomials other
methods, such as cofactor expansion, may be faster overall.

The standard Gaussian elimination algorithm, with division but without
pivoting, applied to an n × n matrix M with elements mij = m

(0)
ij in some

field, is the following:

for k := 1 to n− 1 do
{triangularize column k:}
for i := k + 1 to n do
{zero its subdiagonal elements using the elementary}
{row operation R

(k)
i := R

(k−1)
i − constant×R

(k−1)
k :}

for j := k to n do

m
(k)
ij := m

(k−1)
ij −

(
m

(k−1)
ik

/
m

(k−1)
kk

)
m

(k−1)
kj ;

It is also generally necessary to pivot, which means that if m
(k−1)
kk = 0

then a row with index i > k is exchanged with row k and account kept
of the consequent change of sign of the determinant. (When computing
exactly this simple pivoting algorithm is sufficient, although when computing
approximately more sophistication is required to avoid instability.)

Now note that the assignment that effects the elimination can also be
written

m
(k)
ij =

(
m

(k−1)
kk m

(k−1)
ij −m

(k−1)
ik m

(k−1)
kj

)/
m

(k−1)
kk = D

(k)
ij

/
m

(k−1)
kk ,

where D
(k)
ij denotes the 2× 2 determinant

D
(k)
ij =

∣∣∣∣∣ m
(k−1)
kk m

(k−1)
kj

m
(k−1)
ik m

(k−1)
ij

∣∣∣∣∣ .
The crucial observation by Bareiss is that, whilst in general D

(k)
ij is not

exactly divisible by m
(k−1)
kk , it is always exactly divisible by m

(k−2)
k−1,k−1 for

k > 1. So, defining m
(−1)
00 = 1, if m

(k−1)
ij ∈ R where R is a ring then

D
(k)
ij /m

(k−2)
k−1,k−1 ∈ R. Hence, the optimal factor by which to multiply each

D
(k)
ij before dividing it by m

(k−1)
kk is effectively m

(k−1)
kk /m

(k−2)
k−1,k−1. Therefore,

Bareiss’ elimination algorithm is the same as the Gaussian algorithm given
above, but with the initialization

m
(−1)
00 := 1

2

and the main assignment

m
(k)
ij := D

(k)
ij /m

(k−2)
k−1,k−1.

Pivoting is still required in general to avoid 0/0.
The Bareiss elimination procedure computes the determinant of the ma-

trix as follows. For each value of k, row i of the matrix is multiplied by the
factor m

(k−1)
kk /m

(k−2)
k−1,k−1 for k + 1 ≤ i ≤ n, which has the following effect on

the determinant of the matrix:

|M (k)| = |M (k−1)|
(
m

(k−1)
kk

/
m

(k−2)
k−1,k−1

)n−k
.

Applying this relation successively gives

|M (1)| = |M (0)|
(
m

(0)
11

/
m

(−1)
00

)n−1
= |M (0)|

(
m

(0)
11

)n−1
,

|M (2)| = |M (1)|
(
m

(1)
22

/
m

(0)
11

)n−2
= |M (0)|m(0)

11 (m(1)
22)n−2,

...
|M (n−1)| = |M (0)| m

(0)
11 m

(1)
22 · · ·m

(n−2)
n−1,n−1.

But at the end of the elimination process M (n−1) is triangular, so that

|M (n−1)| = m
(0)
11 m

(1)
22 · · ·m

(n−2)
n−1,n−1m

(n−1)
n,n ,

and hence by comparison with the last of the previous sequence of equations

|M | = |M (0)| = m(n−1)
n,n .

The reason that D
(k)
ij /m

(k−2)
k−1,k−1 ∈ R is based on a generalization of an

identity due to Sylvester. If the terms of the matrix sequence Mk are defined
by

m
(k)
ij =

∣∣∣∣∣ m
(k−1)
kk m

(k−1)
kj

m
(k−1)
ik m

(k−1)
ij

∣∣∣∣∣
/

m
(k−2)
k−1,k−1

then it can be shown that

m
(k)
ij =

∣∣∣∣∣∣∣∣∣∣∣∣

m11 m12 · · · m1k m1j

m21 m22 · · · m2k m2j
...

...
. . .

...
...

mk1 mk2 · · · mkk mkj

mi1 mi2 · · · mik mij

∣∣∣∣∣∣∣∣∣∣∣∣
,

3

which shows that m
(k)
ij ∈ R because it is defined as a determinant over R.

In this notation, |M | = m
(n−1)
nn .

However, given that

m
(−1)
00 = 1, M (0) = M,

m
(k)
ij =

∣∣∣∣∣ m
(k−1)
kk m

(k−1)
kj

m
(k−1)
ik m

(k−1)
ij

∣∣∣∣∣
/

m
(k−2)
k−1,k−1,

the most direct way to prove that m
(k)
ij ∈ R is by induction on k. The base

case is that for k = 1

m
(1)
ij = (m11mij −mi1m1j)/1 ∈ R.

Inserting (with the help of REDUCE) the values

m
(k−1)
k,k =

(
m

(k−2)
k−1,k−1m

(k−2)
k,k −m

(k−2)
k−1,km

(k−2)
k,k−1

)/
m

(k−3)
k−2,k−2

m
(k−1)
k,j =

(
m

(k−2)
k−1,k−1m

(k−2)
k,j −m

(k−2)
k−1,jm

(k−2)
k,k−1

)/
m

(k−3)
k−2,k−2

m
(k−1)
i,k =

(
m

(k−2)
k−1,k−1m

(k−2)
i,k −m

(k−2)
k−1,km

(k−2)
i,k−1

)/
m

(k−3)
k−2,k−2

m
(k−1)
i,j =

(
m

(k−2)
k−1,k−1m

(k−2)
i,j −m

(k−2)
k−1,jm

(k−2)
i,k−1

)/
m

(k−3)
k−2,k−2

into
m

(k)
i,j =

(
m

(k−1)
i,j m

(k−1)
k,k −m

(k−1)
i,k m

(k−1)
k,j

)/
m

(k−2)
k−1,k−1

gives

m
(k)
i,j =

(
m

(k−2)
k−1,k−1m

(k−2)
i,j m

(k−2)
k,k −m

(k−2)
k−1,k−1m

(k−2)
i,k m

(k−2)
k,j −

m
(k−2)
k−1,jm

(k−2)
i,k−1 m

(k−2)
k,k + m

(k−2)
k−1,jm

(k−2)
i,k m

(k−2)
k,k−1 +

m
(k−2)
k−1,km

(k−2)
i,k−1 m

(k−2)
k,j −m

(k−2)
k−1,km

(k−2)
i,j m

(k−2)
k,k−1

)/ (
m

(k−3)
k−2,k−2

)2
.

The denominator m
(k−2)
k−1,k−1 has exactly divided out of this result. Hence, if

we make the induction hypothesis that m
(k−1)
i,j ∈ R then the denominator

m
(k−3)
k−2,k−2 must in fact exactly divide out of each formula for m

(k−1)
i,j , and

hence because m
(k)
i,j is quadratic in m

(k−1)
i,j its full denominator must in fact

exactly divide out, so that m
(k)
i,j ∈ R. Then by induction this holds for all k.

4

2 Polynomial division and matrices

The aim of this section is to sketch some important theory that underlies a
large part of computer algebra. Much of this is classical pure mathematics
that has been know for the last hundred years, and now finds important
practical application. My presentation is based on the first half of the paper
“Generalized Polynomial Remainder Sequences” by R. Loos in Buchberger,
Collins & Loos. I primarily want to convey the flavour of the subject, so
I have expanded the discussion of the concepts and omitted several of the
proofs. My primary motivation is to understand the subresultant pseudo-
remainder sequence, and the section finishes with this topic.

The process of polynomial division is very similar to that of Gaussian
elimination in a matrix, and this analogy leads to a useful tool for the
theoretical analysis of polynomial division.

Initially, let F be a field and let the polynomials a, b ∈ F [x] have degrees
m = deg a, n = deg b, m ≥ n. Then we already know that there exist
unique polynomials q = quot(a, b), r = rem(a, b) such that either r = 0 or
deg r < deg b. The division algorithm, expressed in terms of operations on
complete polynomials rather than on individual terms, is the following:

input: a =
∑m

i=0 aix
i, b =

∑n
j=0 bjx

j

a(0) := a;
for k := 1 to m− n + 1 do
begin

q(k) := lc a(k−1)/bn;

a(k) := a(k−1) − xm−n+1−kq(k)b
end;

output: q =
∑m−n

i=0 q(m−n+1−i)xi, r = a(m−n+1)

A polynomial can be represented densely as a row vector of its coeffi-
cients, and a sequence of polynomials can be represented as the sequence of
rows comprising a matrix, as follows.

Definition 1 Let Pi =
∑di

j=0 pijx
j , 1 ≤ i ≤ k be a sequence of k polynomials

Pi over an integral domain D, where deg Pi = di. Then the k× l associated
matrix of {Pi} is

mat(P1, P2, . . . , Pk) = (ai,l−j),

where
l = 1 + max

1≤i≤k
(di) and ai,l−j = 0 if di < j < l.

5

Thus the associated matrix is made just wide enough to hold the polynomial
of highest degree, and polynomials of lower degree are padded with leading
zeros as necessary. [The mat notation used here is identical to that used by
REDUCE for matrix input in terms of a sequence of rows.]

Then the sequence of polynomials involved in the division process can
be represented by the (m − n + 2) × (m + 1) associated matrix M =
mat(xm−nb, xm−n−1b, . . . , b, a), namely

M =

bn bn−1 · · · b0 0 · · · 0
0 bn bn−1 · · · b0 · · · 0
... · · · · · · . . .

...
0 · · · 0 bn bn−1 · · · b0

am am−1 · · · · · · · · · · · · a0

 .

The division algorithm for the polynomials a, b is identical to Gaussian
elimination in the matrix M , which in this special case only changes the last
row, because the first m− n + 1 rows are already in upper triangular form.
Moreover, no pivoting is required, because the pivot is always bn 6= 0, the
leading coefficient of b. After the Gaussian elimination, the matrix M has
the upper triangular form

M ′ =

bn bn−1 · · · b0 0 · · · 0
0 bn bn−1 · · · b0 · · · 0
... · · · · · · . . .

...
0 · · · 0 bn bn−1 · · · b0

0 · · · 0 0 rn−1 · · · r0

 ,

i.e. M ′ = mat(xm−nb, xm−n−1b, . . . , b, rem(a, b)).
The associated matrix constructs a matrix from any sequence of polyno-

mials; the following definition constructs one polynomial from any matrix.

Definition 2 Let M be a k × l matrix, k ≤ l, over an integral domain D.
The determinant polynomial of M is

detpol(M) = |M(k)|xl−k + · · ·+ |M(l)|,

where M(j) denotes the submatrix of M consisting of the first k−1 columns
followed by the jth column, for k ≤ j ≤ l. Clearly, if M is square then
detpol(M) = |M|, and deg detpol(M) ≤ l − k or detpol(M) = 0. If the

6

matrix M is composed of the k rows Mi, 1 ≤ i ≤ k, then it is convenient to
extend the notation and also write

detpol(M1,M2, . . . ,Mk) = detpol(M).

[See below for an explicit example.] Then, because Gaussian elimination
does not change a determinant, and because M ′ is upper triangular,

detpol(M) = detpol(M ′) = bm−n+1
n rem(a, b).

2.1 Pseudo-division and Bareiss elimination

Now suppose that a, b ∈ D[x] where the integral domain D is not a field.
Then polynomial division is in general not possible and neither is Gaussian
elimination in the matrix M . However, polynomial pseudo-division is pos-
sible and so is Bareiss elimination in M , and not surprisingly the two are
related. The essential problem is to compute

detpol(M) = detpol(xm−nb, xm−n−1b, . . . , b, a),

which is well defined over a ring.
Immediately after step k − 1 of the Bareiss elimination, the kth row of

M excluding the last row, i.e. for 1 < k ≤ m− n + 1, is bk−1
n times what it

was originally, and M has the following form:

1

bn bn−1 · · · · · ·
col k

· · · 0 0 0
0 b2

n bnbn−1 · · · · · · 0 0 0
...

.
...

...
...

0 0 bk−1
n bk−2

n bn−1 · · · 0 0 0
row k 0 0 0 bk

n bk−1
n bn−1 · · · 0 0

0 0 0 0 bk
n bk−1

n bn−1 · · · 0
...

...
...

...
.

...
0 0 0 a

(k−1)
m+1−k · · · · · · · · · a

(k−1)
0

The 1 at the top left represents the value m

(−1)
00 = 1 necessary to initialize

the Bareiss elimination.
As indicated explicitly in the above matrix, the cumulative effect of

the first k − 1 steps of Bareiss elimination on all but the last row, i.e. for

7

1 < k ≤ m− n + 1, is

R
(k−1)
i =

{
bi−1
n R

(0)
i for 1 < i ≤ k ≤ m + n + 1,

bk−1
n R

(0)
i for 1 < k < i ≤ m + n + 1.

To see why this is so, recall that the Bareiss elimination formula in terms of
rows is

R
(k)
i =

(
m

(k−1)
kk R

(k−1)
i −m

(k−1)
ik R

(k−1)
k

)/
m

(k−2)
k−1,k−1,

which simplifies for all but the last row, because of the triangular structure,
to

R
(k)
i =

(
m

(k−1)
kk

/
m

(k−2)
k−1,k−1

)
R

(k−1)
i for 1 ≤ k < i ≤ m− n + 1.

The factor m
(k−1)
kk /m

(k−2)
k−1,k−1 = bn/1 = bn for k = 1 because m

(−1)
00 = 1,

and hence every row with 1 < i ≤ m − n + 1 is multiplied by bn. Then
m

(k−1)
kk /m

(k−2)
k−1,k−1 = b2

n/bn = bn for k = 2, and so every row with 2 <
i ≤ m − n + 1 is again multiplied by bn. This procedure continues, and
m

(k−1)
kk /m

(k−2)
k−1,k−1 = bk

n/bk−1
n = bn for general k, so that the elimination

formula simplifies still further to

R
(k)
i = bnR

(k−1)
i for 1 ≤ k < i ≤ m− n + 1.

This leads to the intermediate state shown above, and at the end of the
Bareiss elimination each row with 1 ≤ i ≤ m−n + 1 has been multiplied by
bi−1
n .

For the last row, the kth step for 1 ≤ k ≤ m − n + 1 of the elimination
formula in terms of rows simplifies to

R
(k)
m+n+2 =

(
bk
nR

(k−1)
m+n+2 − a

(k−1)
m+1−kR

(k−1)
k

)/
bk−1
n

=
(
bk
nR

(k−1)
m+n+2 − a

(k−1)
m+1−kb

k−1
n R

(0)
k

)/
bk−1
n

= bnR
(k−1)
m+n+2 − a

(k−1)
m+1−kR

(0)
k ,

which involves no division at all.
For the polynomial division process, the transformations of the b rows

of M are irrelevant, and each transformation of the a line, in polynomial
notation, has the form

a(k) := bna(k−1) − xm−n+1−k lc a(k−1)b.

8

This is precisely the pseudo-division algorithm presented earlier, which can
therefore be regarded as a specialization of Bareiss elimination involving
no division at all. The pseudo-remainder is prem(a, b) = a(m−n+1) and
the pseudo-quotient is pquot(a, b) =

∑m−n
i=0 lc a(i)xi. Moreover, the pseudo-

division process clearly effectively multiplies a by bn at each of the m−n+1
steps. Hence

detpol(M) = detpol(xm−nb, xm−n−1b, . . . , b, a)
= prem(a, b) = rem(bm−n+1

n a, b),

because from the previous analysis of Bareiss elimination, a determinant is
given by the final value of the element in the bottom row, which in this case
is a coefficient of am−n+1, i.e. the determinant polynomial is independent of
the b rows.

In fact, if it happens that lc a(k−1) = 0 then the straightforward pseudo-
division algorithm introduces an unnecessary factor of bn, which can be
avoided by replacing the kth step by

if lc a(k−1) = 0 then a(k) := a(k−1) else

a(k) := bna(k−1) − xm−n+1−k lc a(k−1)b;

This algorithm is called sparse pseudo-division, and the sparse pseudo-
remainder is denoted sprem(a, b) = a(m−n+1). It is related to the straight-
forward pseudo-remainder by

be
n sprem(a, b) = prem(a, b) for some e ≥ 0,

where e is the number of times that the sparsity condition lc a(k−1) = 0
is satisfied during the sparse pseudo-division algorithm. The essence of
subresultant pseudodivision is to take advantage of similar but more subtle
sparsity effects.

2.2 Polynomial remainder sequences and subresultants

The general notion of a polynomial remainder sequence (PRS) can conve-
niently be expressed by using a generalization of the notion of associates
in a ring (with unity), because the Euclidean remainder, pseudo-remainder
and sparse pseudo-remainder differ only in their content, i.e. by an element
of the coefficient domain.

9

Definition 3 Let F be the quotient field of an integral domain D, then
F [x] > D[x]. Two polynomials a, b over D or F are called similar, denoted
a ∼ b, if and only if there exist u, v ∈ D, uv 6= 0, such that ua = vb.

The polynomial a ∼ 0 if and only if a = 0, and ∼ is an equivalence relation.
In the special case that u, v are units, a, b are associates.

Definition 4 A sequence of polynomials p1, p2, . . . , pr ∈ D[x] is a polyno-
mial remainder sequence (PRS) of the initial polynomials p1, p2 6= 0 if, for
r ≥ 2,

pi+2 ∼ prem(pi, pi+1) 6= 0 for 1 ≤ i ≤ r − 2, prem(pr−1, pr) = 0.

Hence, there exist ei, fi ∈ D, not both zero, and qi(x) ∈ D[x] such that

eipi = qipi+1 + fipi+2,

which conversely implies that pi+2 ∼ prem(pi, pi+1).
In a PRS, each polynomial occurs first as divisor and then as dividend,

and so a matrix representation is required that treats the two polynomials
in a division more symmetrically than that discussed above. This motivates
the following:

Definition 5 Let a, b ∈ D[x], deg a = m > 0 and deg b = n > 0. For
0 ≤ k < min(m, n) let

Mk = mat(xn−k−1a(x), xn−k−2a(x), . . . , a(x), xm−k−1b(x), . . . , b(x)).

Then the kth subresultant of a and b is Sk = sresk(a, b) = detpol(Mk).

The matrix Mk has m + n− 2k rows and m + n− k columns and therefore,
from the definition of determinant polynomial,

deg Sk ≤ (m + n− 2k)− (m + n− k) = k.

The subresultant S0, which is a polynomial of degree 0 with respect to x,
is precisely the resultant Resx(a, b) as defined previously. The matrix Mk is
the Sylvester matrix of a and b with the first (or equivalently the last) k of
each of the a and b rows omitted (which therefore removes 2k rows but only
k columns), hence the name subresultant.

10

For example, suppose m = 4, n = 3; then for 0 ≤ k < min(m,n) = 3, i.e.
k = 0, 1, 2:

M0 =

a4 a3 a2 a1 a0 0 0
0 a4 a3 a2 a1 a0 0
0 0 a4 a3 a2 a1 a0

b3 b2 b1 b0 0 0 0
0 b3 b2 b1 b0 0 0
0 0 b3 b2 b1 b0 0
0 0 0 b3 b2 b1 b0

= Res(a, b),

M1 =

a4 a3 a2 a1 a0 0
0 a4 a3 a2 a1 a0

b3 b2 b1 b0 0 0
0 b3 b2 b1 b0 0
0 0 b3 b2 b1 b0

 ,

M2 =

 a4 a3 a2 a1 a0

b3 b2 b1 b0 0
0 b3 b2 b1 b0

 .

The coefficients of Sk are the determinants of the square submatrices of Mk

whose last columns are any of those shown with a vertical line to their right,
including the last column of Mk, e.g.

S2 =

∣∣∣∣∣∣∣
a4 a3 a2

b3 b2 b1

0 b3 b2

∣∣∣∣∣∣∣ x2 +

∣∣∣∣∣∣∣
a4 a3 a1

b3 b2 b0

0 b3 b1

∣∣∣∣∣∣∣ x +

∣∣∣∣∣∣∣
a4 a3 a0

b3 b2 0
0 b3 b0

∣∣∣∣∣∣∣ .
A sequence of the form a, b, sresn−1(a, b), sresn−2(a, b), . . . , sres0(a, b) =

Res(a, b), where n = deg b ≤ deg a, is called a subresultant chain. It is
closely related to the PRS generated by a, b, but is easier to analyse. In
fact, for any PRS with ni = deg pi and prem(pr−1, pr) = 0,

pi ∼ Sni−1−1 ∼ Sni for 3 ≤ i ≤ r

and
Sk = 0 for ni < k < ni−1 − 1, 3 ≤ i ≤ r.

2.3 Analysis of subresultant chains

We saw earlier that sparsity of polynomials being divided can reduce the
size of the factor necessary in pseudo-division. In order to make use of

11

this observation it is necessary to study the way that sparsity propagates
through a subresultant chain, and to trace in detail the effect of the similarity
coefficients ei, fi on a PRS.

It is convenient to use Kronecker’s method of “indeterminate coeffi-
cients”, in which polynomial coefficients are regarded temporarily not as
elements of some number domain but as “indeterminates”, which later can
be given particular numerical values, including zero. Then we temporarily
regard a =

∑n+1
i=0 aix

i, b =
∑n

j=0 bjx
j as polynomials over Z in x with inde-

terminate coefficients. The particular relationship between the degrees of a
and b can be changed by allowing some leading coefficients to take the value
zero later.

The determinant polynomial defining a subresultant can be related to a
pseudo-remainder in a way similar to that used previously. By definition,
for 0 ≤ k < n,

Sk = sresk(a, b) = detpol(Mk)
= detpol(xn−k−1a, xn−k−2a, . . . , a, xn−kb, xn−k−1b, . . . , b),

because m = deg a = n + 1. The matrix Mk has 2n + 1 − 2k rows, hence
moving the first row to the last without otherwise changing the order of the
rows requires 2(n− k) row exchanges, which is always even and so does not
change the sign of the determinant. Applying the same argument to all of
the a rows leads to

Sk = detpol(xn−kb, xn−k−1b, . . . , b, xn−k−1a, xn−k−2a, . . . , a).

Multiplying each of the n− k rows of a coefficients by b2
n gives

Sk = detpol(xn−kb, . . . , b, xn−k−1b2
na, . . . , b2

na)b−2(n−k)
n .

Gaussian elimination using appropriate b rows allows each a row to be re-
duced to rem(b2

na, b) = prem(a, b), thus

Sk = detpol(xn−kb, . . . , b, xn−k−1b2
n prem(a, b), . . . , b2

n prem(a, b))b−2(n−k)
n .

But deg prem(a, b) ≤ n − 1, whereas the matrix was originally constructed
using deg a = n + 1. Hence the prem(a, b) rows all have at least 2 leading
zeros, and so each determinant comprising a coefficient of the determinant
polynomial can be cofactor expanded about its first two columns.

For 0 ≤ k ≤ n− 2 this leads to Sk =

detpol(xn−2−kb, . . . , b, xn−k−1b2
n prem(a, b), . . . , b2

n prem(a, b))b−2(n−k)+2
n

12

and hence, in a form that does not require division,

b2(n−k−1)
n Sk = b2(n−k−1)

n sresk(a, b) = sresk(b, prem(a, b)), 0 ≤ k ≤ n− 2.

For k = n − 1, Sn−1 = detpol(xb, b, prem(a, b))b−2
n and cofactor expansion

about its first two columns leads to

Sn−1 = sresn−1(a, b) = prem(a, b).

(In fact, the matrix is upper triangular.)
It is convenient to extend the notation and define

Sn+1 = a, Sn = b,

hence
Sn−1 = sresn−1(Sn+1, Sn) = prem(Sn+1, Sn).

We will also need

Definition 6 The kth principal subresultant coefficient, for 0 ≤ k ≤ n + 1,
is

Rk =

{
coefficient of xk in Sk for 0 ≤ k ≤ n,

1 for k = n + 1.

[With indeterminate coefficients, Rk = lc Sk for 0 ≤ k ≤ n, but this is not
necessarily true if the coefficients are allowed to take numerical values.]

The following theorem, which is not new, relates subresultants to their
predecessors (in decreasing subscript order) in the subresultant chain.

Theorem 1 (Habicht, 1948) Let a, b be polynomials of degrees n + 1, n
respectively with indeterminate coefficients, and let

Sn+1 = a, Sn = b, Sn−1, . . . , S0

be the subresultant chain of a, b. Then, for all j, 0 < j ≤ n,

R
2(j−r)
j+1 Sr = sresr(Sj+1, Sj), 0 ≤ r < j,

R2
j+1Sj−1 = prem(Sj+1, Sj).

Habicht’s Theorem gives the links that exist within a completely general
subresultant chain. In order to consider sparsity, we must now let the inde-
terminate coefficients take values in D, such that deg a = n1, deg b = n2. If

13

n1 > n2 we let n1 = n + 2, bn = · · · = bn2+1 = 0, whereas if n1 ≤ n2 we let
n2 = n, an+1 = an = · · · = an1+1 = 0. Therefore,

n =

{
n1 − 1 if n1 > n2,

n2 if n1 ≤ n2.

With indeterminate coefficients it is not possible for any of the determi-
nants defining the coefficients of a subresultant to vanish, whereas when
the coefficients are allowed to take values in D such cancellation can occur.
Therefore, deg Sj ≤ j, and if deg Sj = r < j then Sj is called defective of
degree r; otherwise it is called regular. [This terminology dates back over
one hundred years!] A subresultant chain or PRS is called regular if all its
elements are regular, and defective otherwise. Moreover, the kth principal
subresultant coefficient Rk is defined to be the coefficient of xk in Sk, which
if it vanishes is not the same as the actual leading coefficient lc Sk.

Allowing the coefficients to take values in D leads to what is essentially
a special case of Habicht’s Theorem:

Theorem 2 (Subresultant Theorem) Let Sn+1, Sn, . . . , S0 be the subre-
sultant chain in D[x] of Sn+1, Sn. Let Sj+1 be regular and Sj be defective of
degree r < j (with deg 0 = −1). Then

Sj−1 = Sj−2 = · · · = Sr+1 = 0, − 1 ≤ r < j < n,

Rj−r
j+1Sr = lc(Sj)j−rSj , 0 ≤ r ≤ j < n, (1)

(−1)j−rRj−r+2
j+1 Sr−1 = prem(Sj+1, Sj), 0 < r ≤ j < n. (2)

This theorem shows how a defective subresultant (one or more of whose
leading terms happen to vanish) causes gaps in the subresultant chain, in
which successive subresultants vanish completely, and related jumps in the
degrees of the elements of the associated PRS.

2.4 Analysis of polynomial remainder sequences

The final step is to relate a PRS to the subresultant chain starting from the
same pair of polynomials. Only a regular subresultant chain can actually
be identical to a PRS, because a PRS cannot contain any zero elements
(otherwise all subsequent elements would vanish). The subresultant PRS,
introduced by George Collins in 1967, is a PRS that has (not surprisingly)
a fairly simple relationship to the subresultant chain, as expressed in the
following

14

Theorem 3 (Collins-Loos) Let A1, A2, . . . , Ar be a PRS over D with ni =
deg Ai, and ei, fi ∈ D∗ (i.e. ei, fi 6= 0), such that

eiAi = QiAi+1 + fiAi+2 (1 ≤ i ≤ r − 1).

Then
Ai = Sni−1−1 for 1 ≤ i ≤ r

where by definition n0 = n1 + 1, if ei, fi are defined as follows.
Let δi = ni − ni+1, ci = lc Ai, and

ei = cδi+1
i+1 for 1 ≤ i ≤ r − 1,

f1 = 1, fi = −ci(−Rni)
δi for 2 ≤ i ≤ r − 2,

where Rni = lc Sni for i > 1.

Note that because the coefficients of a subresultant are defined as determi-
nants over a ring, the subresultant is a polynomial over that ring. Hence
this theorem proves that a subresultant PRS generates polynomials over the
original coefficient ring, and involves only ring operations. The proof be-
low shows how the similarity coefficients are derived from the properties of
subresultants discussed above.

Proof This follows from the Subresultant Theorem by induction. By def-
inition, A1 = Sn1 = Sn0−1 and A2 = Sn1−1, which establishes a base case.
Take as the induction hypothesis that the theorem is true for i and i + 1.
Then equation (1) in the statement of the Subresultant Theorem gives, with
j = ni−1 − 1, r = ni, j − r = ni−1 − ni − 1 = δi−1 − 1,

Rδi−1−1
ni−1

Sni = lc(Sni−1−1)δi−1−1Sni−1−1,

i.e.
Rδi−1−1

ni−1
Sni = c

δi−1−1
i Ai,

and taking leading coefficients of both sides gives

Rδi−1−1
ni−1

Rni = c
δi−1

i .

Dividing these two equations then gives

ciSni/Rni = Ai. (3)

15

Similarly, equation (2) gives, with j = ni−1, r = ni+1, j−r = ni−ni+1−1 =
δi − 1,

(−Rni)
δi+1Sni+1−1 = prem(Sni , Ai+1). (4)

Now by the definition of a PRS,

fiAi+2 = prem(Ai, Ai+1)
= ci/Rni prem(Sni , Ai+1) by (3)
= ci/Rni(−Rni)

δi+1Sni+1−1 by (4)

= −ci(−Rni)
δiSni+1−1

= fiSni+1−1 by definition of fi,

and hence Ai+2 = Sni+1−1. Therefore, by induction, the theorem is true
generally. 2

The relationship between a general PRS and its associated subresultant
chain is more complicated, as expressed in the following

Theorem 4 (Fundamental PRS Theorem)
Let A1, A2, . . . , Ar be a PRS over D such that, for ei, fi ∈ D∗ (i.e. ei, fi 6= 0)

eiAi = QiAi+1 + fiAi+2 (1 ≤ i ≤ r − 2).

Let ni = deg Ai and ci = lc Ai. The for any j, 1 < j < r,

Sk = 0 for 0 ≤ k < nr and nj+1 < k < nj − 1,

j−1∏
i=1

e
ni+1−nj+1
i

 Snj−1 =

j−1∏
i=1

(−1)(ni−nj+1)(ni+1−nj+1)f
ni+1−nj+1
i c

ni−ni+2

i+1

 c
−nj+nj+1+1
j Aj+1,

j−1∏
i=1

e
ni+1−nj+1

i

 Snj+1 =

j−1∏
i=1

(−1)(ni−nj+1)(ni+1−nj+1)f
ni+1−nj+1

i c
ni−ni+2

i+1

 e
nj−nj+1−1
j+1 Aj+1.

16

Beware that there are very subtle differences between the powers appearing
in the last two equations.

Collins also discovered a very simple PRS called the reduced PRS, defined
by

ei = (lc Ai+1)ni−ni+1+1 and f1 = 1, fi+1 = ei for 1 ≤ r ≤ r − 1.

The proof that this sequence defines a PRS requires use of the Fundamental
PRS Theorem.

3 Sturm sequences and polynomial zero isolation

An equation can be rescaled, by multiplying it by any finite non-zero quan-
tity that is independent of the unknowns, without changing the roots of the
equation. Hence, a polynomial equation with rational coefficients can be
multiplied by their common denominator to convert it into an equivalent
equation with integer coefficients that has identical roots, and similarly a
polynomial equation with integer coefficients can be multiplied by an arbi-
trary finite non-zero rational constant. Thus a polynomial equation over Z
or Q can be trivially reduced to a primitive polynomial over Z or a monic
polynomial over Q as is convenient, and I will refer to all polynomials having
exact explicit numerical coefficients as being over Q.

This section considers the problem of finding the real zeros (not complex
zeros, although some of the ideas generalize to complex zeros) of a univariate
polynomial p(x) over Q. In general, it is impossible to solve a polynomial
equation to obtain results that are both exact and explicit, even if the coeffi-
cients are rationals, because the solutions are (algebraic) irrational numbers,
which have no representation that is both exact and explicit. For example,
even the trivial equation x2− 2 = 0 can be solved either as x = ±

√
2, which

is exact but implicit or symbolic, or as x = ±1.414 . . ., which is explicit but
approximate.

An explicit exact solution must be expressed in terms of rational con-
stants, and the best that can be achieved is to find isolating intervals. A set
of isolating intervals for a univariate polynomial equation is a set of inter-
vals with rational end-points such that every interval contains precisely one
root of the equation and every root of the equation is contained in precisely
one interval. Once a set of isolating intervals has been found, each interval
can be made as small as desired by some suitably reliable technique that is

17

essentially numerical, of which the simplest is interval bisection. The alge-
braic component of the calculation is finding the complete set of isolating
intervals.

The “classical” technique for doing this uses a Sturm sequence, which is
a particular kind of polynomial remainder sequence. Let p(x) be a square-
free polynomial in x over Q. Then its Sturm sequence is the sequence of
polynomials {pi(x)}k

i=0 in x over Q defined by

p0(x) = p(x),
p1(x) = p′(x),
pi(x) = −rem(pi−2(x), pi−1(x)), 2 ≤ i ≤ k,

pk(x) = non-zero constant,

where ′ means (formal) derivative. This is precisely the Euclidean remainder
sequence that was discussed at length in the context of computing gcds,
except that the remainder is given a negative sign (which is crucial). I will
discuss the theory in terms of polynomials over Q, so “remainder” means
remainder in a division over Q, but in fact it will only be the signs of the
polynomials in the sequence that are required, so in practice any kind of
PRS can be used as long as care is taken to preserve the correct signs of the
elements. Hence all of the previous discussion of PRSs is relevant to Sturm
sequences also; the sign change is allowed for in the similarity coefficients.

The relationship between Sturm and Euclidean sequences shows why the
sequence must terminate with a constant element: this will be a gcd of p and
p′, and because p has been assumed to be squarefree it will have no repeated
factors and hence no multiple roots, so this gcd must be a constant. (The
value of the constant will depend on exactly what PRS is used, but for a
primitive PRS over Q it must be 1.)

By the effect of differentiating and the definition of remainder, each
element of the Sturm sequence must have degree at least one less than the
previous element, i.e. deg pi(x) ≤ deg pi−1(x) − 1, hence 0 = deg pk(x) ≤
deg p(x) − k ≤. In other words, the number of elements of the sequence in
addition to p is ≤ deg p.

The Sturm sequence provides a way of determining how many real roots
lie within some interval by counting sign variations. Let a be a real num-
ber that is not a zero of p. Then define the variation at a of p, writ-
ten V (p, a), to be the number of variations of sign in the elements of the
Sturm sequence evaluated at a, i.e. the number of times that the numbers
p(a), p′(a), p2(a), . . . , pk(a) change sign (ignoring any zeros). More formally,

18

V (p, a) is the number of values of i such that pi(a)pj(a) < 0 and pl(a) = 0
for 1 ≤ i < l < j ≤ k, where the inequality is strict.

Theorem 5 (Sturm) If a and b are two real numbers that are not zeros of
p(x), such that a < b, then the number of real zeros of p(x) in the interval
(a, b] is V (p, a)− V (p, b).

Proof This proof is based on that given by Knuth in Seminumerical Algo-
rithms. It amounts to showing that as x varies, only changes in the sign of
p(x) itself as it passes through zeros affect the number of sign variations in
the Sturm sequence of p.

Recall that, whatever PRS is used, the pi(x) must satisfy a recurrence
relation of the general form

αipi(x) = pi+1(x)qi(x)− βipi+2(x), 2 ≤ i ≤ k,

where αi, βi > 0 to preserve the signs, and pk(x) is a non-zero constant.
From the definition of the PRS, {pi(a)} cannot contain two successive

zeros, because then all subsequent elements would have to be zero also, but
pk(a) 6= 0. Moreover, if any pi+1(a) = 0 then pi(a) and pi+2(a) must have
opposite signs. Hence a zero can only appear in the “sign sequence” as
“+, 0,−” or “−, 0,+”.

Consider the changes in V (p, x) as x increases. The polynomials pi(x)
have finitely many zeros and V (p, x) changes only when x encounters such
zeros. As x passes through a zero of pi(x), i > 0 then, by continuity and the
above restrictions, the sign sequence around this element can only change
from “+,±,−” through “+, 0,−” to “+,∓,−” or from “−,±,+” through
“−, 0,+” to “−,∓,+”, both of which give no change in the number of sign
variations. If p(x) itself passes through zero as x increases then the signs of
p(x), p′(x) can only change from “+,−” through “0,−” to “−,−” or from
“−,+” through “0,−” to “+,+”, both of which decrease the number of sign
variations by 1. Hence the total change in the number of sign variations as
x increases from a to b, namely V (p, b)− V (p, a), is a decrease equal to the
number of real zeros of p passed. 2

In the limit x → ±∞, p(x) → its leading term, hence V (p,∞) is the
number of sign variations of the leading coefficients of the Sturm sequence,
and V (p,−∞) is the number of sign variations of the leading coefficients
after negating elements of odd degree. Hence the total number of zeros, or
the number of positive or negative zeros, can be found.

19

Here is a simple example (which I originally produced using REDUCE
interactively) of the Sturm sequence of a simple polynomial whose zeros are
obvious, in which I first compute the remainders over Q and then reduce
them to primitive remainders over Z, to keep the coefficients as simple as
possible. I then evaluate the Sturm sequence at points that I know are
between zeros, count the sign variations, and show that these counts agree
with Sturm’s theorem.

p0 = (x− 1)(x− 3)(x− 5) = x3 − 9x2 + 23x− 15
p1 = p′0 = 3x2 − 18x + 23
p2 = −rem(p0, p1) = 8

3(x− 3) → x− 3
p3 = −rem(p1, p2) = 4 → 1

Hence the primitive Sturm sequence is:

S(x) = {p0, p1, p2, p3} = {x3 − 9x2 + 23x− 15, 3x2 − 18x + 23, x− 3, 1}.

The Sturm sequence and its variations V (x) at specified values of x, namely
0, 2, 4, 6, are:

S(0) = {−15, 23,−3, 4}, V (0) = 3
S(2) = {3,−1,−1, 4}, V (2) = 2

⇒ V (0)− V (2) = 1 real roots in (0, 2]
S(4) = {−3,−1, 1, 4}, V (4) = 1

⇒ V (2)− V (4) = 1 real roots in (2, 4]
⇒ V (0)− V (4) = 2 real roots in (0, 4]

S(6) = {15, 23, 3, 4}, V (6) = 0
⇒ V (4)− V (6) = 1 real roots in (4, 6]
⇒ V (0)− V (6) = 3 real roots in (0, 6]

We now know how to determine exactly how many real zeros lie in any
given interval. If there is one zero in an interval then the interval is an
isolating interval, if there are no zeros then the interval can be discarded,
and if there are more than one zeros then the interval can be divided into
smaller intervals that are then tested again. Normally, intervals containing
more than one zero are bisected, because asymptotically this is optimal.
But in order to be able to guarantee to find the complete set of isolating
intervals in a finite number of steps we need a finite starting interval that is
guaranteed to contain all the real roots.

20

4 Polynomial root bounds

A suitable starting interval for root isolation is given by an upper bound on
the magnitude of all the real roots of a polynomial. Three such bounds are
quoted without proof in DST. Let p(x) =

∑n
r=0 arx

r, n > 0, and let α be a
zero, i.e. p(α) = 0.

Proposition 6 (Cauchy, 1829)

|α| < 1 +
n−1
max
r=0

∣∣∣∣ ar

an

∣∣∣∣
This formulation and the following proof are based on the paper by Mignotte
in Buchberger, Collins & Loos.

Proof If |α| ≤ 1 then the proposition is trivially true, so suppose |α| > 1.
If p(x) = 0 then

anxn = −(an−1x
n−1 + · · ·+ a0).

By the triangle inequality,

|an||x|n ≤ |an−1||x|n−1 + · · ·+ |a0|

≤ n−1
max
r=0

|ar|(|x|n−1 + · · ·+ 1).

Factoring out the maximum magnitude of the coefficients converts the right
side into a geometric series, which can be summed to give

|x|n−1 + · · ·+ 1 =
|x|n − 1
|x| − 1

<
|x|n

|x| − 1
.

Hence
|an||x|n <

n−1
max
r=0

|ar|
|x|n

|x| − 1
.

Cross-multiplying the denominator, which satisfies |x| − 1 > 0 by supposi-
tion, and re-organizing gives the required result. 2

Because this bound depends on ratios of coefficients it is invariant under
rescaling of p(x) as a whole, which is an obvious condition to expect a bound
to satisfy. But if the polynomial q(y) =

∑n
r=0 brx

r is derived from p(x) by
rescaling each coefficient so that br = ar/γr then a zero at x = α of p(x)
becomes a zero at y = γα of q(y), i.e. the actual roots scale linearly with

21

γ. However, the above root bound rescales by γr for some r in the range
1 ≤ r ≤ n determined by the term for which the maximum used in the
bound is attained. This scale dependence is clearly unsatisfactory.

The coefficient ratio ar
an

rescales to ar/γr

an/γn = γn−r ar
an

, and if this is to
be linear in γ then each coefficient ratio must appear raised to the power
1/(n− r). This requirement is met by the next two bounds.

Proposition 7 (Cauchy, 1829)

|α| ≤ n−1
max
r=0

∣∣∣∣nar

an

∣∣∣∣ 1
n−r

Proof As for the previous proof,

|an||x|n ≤ |an−1||x|n−1 + · · ·+ |a0|

≤ n
n−1
max
r=0

(|ar||x|r).

Then there exists an r such that

|x|n ≤ n

∣∣∣∣ ar

an

∣∣∣∣ |x|r
and hence

|x|n−r ≤ n

∣∣∣∣ ar

an

∣∣∣∣ , |x| ≤
∣∣∣∣nar

an

∣∣∣∣ 1
n−r

.

Therefore the maximum value of the right side of the last inequality provides
an upper bound on |α|. 2

Proposition 8 (Knuth, 1969)

|α| ≤ 2
n−1
max
r=0

∣∣∣∣ ar

an

∣∣∣∣ 1
n−r

Proof The bound is trivially satisfied if x = 0, so assume x 6= 0. As for
the previous proof,

|x|n ≤ |a′n−1||x|n−1 + · · ·+ |a′0|,

where a′r = ar/an, and hence, by dividing out |x|n,

1 ≤ |a′n−1/x|+ |a′n−2/x2|+ · · ·+ |a′0/xn| ≤ t + t2 + · · ·+ tn

22

where t has the smallest possible value such that for all r, 1 ≤ r ≤ n,

tr ≥ |a′n−r/xr| which implies that t ≥ |a′n−r|1/r/|x|,

i.e.
t =

1
|x|

max
1≤r≤n

|a′n−r|1/r.

Then
1 ≤ t + t2 + · · ·+ tn < t + t2 + · · · .

The infinite series sums formally to t/(1− t), leading to the inequality 1 <
t/(1− t) ⇒ t > 1/2. Hence

1
|x|

max
1≤r≤n

|a′n−r|1/r >
1
2

and the stated bound follows. [However, I am unhappy about the conver-
gence aspect of this proof. Suggestions will be welcome!] 2

This bound is the one recommended by Collins & Loos in Buchberger,
Collins & Loos. Moreover, numerical experiments1 suggest that Knuth’s
bound is best overall; in the tests it was often significantly better and never
significantly worse than both of Cauchy’s bounds.

The publication status of this bound is strange. It was published in the
first edition of Knuth’s Seminumerical Algorithms in 1969 on page 398 as
exercise 20 to §4.6.2 on factorization of polynomials, together with a sketch
solution on page 546. However, all reference to the bound appears to have
been removed from the second edition published in 1981, despite the fact
that the bound appears to be a good one. DST wrongly attribute this
bound to Knuth’s second edition in 1981. Knuth also gives another related
but more complicated bound that he attributes to H. Zassenhaus, which I
have never seen referenced elsewhere.

5 Strategy for polynomial root location

Given a univariate polynomial over Z or Q the first step is to perform a
squarefree decomposition. Then each squarefree factor can be solved, and
the multiplicity of the factor attached to each of its roots once they have

1Barbara C. Davies, Computation of all the real roots of a real polynomial in REDUCE,
M.Sc. Thesis, Queen Mary College, University of London, 1989, Appendix 1.

23

been located. For each squarefree factor, a suitable root bound is computed,
probably using Knuth’s formula. It may then be convenient to round this up
to the nearest power of 2 to facilitate interval bisection. Sturm’s theorem
can then be used to determine the number of real roots in the interval,
which if necessary is bisected and each half re-examined, until a complete
set of isolating intervals has been found. More precise algorithms are given
by Collins & Loos, and by DST. If desired, each isolating interval can be
reduced in width until each root is bracketed to within any chosen accuracy.

The reason why such exact algorithms may be necessary, rather than
the more conventional algorithms using various numerical approximations,
is that the roots of a polynomial may be very unstable to perturbation of the
coefficients. This is particularly true of real roots, which can coalesce, turn
complex and so disappear under perturbation. A classic example of this due
to Wilkinson (1959) is quoted by DST. It is also possible for polynomial
roots to be distinct but very close together, which makes them very hard to
locate using numerical methods. There are formulae for the minimum root
separation – see the paper by Mignotte in Buchberger, Collins & Loos for
an example.

The methods described above, and related methods, provide the only
methods I know of that can find all real roots with total reliability. Essen-
tially the above Sturm sequence algorithm is implemented in REDUCE 3.4,
together with extensions to find complex roots, as a package (called ROOTS)
written by Stan Kameny. It is called automatically by the equation solver
(SOLVE) if the rounded-real number domain is selected, although it does
not return interval solutions to the user, but rather a specific value within
each interval.

24

6 Exercises

The single assessed question in this set of exercises is the first.

1. (** Assessed **)
Let p(x) = (x− 1)(2x + 1)(3x− 1) = 6x3 − 5x2 − 2x + 1.

(a) Compute the root bound for p given by all three formulae. Which
is best?

(b) Compute a Sturm sequence for p (using whatever precise defini-
tion you prefer, e.g. Euclidean, primitive, subresultant, . . .).

(c) Use a root bound together with Sturm’s Theorem to compute
isolating intervals for all the real roots of p.

2. Use Bareiss elimination to reduce the matrix 1 2 3
5 4 3
4 5 7

to upper triangular form, and hence using the formula given in the
text find its determinant. Compute also the determinant of the tri-
angular form, and by comparing the effect of the Bareiss elimination
steps with those of Gaussian elimination relate this determinant to
the determinant of the original matrix, and hence again compute the
latter.

3. Compute the subresultant chain for the polynomials (with indetermi-
nate coefficients) a = a2x

2 + a1x + a0 and b = b1x + b0. Hence verify
Habicht’s Theorem. Repeat the computation with the explicit poly-
nomials a = 2x2 + x and b = 3x + 1. Hence verify the Subresultant
Theorem, and that the Subresultant PRS requires only integer (not
rational) computations.

25

