
Mathematics and Algorithms for Computer Algebra

Part 1 c© 1992 Dr Francis J. Wright – CBPF, Rio de Janeiro

July 9, 2003

7: Introduction to modular and p-adic
methods

Modular and p-adic methods are often presented in texts on computer
algebra only in the context of polynomial gcd computation and factorization.
However, they are much more general than that, and my intention in this set
of notes is briefly to introduce these methods in a general context. They will
be discussed again later in the more specific context of gcds and factorization.

1 Computation by homomorphic images

The motivation for computing in a suitably chosen homomorphic image of
the original problem domain is that the computation there is either easier or
is possible, whereas in the original domain it was either harder or impossible.
For example, any homomorphic image of the infinite ring of integers is a finite
ring, and computation in a finite set is usually easier than in an infinite
set; as we have already seen, a finite algorithm to find the solution of an
equation over a finite set is, at least in principle, to simply test each element
of the set, whereas over an infinite set this procedure does not give a finite
algorithm. Moreover, there are homomorphic images of the integers that are
fields although the integers themselves do not form a field, and finite fields
are easy computational domains because division by any nonzero element
is possible, but there is no need for frequent gcd computations as there is
in a quotient field (field of fractions). Computing in a homomorphic image
means computing in a quotient ring, i.e. modulo some ideal in the original
ring. Frequently, the original problem ring is the ring of integers Z, and
hence the homomorphic image is Zm for some m ∈ Z, which might well be
chosen to be prime.

1

Suppose the original problem is specified in an Ω-algebra A, and we
can find a suitable homomorphism φ : A → A′ of Ω-algebras. Then rather
than compute the value h = ω(a1, . . . , an) of some arity-n operator in A we
compute its homomorphic image in A′ indirectly via the defining property
of a morphism:

r = φ(ω(a1, . . . , an)) = ω(φ(a1), . . . , φ(an)).

Unfortunately, this does not give us the value of h, but only an equivalence
class [h] containing h specified by the kernel relation φ(h) = r.

Recovering h from its equivalence class requires additional information,
and there are two main practical methods to do it. The essence is always
to ensure that the canonical representative of [h] is h itself, which always
requires information specific to the particular problem. However, to do this
directly requires a homomorphism φ that does not project out too much
of the structure of A, and in practice this usually makes the homomorphic
image A′ quite large and complicated and so loses most of the advantage of
the homomorphic image method. One practical method, called the multiple
homomorphic image (MHI) method, is to compute several homomorphic
images of the desired solution and then take the intersection of the resulting
equivalence classes. This essentially “lifts” the solution from several simple
images to one much more complicated image. The tool used to do this in
practice, at least in a Euclidean domain, is a Chinese Remainder Algorithm.
The other practical method, called p-adic or Hensel lifting, is to compute a
solution modulo one prime p, and then use this solution together with the
original problem specification to lift to a solution modulo a power of p.

Before considering lifting algorithms it is appropriate to consider in more
detail precisely why it is so much simpler to compute in a homomorphic
image.

2 Homomorphic images of expressions

Let A be an Ω-algebra. Then a (finite) computation in A is the evaluation
of an expression that combines elements of A using finitely many operations
from Ω. The syntax and semantics of Ω-expressions can be defined formally
– see Lipson, page 236. The important and useful point is that not only do
morphisms preserve the values of operations, they also preserve the values
of expressions, i.e. finite compositions of operations.

2

The following (vectorial) notation is convenient, in which a denotes
“a1, . . . , as”; a′ denotes “a′1, . . . , a

′
s”; φ(a) denotes “φ(a1), . . . , φ(as)”; etc.

Theorem 1 (Fundamental Morphism Theorem) Let φ : A → A′ be a
morphism of Ω-algebras, and let e(x1, . . . , xs) = e(x) be an Ω-expression.
Then

φ(e(a)) = e(φ(a)).

In terms of a mapping diagram, this is

φ(a)

a e(a)

e(φ(a))
?

φ

?

φs

e

(evaluation over A)

e

(evaluation over A′)
-

-

Proof is by induction on the number k of operations in the expression.
Basis (k = 0). Then e(x) = x, so that

φ(e(a)) = φ(a) = e(φ(a)).

Induction. For any k ≥ 0, assume that the theorem is true for all Ω-
expressions having ≤ k operation symbols, and let e(x) have k+1 operation
symbols. Then e(x) has the form

e(x) = ω(e1(x), . . . , en(x))

for some n-ary operation symbol ω ∈ Ω, where e1(x), . . . , en(x) each have
≤ k operation symbols.

If n = 0 then ω() is a nullary operation, and e(x) = ω(). Then triv-
ially φ(e(a)) = φ(ω()) = ω() = ω(φ(a)) = e(φ(a)) because φ preserves all
operations, including nullary ones.

If n > 0 then

φ(e(a)) = φ(ω(e1(a), . . . , en(a))) definition of e
= ω(φ(e1(a)), . . . , φ(en(a))) φ is a morphism
= ω(e1(φ(a)), . . . , en(φ(a))) induction hypothesis
= e(φ(a)) definition of e.

2

Hence, when evaluating an expression mod m it is sufficient to reduce all
initial values mod m and to compute mod m at all stages of the evaluation.

3

2.1 An example: “Casting out nines”

This is a “classical” method of checking decimal arithmetic: an integer in
decimal representation can be reduced modulo 9 by simply summing its
digits, and repeatedly summing the digits of the sum, until a single digit
number results, discarding (casting out) any digits equal to 9 while doing
so. The use of this is that if the numbers in an arithmetic equation involving
only integers in decimal representation are each replaced by the sum of their
digits then the equation must remain true (mod 9), and this can clearly
be iterated until an equation involving single digit numbers results. This
technique will quickly show up some, but not all, calculation errors. The
justification lies in the Fundamental Morphism Theorem, as follows.

Let a = (an, an−1, . . . , a0)10 be a decimal integer and let

a(x) = anxn + an−1x
n−1 + · · ·+ a0,

so that a = a(10) is an expression. Then by the Fundamental Morphism
Theorem, φ(a(10)) = a(φ(10)). Let φ be the remainder mod 9 epimorphism
Z → Z9. Then r9(a(10)) ≡ a(r9(10)) ≡ a(1) (mod 9), and hence

(an, an−1, . . . , a0)10 ≡ an + an−1 + · · ·+ a0 (mod 9).

If the digits are repeatedly summed then the remainder mod 9 must finally
result.

As an example, let us check the equation

43× 768 + 9571 = 42595.

Reducing each number mod 9 by casting out nines and summing digits twice
gives

43× 768 + 571 ≡ 4255 (mod 9) ⇒

7× 21 + 13 ≡ 16 (mod 9) ⇒ 7× 3 + 4 ≡ 7 (mod 9).

Evaluating and again summing digits gives

25 ≡ 7 (mod 9) ⇒ 7 ≡ 7 (mod 9),

which is correct, and hence the original equation is true mod 9.

4

2.2 Division rings: partial algebras

Let R be a commutative ring. The divisibility relation defined on an integral
domain applies also to commutative rings with zerodivisors: b | a over R if
a = bc for some c ∈ R. A division ring is a ring in which division is defined
for some elements: for b neither zero nor a zerodivisor, a/b is defined over
R if b | a. Thus division in a ring is a partial operation, and so a division
ring is a partial algebra. For example, Z is a division ring in which 6/3
is defined and has value 2, but 7/3 is not defined; in Zm, a/b = ab−1 is
defined if gcd(b, m) = 1, otherwise b is a zerodivisor which cannot therefore
be used as a divisor; in a field, a/b = ab−1 is defined if b 6= 0. The reason
for excluding zerodivisors as divisors is in order to have a unique value for
a/b. For example, in Z12, which is a ring with zerodivisors and hence not a
UFD, 6 = 3× 2 = 3× 6. Therefore 3 | 6, but is 6/3 = 2 or 6?

The notions introduced previously of morphisms and expressions can be
extended to include partial algebras provided that all operations are defined.
However, it is usually possible to choose homomorphic images that avoid
partial algebras, and division rings in particular, for example by ensuring
that they are finite fields, so I will not elaborate this topics further – see
Lipson, pp. 239–242 for further details.

In the rest of this set of notes I will consider only cases where the compu-
tational domain is primarily the integers, and so consider only computation
in homomorphic images of the integers, which from our consideration of
ideal theory we know must be Zm, the integers modulo m, for some m.

3 Integer computations by homomorphic images

An integer congruence u ≡ r (mod m) has a unique solution in any range
α ≤ u < α + m, for any fixed but arbitrary real number α. There are two
particularly important choices of α: (a) α = 0, which gives the least positive
solution u and (b) α = dm/2e, which gives the least absolute value solution.

Then the basic scheme for computing an integer value h via its homo-
morphic image r is the following:

1. Given a bound B such that either (a) 0 ≤ h < B or (b) |h| < B,
choose a modulus m such that (a) m ≥ B or (b) m ≥ 2B and all ex-
pressions are defined if working in a division ring, which is most easily
achieved by choosing m to be prime, so that in fact the computation
is performed over a field.

5

2. Reduce all input values mod m and then compute r mod m.

3. Solve the congruence h ≡ r (mod m) for either (a) the least positive
solution, or (b) the least absolute value solution.

3.1 Exact solution of linear equations

As an example, consider the problem of finding the exact solution in Q of a
system Ax = b of linear equations over Q, which can trivially be converted
to equations over Z. One method is to use Bareiss elimination directly, but
here I want to consider a modular method. The solution can be conveniently
separated into integer problems by using Cramer’s Rule, which is that if Aj

denotes the matrix A with its jth column replaced by b then xj = |Aj |/|A|,
where all the determinants over Z must lie in Z, and hence are appropriately
evaluated by a homomorphic image scheme.

A bound B on the magnitudes of the determinants can be found using
Hadamard’s inequality (which also underlies the bound on the magnitude
of a resultant – see the paper on “Some Useful Bounds” by M. Mignotte
in Buchberger, Collins & Loos). Because this gives a magnitude bound,
we choose a modulus m ≥ 2B. The determinants are computed over Zm,
which is possible for any m because a determinant is defined in terms only of
ring operations, which do not include division. This can always be done by
Bareiss elimination, or if m is chosen to be a prime then Gaussian elimination
(over the finite field) could be used.

However, computing several determinants is not the most efficient way to
solve this problem, and it is better to reduce the augmented matrix (A,b) to
echelon (i.e. essentially upper triangular) form. From this form, |A| can be
computed immediately, and the xj can be computed by back-substitution.
But these values for xj are solutions of the problem over Zm, and we want
solutions over Q. However, the |Aj | can now be computed indirectly as
|Aj | = |A|xj . The resulting values of |A| and |Aj | are then lifted to values in
Z, from which the solution over Q is computed as xj = |Aj |/|A|. [If b = 0
then a slightly different approach is required, because a solution exists only
if |A| = 0 – for example, see Lipson, Appendix 2 to Chapter VIII.]

6

3.2 Computation of binomial coefficients

As another example, consider the problem of computing the binomial coef-
ficient

nCr =
n!

r!(n− r)!
=

n(n− 1) · · · (n− r + 1)
r!

(1)

=
n · · · (n− (r − 1) + 1)(n− r + 1)

r(r − 1)!
= nCr−1

(n− r + 1)
r

. (2)

By definition, for n ≥ r ≥ 0 a binomial coefficient is an integer, even though
the formula above involves division – therefore the division must be exact
and the computation is possible over the ring of integers. A direct evaluation
of the numerator and denominator in (1) can produce very large numbers,
which are undesirable, but the recursive formula in (2) shows how to mini-
mize the size of the intermediate numbers by performing multiplications and
divisions together whilst keeping the divisions exact and the intermediate
results integral. However, it is still possible for an intermediate product
to have a value larger than the final result, and so potentially cause an
unnecessary overflow.

An alternative is to compute over a finite field, in which case it is prob-
ably more efficient to compute the numerator and denominator separately
and perform only one division. Suppose that we have an upper bound B on
the value of the binomial coefficient, perhaps by using Stirling’s approxima-
tion to the factorials. Then we choose a modulus m ≥ B that is prime. As
a trivial example, let us compute

7C3 =
7.6.5
3.2.1

< 50,

supposing that we do not wish to use more than 2 decimal digits internally.
Then a direct computation of the numerator (210) would overflow. We can
choose any prime modulus 50 ≤ m < 99, so let us choose 53. Then in Z53

the numerator is
7.6.5 = 210 ≡ 51 (mod 53)

and the denominator is 3.2.1 = 6. To invert this, the appropriate Bézout
identity is 1 = (−1).53 + 9.6 and hence 6−1 ≡ 9 (mod 53). Then

7C3 = 51× 9 = 459 ≡ 35 (mod 53).

Finally (in principle) we solve the congruence h ≡ 35 (mod 53) for the
smallest positive solution 35, which is indeed the correct value of 7C3, and
has required only 2-digit intermediate values.

7

4 The Chinese Remainder Algorithm for the inte-
gers

In non-trivial computations of integer values they are frequently large, and
to compute modulo an m that is even larger loses much of the advantage of
modular computation – that it involves only small integers. The approach in
this case, as outlined earlier, is to compute a family of homomorphic images
each with distinct small moduli, and then take the intersection of the result-
ing equivalence classes of the true solution. The algorithm used in practice
to do this can in essence be traced back to Chinese mathematicians around
2000 years ago, and hence is usually referred to as the Chinese Remainder
Algorithm, because its general setting involves remaindering in a Euclidean
domain.

The integer Chinese Remainder Problem (CRP) is essentially to deter-
mine the solutions to a system of n congruences of the form

u ≡ rk (mod mk) (k = 0, 1, . . . , n− 1).

It is simplest to begin with the 2-congruence problem

u ≡ r (mod m), u ≡ s (mod n)

and to assume that m,n are relatively prime. [This assumption is not nec-
essary, but it is true in practice and provides some simplification. See Ap-
pendix A.5 of Davenport et al. for the general version.] The solution to the
first congruence is

u = r + σm

for some integer σ. The problem is to restrict σ so that the second congru-
ence is also satisfied, i.e. so that

r + σm ≡ s (mod n) ⇒ σm ≡ s− r (mod n).

Now m−1 mod n exists because (by assumption) gcd(m,n) = 1, and there-
fore the solution is to choose σ = (s−r)m−1 (mod n). This gives a solution
mod mn:

Proposition 2

(u ≡ U (mod m) and u ≡ U (mod n)) ⇐⇒ u ≡ U (mod mn).

8

Proof ⇐ is trivial. To prove ⇒ , observe that the congruences imply
that u = U + ms = U + nt for some s, t ∈ Z, and hence ms = nt. Therefore
n |ms ⇒ n | s because m, n are, by assumption, relatively prime, and so
s = rn for some r ∈ Z. Therefore, mrn = nt ⇒ t = rm since Z is an
integral domain, and hence u = U + mnr. 2

Now let us return to the case of more than two congruences

u ≡ rk (mod mk) (k = 0, 1, . . . , n− 1).

We assume that the mi are all relatively prime. Each ri is usually in the
range of its respective modmi function (and if not it can be reduced so that
it is) and hence the ri are often referred to as “residues”. The procedure is
to replace the first pair of congruences by the equivalent congruence mod
m0m1, solve this congruence with the next one, and repeat this process
iteratively until all the congruences have been solved. This is possible for
the following reason.

If we define

Mk =

{
1 if k = 0,∏k−1

i=0 mi otherwise,

then it satisfies the following

Lemma 3 Mk and mk are relatively prime for 0 ≤ k < n.

Proof If k = 0 then gcd(Mk,mk) = gcd(1,mk) = 1. For k > 0 suppose to
the contrary that gcd(Mk,mk) = g is not a unit, and let p be a prime factor
of g. Then p |Mk and p |mk. But p |

∏k−1
i=0 mi implies that p |mi for some

0 ≤ i ≤ k − 1, in which case p is a common divisor of mi and mk. But this
contradicts the assumption that mi and mk are relatively prime; hence Mk

and mk must be relatively prime. 2

Therefore, the pair of congruences being solved at any stage of the iteration
always have relatively prime moduli.

The n-congruence Chinese Remainder Algorithm (CRA) is therefore this:

input: u ≡ rk (mod mk) (k = 0, 1, . . . , n− 1)
M := 1;
U := r0 mod m0;
for k := 1 to n− 1 do
begin

9

M := M ×mk−1;
M1 := M−1 (mod mk);
σ := [(rk − (U mod mk))M1] mod mk;
U := U + σM
{M = Mk; U ≡ ri (mod mi) for i = 0, . . . , k}

end.
output: U ≡ u (mod Mn)

This algorithm involves reductions mod mk that are not strictly necessary,
but they reduce the complexity of the computation and so are desirable in
practice.

After the kth iteration this algorithm has computed M = Mk and

U = Uk = σ0M0 +σ1M1 + · · ·+σkMk = σ0 +σ1m0 + · · ·+σkm0m1 · · ·mk−1

where each σi is in the range of the mod mi function.
The following example is from Lipson, p. 258. If the above CRA is

applied to compute the solution U of the following system of congruences
over Z,

u ≡ 1 (mod 3), u ≡ 3 (mod 5), u ≡ 0 (mod 7), u ≡ 10 (mod 11),

then the intermediate values are these:

k rk mk M M1 σ U

0 1 3 1 1
1 3 5 3 2 4 13
2 0 7 15 1 1 28
3 10 11 105 2 8 868

In principle, the above discussion applies to any Euclidean domain, but
in practice a polynomial CRA normally uses an evaluation-interpolation
technique.

5 Computation by Multiple Homomorphic Images
(MHI)

Most of the previous discussion on integer computations by a single homo-
morphic image generalizes to a scheme using multiple homomorphic images
and Chinese remaindering, if the previous single modulus is replaced by the

10

product of the multiple moduli. One of the goals of using an MHI scheme is
to avoid the need for long integer arithmetic, but the larger the moduli the
fewer need to be used, so they are usually chosen to be as large as possible
but smaller than the word size of the computer used, i.e. no larger than the
base used for long integers. Moreover, they are usually chosen to be prime,
so that the homomorphic images are finite fields.

5.1 Computing appropriate primes

The problem is to compute the N (perhaps 10 or 20) largest primes ≤ W ,
where W is the word size of the computer. This can be achieved by using
the Sieve of Eratosthenes, which is usually the most efficient method for
computing a set of primes together. First an auxiliary list of primes ≤

√
W

is computed. Then the multiples of these primes are deleted from the list
{W,W − 1, . . . ,W −∆W}, where ∆W is chosen large enough to contain at
least N primes. Then the integers remaining must be prime, because if an
integer x is composite then it must have a factor, and hence a prime factor,
≤
√

x. But is this scheme feasible?
Useful information is provided1 by the celebrated

Theorem 4 (Prime Number Theorem) The number n(x) of primes ≤
x is asymptotically x/ log x.

Hence dn/dx ≈ 1/ log x and the number of primes in an interval ∆W around
W is approximately ∆W/ log W . Therefore, we should take ∆W to be
“safely” in excess of N log W to ensure that it contains at least N primes.
Also, the number of primes ≤

√
W should not be too much larger than√

W/ log
√

W . For example, with W = 231 − 1 and N = 20 we need ∆W ≥
N log W = 20 log 231 = 429, so 1000 might be a good choice, and the size of
the table of small primes needs to be a bit larger than

√
231/ log

√
231 ≈ 4310.

These estimates give perfectly feasible sizes, and the computation of the 20
primes need be performed once only and only the primes themselves retained
for subsequent use. Moreover, for fixed n the running time of the algorithm
clearly increases as

√
W rather than W . In fact, Knuth (1981, p. 390) gives

a table of the 10 primes less than a wide range of word sizes.
1Lipson, p. 282; Hardy and Wright, The Theory of Numbers, 4th ed. Oxford, 1960,

Section 1.8; for finite x the theorem slightly underestimates the number of primes.

11

6 p-adic methods

Modular methods work by solving a problem modulo several small primes
and then lifting to a solution modulo the product of those primes by using
the Chinese Remainer Algorithm. This lifting is quite independent of the
original problem. The p-adic approach is to solve a problem, which must be
expressible in terms of a system of algebraic equations, modulo one small
prime p, and then lift to a solution modulo successive powers of p. This
requires additional use of the original system of equations at the lifting
stage (whereas Chinese Remaindering does not). The p-adic approach was
introduced by K. Hensel around 1900, and p-adic lifting is usually called
“Hensel lifting”. Hensel’s original lifting algorithm lifted from pk to pk+1

at each step, and is therefore called linear lifting because it is linear in the
power of p. In 1969, H. Zassenhaus introduced a lifting that lifts from pk to
p2k at each step and is therefore called quadratic lifting.

6.1 The p-adic integers

We have seen how any integer n can be represented with respect to any
chosen base integer B. Suppose that the base is the prime number p; then
the representation has the form

n =
k−1∑
i=0

nip
i.

To make this representation unique we can require that nk−1 6= 0, and then
the integer n has k digits in base p. Now recall that one can compute the
lowest order (i.e. rightmost) digit of n as

n0 = n mod p.

Therefore, knowledge of the value of n mod p is equivalent to knowledge of
the first digit in the positional representation of n in base p. Similarly,

n0 + n1p = n mod p2,

and hence knowledge of the value of n mod p2 is equivalent to knowledge of
the first two digits, and so on. Therefore, linear Hensel lifting of the value
of n from pk to pk+1 is equivalent to determining one more higher order
digit, the (k + 1)th , in the positional representation of n in base p. This
is the sense in which the term “p-adic” appears normally to be used in the

12

context of computer algebra. However, Hensel developed a theory of “p-adic
numbers”, which is a little more subtle than simply a finite representation
in a prime base. This subtlety is not required in order simply to compute
integers by Hensel lifting, but it is required for other applications, and is
interesting in its own right anyway.

Let p be a prime integer, and define on Z the “p-adic norm”

|a|p = p−r if a 6= 0, pr | a and pr+1 - a,

|0|p = 0.

Thus, the p-adic norm |a|p of a ∈ Z is smaller the larger the power of p that
a contains as a factor. As a simple illustration, the 2-adic and 3-adic norms
of the integers 0–19 are shown in the following table:

integer 2-adic norm
0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 20 = 1
2, 6, 10, 14, 18 2−1 = 1/2
4, 12 2−2 = 1/4
8 2−3 = 1/8
16 2−4 = 1/16
integer 3-adic norm
0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19 30 = 1
3, 6, 12, 15 3−1 = 1/3
9, 18 3−2 = 1/9

With respect to the p-adic norm, an infinite series of the form

n =
∞∑
i=0

nip
i, ni ∈ Z,

always converges. The set of such infinite series is called the “p-adic inte-
gers”, which I will denote by Zp. It constitutes the completion of Z with
respect to the p-adic norm. I will denote a ∈ Zp as (a)p when it is necessary
to distinguish between a and its p-adic representation. Exactly as for the
base-p representation of an element of Z, each element a ∈ Zp can be written
uniquely in the canonical form

a =
∞∑
i=0

aip
i, ai ∈ {0, 1, . . . , p− 1} (= Zp),

13

and, if

b =
∞∑
i=0

bip
i,

addition and multiplication are defined by

a + b =
∞∑
i=0

(ai + bi)pi, ab =
∞∑

k=0

 ∑
i+j=k

aibj

 pk.

In general, these formulae do not give a canonical representation because
of “carries” between digit positions (powers of p), but the results are easily
canonicalized.

The p-adic representation of any finite non-negative integer will have
only a finite number of non-zero digits, after which all the remaining higher-
order digits to the left will be zero. One of the differences between the p-adic
representation and the standard representation in base p appears when we
consider negative integers. The non-canonical p-adic representation

(0)p = p +
∞∑
i=1

(p− 1)pi

is canonicalized to 0 because the carry from the first digit position propagates
throughout the infinite sequence of digits, and it is also obvious that the
sum is formally equal to 0. Hence the representation of −a is obtained by
subtracting a from (0)p (and then canonicalizing if necessary). In particular,

−1 =
∞∑
i=0

(p− 1)pi,

which has the maximal digit in each of the infinitely many digit positions.
More generally, if

(a)p =
∞∑

i=k

aip
i

then the canonical representation of −a is given by

(−a)p = 0pp
k − a = (p− ak)pk +

∞∑
i=k+1

(p− 1− ai)pi,

and if (a)p has a finite number of non-zero digits (e.g. a is a non-negative
integer) then (−a)p has an infinite number of leading maximal digits (p−1)

14

to the left. In fact, (−a)p is precisely the p’s complement representation of
−a without the truncation that is normally necessary. Subtraction is defined
in the standard group-theoretic way in terms of negation as

a− b = a + (−b).

6.2 The p-adic numbers

The ring Zp is integral and therefore has a quotient field, called the field
of p-adic numbers and denoted Qp. Each non-zero α ∈ Qp can be written
uniquely in the form

α =
∞∑
i=r

αip
i, r ∈ Z, αr 6= 0.

If α is a non-integral rational number then r < 0. This representation makes
manifest the fact that Zp ⊂ Qp.

This representation is equivalent to the standard positional representa-
tion of non-integral numbers, used most commonly in the form of decimal
fractions, except that in general the standard representation has an infinite
sequence of non-zero digits after the point,2 i.e. r = −∞. By contrast,
a p-adic representation in general requires an infinite sequence of non-zero
digits before the point.

The formulae for addition, multiplication, negation and subtraction in
Qp are essentially the same as those for Zp. The formula for division in Qp

is in principle the same as the formula for division of formal power series (as
in fact are those for addition and multiplication), but it does not generally
produce a canonical representation, and a careful modular interpretation of
the formula is required. Hensel lifting, to be considered in the next section, is
probably the best approach in those cases where it works. Another strange
property of p-adic numbers is that some, but certainly not all, algebraic
equations are solved by p-adic numbers, and some algebraic irrationals are
p-adic integers, of which some can best be computed by Hensel lifting.

I will finish this section with some examples of 2-adic numbers, which
generalize two’s complement representation, and are taken from exercise 31

2By “point” I mean the point that separates digits multiplying a negative power of the
base from those multiplying a non-negative power, which is called the “decimal point”
in conventional decimal representation. In countries where the native language is not (a
dialect of) English (such as Brazil!) this point is frequently represented as a comma.

15

to §4.1 of Knuth, 1981:

7 = (. . . 000000000000111)2 −7 = (. . . 111111111111001)2,
1
7 = (. . . 110110110110111)2 −1

7 = (. . . 001001001001001)2,
7
4 = (. . . 000000000000001.11)2 1

10 = (. . . 110011001100110.1)2,√
−7 = (. . . 100000010110101)2 or (. . . 011111101001011)2.

Notice that the positional representation extends infinitely to the left but
only finitely to the right of the point. Addition, subtraction and multipli-
cation follow the normal rules but extended indefinitely to the left. The
numbers 1

7 , −1
7 and

√
−7 are all 2-adic integers, because they are not divis-

ible by any negative power of 2, whereas 7
4 and 1

10 are not 2-adic integers
because they are divisible respectively by 2−2 and 2−1, and so have respec-
tively 2 and 1 digits to the right of the point.

6.3 Newton’s iteration and Hensel lifting

In his paper “Computing by Homomorphic Images” in Buchberger, Collins &
Loos, M. Lauer presents Hensel lifting in the general context of the solution
of a system of algebraic equations over a commutative ring modulo a finitely
generated ideal. My presentation is based on Lauer’s, but restricted to one
equation in one unknown, so as to focus on the principles involved, and in
particular the relationship to the Newton-Raphson iteration for improving
an approximation to a root of a univariate equation (which extends quite
easily to much more general situations).

In fact, the essence of the Newton-Raphson iteration is the following

Lemma 5 (Taylor Expansion) Let R be a commutative ring, f ∈ R[x]
and let y be another indeterminate; then

f(x + y) = f(x) + y
df

dx
+ F

where F ∈ R[x][y] and F ≡ 0 (mod (y)2).

Here, (y)2 denotes the square of the ideal (y) in R[x][y]; in other words, F
is a polynomial in x, y having the form y2G(x, y).

Theorem 6 (Hensel) Let R be a commutative ring, (p) a principal ideal
generated by a prime p ∈ R, f ∈ R[x] and let a ∈ R satisfy

f(a) ≡ 0 (mod p).

16

Let f ′(a) = df
dx(a) ∈ R be invertible mod p. Then for each positive integer k

there exists a(k) ∈ R such that

f(a(k)) ≡ 0 (mod pk) and a(k) ≡ a (mod p).

Proof is by induction on k. Clearly, the proposition is true for k = 1 by
taking a(1) = a, so let k ≥ 1 and assume that the proposition is true for k.
Then

f(a(k)) ≡ 0 (mod pk) ⇒ f(a(k)) = mpk

for some m ∈ R. Set a(k+1) = a(k) + bpk, b ∈ R, so that clearly a(k+1) ≡
a (mod p) if a(k) ≡ a (mod p). Then the task is to choose b so that
f(a(k+1)) ≡ 0 (mod pk+1). By Taylor expansion

f(a(k+1)) = f(a(k) + bpk) = f(a(k)) + bpkf ′(a(k)) (mod pk+1).

(In fact, the above equation is true mod p2k, which is the basis of quadratic
lifting!) Hence

f(a(k+1)) = mpk + bpkf ′(a(k)) = (m + bf ′(a(k)))pk (mod pk+1).

The right side vanishes mod pk+1 if

m + bf ′(a(k)) ≡ 0 (mod p)

i.e.
b = −m(f ′(a(1)))−1 (mod p),

where by assumption the inverse exists. 2

An inverse modulo a prime can always be computed by using Bézout’s
identity via the extended Euclidean algorithm. The above proof can be
made into an algorithm to explicitly lift a solution as follows.

input: a(1) such that f(a(1)) ≡ 0 (mod p)
f1 := (f ′(a(1)))−1 (mod p);
for k := 1 to kmax − 1 do

a(k+1) = rp(k+1)(a(k) − f(a(k))f1).
output: a(kmax) such that f(a(kmax)) ≡ 0 (mod pkmax)

This is obviously the Newton-Raphson algorithm, except that the difference
between successive approximations is increasing by multiples of increasing

17

powers of p. Whilst the resulting sequence would not converge using a con-
ventional norm, it does converge in the p-adic norm. The lifting is continued
until sufficient digits of the p-adic representation of a have been computed,
e.g. until pk is larger than an upper bound on a.

As an example, I will use the above Hensel lifting algorithm to compute
the 2-adic representation of 1/7 by solving the equation f(x) = 7x− 1 = 0.
Then f ′(x) = 7, and the appropriate Bézout identity is 1 = 1.7 + (−3).2,
and hence f1 = 1/7 = 1 (mod 2), from which also follows that 7.1− 1 ≡ 0
(mod 2), and hence a(1) = 1. The iteration formula is

a(k+1) = rp(k+1)(a(k) − (7a(k) − 1)× 1) = rp(k+1)(1− 6a(k))

and digit (k+1) of a(k+1) is given by (a(k+1)−a(k))/pk. The lifting algorithm
gives the following results:

k a(k) 1− 6a(k) a(k+1) digit (k + 1)
0 1 1
1 1 −5 3 1
2 3 −17 7 1
3 7 −41 7 0
4 7 −41 23 1
5 23 −137 55 1
6 55 −329 55 0

Note that the Hensel lifting algorithm cannot be applied if f ′(a(1)) ≡ 0
(mod p), because then f ′(a(1)) is not invertible. Moreover, this condition
implies that all derivatives vanish modp and that no derivative is invertible
modulo any power of p. Bearing this in mind, let us consider trying to
compute the 2-adic representation of

√
−7 by solving any equation of the

form f(x) = g(x)(x2 + 7) = 0 and ignoring any solution of g(x) = 0. Then
the initial solution must satisfy (a(1))2 + 1 ≡ 0 (mod 2) ⇒ a(1) = 1
uniquely. But f ′(x) = g(x).2x + g′(x)(x2 + 7) ≡ g′(x)(x2 + 1) (mod 2),
and hence f ′(a(1)) ≡ 0 (mod 2) for any choice of g(x).

This means that Hensel lifting cannot be used to compute the 2-adic
representations of 7

4 , 1
10 or

√
−7 quoted above, and some more complicated

method is required, such as undetermined coefficients – see the exercises for
an example.

18

7 Exercises

No questions in this final set of exercises for Part 1 of the course will be
assessed, in order to provide a clean break between Parts 1 and 2.

1. By “casting out nines” show which of the possible values shown for
the following expression over Z are wrong:

57× 394 + 89354 = 111812, 118112, 111820.

Explain why the method does not prove that the value of an expression
is correct.

2. Compute by hand some less trivial binomial coefficients, such as 20C7

and 23C17, using modular methods. [Check your computations by
computer if you wish.]

3. [Lipson] Solve over Q the following two systems of equations:

(a)
2x− 7y = 4,
5x− 3y = −1;

(b)
x− 2y + 3z = −2,
2x + y − 5z = 4,
4x− 3y + z = 0.

Use first the single homomorphic image method for one suitable prime
modulus, and then the multiple homomorphic images method for a
suitable set of prime moduli ≤ 13.

4. Construct the 2-adic representations for 4 and 10. Hence verify, by
explicit p-adic addition and multiplication, the 2-adic representations
given in the notes for −7, ±1

7 , 7
4 , 1

10 and
√
−7.

5. Solve the equation x2 +1 = 0 in Z5, i.e. construct two representations
of the imaginary number i as 5-adic integers, by Hensel lifting. Is this
also possible in Z3, or even in Q3? Prove your assertion.

6. Compute the 2-adic representations, as given in the notes, for
√
−7

by the method of undetermined coefficients. This is not difficult, but
tedious by hand, and is an ideal task for a computer algebra system.
For example, here are the instructions necessary in REDUCE 3.4 to
compute the first 7 digits. The term “tail” is to avoid trying to com-
pute more digits than are available accurately from the assumed form
of solution “a”. This code could easily be converted into a procedure
(algorithm) to compute an arbitrary number of digits – try to do so.

19

a := a0 + 2^1 a1 + 2^2 a2 + 2^3 a3 + 2^4 a4 + 2^5 a5
+ 2^6 a6 + 2^7 tail;
eqn := a^2 + 7; on modular;
setmod 2; eqn; a0 := 1; % Choose a0 to make eqn = 0
setmod 4; eqn; % Identically 0 - the problem
setmod 8; eqn; a1 := 0; % Two choices possible for a1
setmod 16; eqn; a2 := 1; % Choose a2 to make eqn = 0,
setmod 32; eqn; a3 := 0; % etc.
setmod 64; eqn; a4 := 1;
setmod 128; eqn; a5 := 1;
setmod 256; eqn; a6 := 0;
setmod 512; eqn; off modular; eqn;
% The remaining digits are clearly not all zero.

20

