
The Subresultant

W. S. BROWN

Bell Laboratories

PRS Algorithm

Two earlier papers described the generalization of Euclid's algorithm to deal with the problem of
computing the greatest common divisor (GCD) or the resultant of a pair of polynomials. A sequel to
those two papers IS presented here

In attempting such a generalization one easily arrives at the concept of a polynomial remainder
sequence (PRS) and then quickly discovers the phenomenon of explosive coefficient growth. Fortu-
nately, thin explosive growth is not inherent in the problem, but is only an artifact of various naive
solutmns If one removes the content (that is, the GCD of the coefficients) from each polynomial in
a PRS, the coefficmnt growth in the resulting primitive PRS is relatively modest. However, the cost
of computing the content (by applying Euclid's algorithm in the coefficient domain} may be unac-
ceptably or even proh~bltwely high, especially if the coefficients are themselves polynomials m one or
more addltmnal variables

The key to controlling coefficient growth without the costly computation of GCD's of coefficmnts
is the fundamental theorem of subresuitants, which shows that every polynomial in a PRS is
proportional to some subresultant of the first two. By arranging for the constants of proportionahty
to be unity, one obtams the subresultant PRS algorithm, in which the coefficient growth is essentmlly
hnear. A corollary of the fundamental theorem is given here, which leads to a simple derivation and
deeper understanding of the subresultant PRS algorithm and converts a conjecture mentioned in the
earher papers into an elementary remark.

A possible alternative method of constructing a subresultant PRS is to evaluate all the subresultants
directly from Sylvester's determinant via expansion by minors A complexity analysis is given m
conclusion, along hnes pioneered by Gentleman and Johnson, showing that the subresultant PRS
algorithm is supermr to the determinant method whenever the given polynomials are sufficiently
large and dense, but is inferior m the sparse extreme

Key Words and Phrases symbohc algebra, subresultant, polynomial remainder sequences, Euclid's
algorithm, greatest common divisor, greatest common factor, resultant, Sylvester determinant, coef-
ficient growth, analysis of algorithms
CR Categorms 5 7, 5 25

1. INTRODUCTION

T h i s p a p e r is a s e q u e l t o t w o e a r l i e r p a p e r s [1, 2] o n t h e g e n e r a l i z a t i o n o f E u c l i d ' s

a l g o r i t h m to d e a l w i t h t h e p r o b l e m o f c o m p u t i n g t h e g r e a t e s t c o m m o n d i v i s o r

(G C D) o r t h e r e s u l t a n t o f a p a i r o f p o l y n o m i a l s . I n a t t e m p t i n g s u c h a g e n e r a l i -

z a t i o n o n e ea s i l y a r r i v e s a t t h e c o n c e p t o f a p o l y n o m i a l r e m a i n d e r s e q u e n c e

Permission to copy without fee all or part of this material is granted provided that the copras are not
made or distributed for d~rect commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery To copy otherwise, or to republish, requires a fee and/or specific
permission.
Author's address- Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
© 1978 ACM 0098-3500/78/0900-0237 $00 75

ACM Transacnons on Mathematmal Software, Vol 4, No 3, September 1978, Pages 237-249

238 W. S Brown

(PRS), and then quickly discovers the phenomenon of explosive coefficient
growth.

Fortunately, this explosive growth is not inherent in the problem, but is only
an artifact of various naive solutions. If one removes the content (that is, the
GCD of the coefficients) from each polynomial in a PRS, the coefficient growth
in the resulting primitive PRS is relatively modest. However, the cost of com-
puting the content (by applying Euclid's algorithm in the coefficient domain)
may be unacceptably or even prohibitively high, especially if the coefficients are
themselves polynomials in one or more additional variables.

The key to controlling coefficient growth without the costly computation
GCD's of coefficients is the discovery by Collins [4] that every polynomial in a
PRS is proportional to some subresultant of the first two. By arranging for the
constants of proportionality to be unity, CoUins developed the subresultant PRS
algorithm, which is the subject of this paper. Unfortunately, Collins' formulation
of the algorithm was too complicated for convenient application, and he therefore
recommended the simpler reduced PRS algorithm as a practical compromise.

Later, Brown and Traub [2] discovered the fundamenthl theorem of subresul-
tants, and used it to obtain a much simpler formulation of the subresultant PRS
algorithm. Also, Brown [1] derived essentially linear bounds on the coefficient
growth in a subresultant PRS {using a then unpublished theorem of Goldstein
and Graham [6]), while showing that the coefficient growth in a reduced PRS
can be exponential if the sequence involves degree differences greater than unity.
Although such abnormal sequences are a set of measure zero in the space of all
PRS's, they are not uncommon in practice, and it is important to deal sensibly
with them when they arise.

A few months after [1] and [2] were published, I discovered a corollary of the
fundamental theorem, which led to a simpler derivation and deeper understanding
of the subresultant PRS algorithm. The new approach, which is presented in this
paper, reveals the subresultant PRS algorithm as a simple generalization of the
reduced PRS algorithm and converts the conjecture that was mentioned in [1]
and [2] into an elementary remark.

Although I cannot assert with confidence that the subresultant PRS algorithm
is optimal for any important class of GCD problems, it is clearly the best of its
kind and deserves to be thoroughly understood. Among its competitors are the
modular GCD algorithm, discussed in [I], and the EZ-GCD algorithm of Moses
and Yun [10], which is also modular. Both of these algorithms have the over-
whelming advantage that the GCD, which is almost certain to be smaller than
the given polynomials, can be computed without ever forming the associated
subresultant, which is likely to be very much larger. However, for small problems
both suffer from complexity, while for sparse problems the modular GCD algo-
rithm suffers from fill-in. Furthermore, one can construct problems on which the
EZ-GCD algorithm performs poorly, and such problems might conceivably be
important in practice.

If one's objective is to compute the resultant of a pair of polynomials rather
than their GCD, or if the degrees of the given polynomials are not too large, then
it may be advantageous to evaluate all of the subresultants directly from Sylves-
ter's determinant via expansion by minors. The merits of this approach are

ACM Transac tmns on Mathematmal Software, Vol 4, No 3, September 1978

The Subresultant PRS Algorithm 289

explored empirical ly by K u and Adler [9], and their impor t an t bu t overs ta ted
conclusions are challenged by Collins [3].

Section 2 of this pape r establishes notat ion and res ta tes the fundamenta l
t heorem of subresul tants wi thout proof. Sect ion 3 presents the new formulat ion
of the subresul tant P R S algori thm, and Sect ion 4 i l lustrates it wi th a familiar
example. Sect ion 5 reviews the improved P R S algor i thm of [1] and shows how to
introduce two specific improvemen t s tha t are clearly worthwhile. Finally, Sect ion
6 analyzes the comput ing t ime of the a lgor i thm and compares it wi th the
de te rminan t me thod ment ioned above.

2. THE FUNDAMENTAL THEOREM

Let I be a unique factorization domain in which there is some way of finding
GCD's , and let I[x] denote the domain of polynomials in x with coefficients in I.
Assuming tha t the t e rms of a polynomial F ~ I[x] are ar ranged in the order of
decreasing exponents, the first t e rm is called the leading term; its coefficient lc(F)
is called the leading coefficient, and its exponent 0(F} is called the degree.

Since the familiar process of polynomial division with r emainder requires exact
divisibility in the coefficient domain, it is usually impossible to car ry it ou t for
nonzero A, B E I[x]. However, the process of pseudodivision [8, p. 369] always
yields a unique pseudoquot ient Q = pquo{A, B) and pseudoremainder R =
prem(A, B), such t ha t bS+'A - Q B = R and O(R) < O(B), where b is the leading
coefficient of B and 6 = O(A) - O(B).

For nonzero A, B ~ I[x], we say tha t A is similar to B (,4 ~ B) if there exist
nonzero a, fi E I such t ha t a A =- f iB . Here a and fl are called coefficients of
similarity.

For nonzero F , , F~ ~ I[x] with O(F1) ~> O(Fe), let F~, Fe Fk+l be a sequence
of polynomials such tha t F~ ~ prem(F~-2, F~-I) for t = 3 k + 1, and F~+~ =
prem(Fk- , , Fk) = 0. Such a sequence is called a polynomial r emainder sequence
(PRS). F rom the definitions, it follows tha t there exist nonzero a,, fl, E I and
Q, - pquo(F~-e, F~-,) such t ha t

fl~F, = a~F~-2 - Q~F~-~, O (F j < O(F~-~), i =- 3 k + 1. (1)

Because of the uniqueness of pseudodivision, the P R S beginning with F1 and
F2 is unique up to similarity. Fur thermore , it is easy to see tha t gcd(F~, Fe) ~
gcd(F2, F3) gcd(Fk_~, FD ~ Fk. Thus the construct ion of the P R S yields
the desired GCD to within similarity.

Le t n, = O(FJ for i = 1 , k, and note tha t nx I> n2 > " " " > nk ~ 0. Le t & -
n, - n,+~ for i = 1 , k - 1, and note tha t 6, >~ 0, while & > 0 for i > 1. I f
8, = 1 for all i > 1, the P R S is called normal; otherwise it is called abnormal .
Finally, let f = lc(F~) for i = 1 , k, and let

~, = ~._}+1, i = 3 , k + l , (2)

so tha t eq. (1) becomes

fl,F~ -= prem(F,-2, F,_~), i = 3 , k + 1. (3)

When a method for choosing the fl, is given, this equat ion and the te rminat ing
condition Fk+~ = 0 const i tute an a lgor i thm for construct ing the PRS.

ACM Transactmns on Mathematmal Software, Vol 4, No 3, September 1978

240 W.S. Brown

Next, let R(j) denote t h e j t h subresul tant of F1 and F2 for 0 ~ j < n2, as defined
in [2] and [4]. I t is easy to show tha t R (j) is a polynomial of degree a t mos t j,
each of whose coefficients is a de te rminan t of order n~ + n2 - 2j with coefficients
of F1 and F2 as its elements, and in par t icular t ha t R(0) is the classical resultant ,
res(F1, F2). With our nota t ion and definitions now established, we are a t last
p repared to s ta te the fundamenta l theorem, which shows in detail how the P R S
e lements F, and the nonzero subresul tants R(j) are similar.

THEOREM 1. Let F~, F2, • . . , Fk+] be a P R S in F[x] with F1, F2 in [Ix], where
F is the quotient field of I. Then for i = 3 k,

R(n,-~ - 1) = "hF, -= G,, (4)

R (]) = 0 , n , - 1 - l > y > n , , (5)

R(n,) = O,F, ~ H,, (6)

(7)

where

R(j) = 0, n k > j ~ O ,

t

) ' , = (- 1) ° ' f , - 1 1 - ~ ' - ' [I (f¢~/a~)" ' - ' -n ' - '+~t~- '~ ' - '+~' - ' ,
l~3

L

0t = (--1)'rtft 8'-1-] H (~l//Oll)nl-l--ntf l-1~z-2+8l-1'
l=3

with

(s)

(9)

l

a, ~ " ~,, (nl-2 - - n, -1 + 1) (n z - i - n, -1 + 1), (10)
l=3

I", =- ~ (nt-2 - n,)(nz-i - n,). (11)
l--3

Remarks . This t heo rem accounts for all of the R(j) , ne >] ~> 0. I t should be
noted tha t eq. (5) is vacuous when 3~_~ ~< 2, and fu r the rmore tha t eqs. (4) and (6)
are identical when 6,-1 -- 1. Finally, we extend eqs. (6), (9), and (11) to t = 2 by
defining

R(n2) = f281-lf2 ------ He (12)

which is also suggested by the definition of R(j) as a de terminant .

3. THE SUBRESULTANT PRS ALGORITHM

In this section we present , verify, and discuss a recursive formula for comput ing
fl, such tha t F, = G, for i --- 3 , k. We then recast it in the form of an algori thm,
which is called the subresu l tan t P R S algori thm.

Referr ing to eq. (4), our goal is to choose the B, so t ha t y3 = --- yh = 1. For
reasons t ha t will become clear, i t is helpful to define fl~+j and ,/,+~ by extending
eq. (8) to i -- k + 1 and requiring tha t yk+~ = 1, even though fi~+l has no
significance in eq. (3) and yk+l does not even appea r in eq. (4). Note tha t the total
exponen t of fk in yk+l is 6k-1 + 1; thus 7k+, does not depend on the undefined

A C M Transact ions on Mathematwa l Software, Vol 4, No 3, September 1978

The Subresultant PRS Algonthrn 241

q u a n t i t y 6h, whose a p p e a r a n c e is on ly superficial .
THEOREM 2.

c h o o s e

w h e r e

T o o b t a i n a P R S w~th 7, = i f o r i = 3 , k + 1, i t su f f i c e s to

]~3 = (- - 1) 81+1 (13)

1 1~8,-2+1¢ h'~,-2 f l , = t - , / , - 2 , -2 , t = 4 k + l , (14)

h2 = f2 ~' (15)

_ r e _ , h i % - , h , - i , ,-1 , i = 3 k. (16)

PROOF. We begin by se t t ing "/a = 1 to ob ta in eq. (13). T h e n for i ffi 4
k + 1, we set y,/yl-1 = 1 to ob ta in eq. (14) wi th

t+l

h, = (- 1) ,,-n,+,-1 f - 1 1-[(al/flz), (17)
1=3

for i - 2 , . . . , k - 1, and we def ine hk by ex tend ing this to i = k. Se t t ing i = 2 in
eq. (17) y ie lds eq. (15), and f inal ly dividing h, by h,-1 for t = 3 k yields

h , /h , -1 = (--1)~'- '+l (f z -1/ f t) (at+l/fl~+l) (18)

which in t u rn yie lds eq. (16).
THEOREM 3. T h e a u x i l i a r y q u a n t t t i e s h2, . . . , hk d e f m e d in T h e o r e m 2 s a t i s f y

t h e r e l a t i o n

h, = O,f = lc (H,) , t = 2 k. (19)

PROOF. First , no te t h a t

0 , f = 0,f~/y,+l, i = 2 k, (20)

s ince eqs. (13) t h r o u g h (16) were chosen to m a k e all the y, = 1. Rep lac ing 0, b y
eq. (9) and y,+~ by eq. (8), we find t h a t the r igh t side of eq. (20) is equa l to the
r igh t s ide of eq. (17), and t he re fo re t h a t h, = 0if, T h e iden t i ty lc(H,) = 0,f~ follows
i m m e d i a t e l y f r o m eq. (6).

R e m a r k . F r o m eq. (19) and the fac t t h a t H, is a subresu l t an t , i t fol lows
i m m e d i a t e l y t h a t all of the h,, and hence also all of the fl,, a re in I, as con j ec tu r ed
in [1] and [2].

A l g o r i t h m 1 (S u b r e s u l t a n t P R S) . Given p r imi t ive p o l y n o m i a l s F1, F2 in I[x],
we can ob ta in the s u b r e s u l t a n t P R S , Gl = F1, G2 = F2, G3, • . . , Gk, by c o m p u t i n g

G3 = (- 1) ~+1 prem(G1,G2),

(- 1) ¢-~+1 prem(G,-2 ,G, -D
G, = g , _ z h ~ , i = 4, . . . , k , (21)

whe re g, = lc(G,) for i = 1 k, and

h2 = g2 ~, h, = g, '- n , - l ' , i = 3 , k . (22)

ACM Transactmns on MathemaUcal Software, Vol. 4, No 3, September 1978.

242 W.S. Brown

The i terat ion stops because prem(G~-~,GD -- 0. T h e n if nk > 0, we have

gcd(F~,F2) = pp(Gk), res(F1,F2) = 0, (23)

where pp denotes the primitive part , while if nk = 0, we have

gcd(F1,F2) = 1, res(F1,F2) = hk. (24)

PROOF. First we replace fl, in eq. (3) by eqs. (13) and (14). Then, using
Theo r e m 2, we replace F, by G, and f~ by g, for all i >I 1.

Remarks. This algori thm should be compared with Collins' reduced P RS
algorithm, which is defined by

F3 = prem(F1,F2), F, -- prem(F,-2,F,-l) ff,_~+l , i = 4 , . . . , k + l . (25)
,-2

For a normal sequence, Algorithm 1 clearly specifies the same computat ion
except possibly for signs. In the general case, the denominator of eq. (21) is a
simple generalization of the denominator of eq. (25). Note tha t an abnormal i ty at
step i + 1 (that is, n,+~ < n, - 1, or in o ther words 8, > 1) yields a denominator of
higher degree at step i + 2 in the subresul tant P R S algori thm {21), but does not
do so until step i + 3 in the reduced PRS algori thm (25).

To unders tand the significance of eq. (22), we divide through by h , , and thus
obtain

h , / h , _ ~ = (g , / h , _ ~) ~'-', i = 3 , . . . , k, (26)

which shows tha t h, = lc(R(n,)) is obtained from h,-1 = l c (R (n ,)) and g, =
lc(R(n,_~ - 1)) by geometric extrapolation. To visualize this, suppose I is the
domain of integers (or any other domain of real numbers), and plot lc(R(]))
versus j on semilog paper. T h e n the points corresponding to h,_~, g,, and h, for
any fixed i will lie on a straight line.

T h e algori thm as presented does not explicitly compute the subresul tants
//3, . . . , Hk. However, since H, ~ G, by the fundamental theorem, it suffices to
compute

H~ = h , G , / g , i =- 3 k (27)

a t the end of step i.

4. AN EXAMPLE

Let us consider again the example

F l (x) -- x s + x 6 - 3x 4 - 3x 3 + 8x 2 + 2 x - 5
(28)

F 2 (x) = 3 x 6 + 5 x 4 - 4 x 2 - 9 x + 21

from [3, pp. 370-371] and [1]. For convenience we first compute the primitive
PRS, P1 = F1, P2 = F2, 1)3, P k , defined by

P , = R , / f l , (29)

where

R, = prem(P,-2,P~-D, fl, = content(R,) (30)

ACM Transactions on Mathematical Software, Vol 4. No. 3, September 1978

The Subresultant PR$ Algorithm 243

for i = 3 , k. The results, showing only the coefficients for brevity, are

l n, fl, P,

1 8 1, O, 1, O, -3, -3, 8, 2, - 5
2 6 3, O, 5, O, -4, -9, 21
3 4 -3 5, O, - I , O, 3
4 2 -45 13, 25, -49
5 I -50 4663, -6150
6 0 7 x 133 x 9311 1

With this table and the ident i ty

(31)

prem(aA, bB) = ab 8+~ prem(A,B) (32)

where 6 = O(A) - O(B), it is easy to compute the P R S tha t is de te rmined f rom Fa
and F2 by any proposed algorithm. In particular, Algor i thm 1 yields

l G, /P, H , / P ,

1 1 - -

2 1 3

3 3 5

4 5 13
5 2 2
6 22 x 7 x 9311 2 z x 7 X 9311

where the P, are given m (31).

(33)

5. THE IMPROVED PRS ALGORITHM

We shall now review the improved P R S algor i thm proposed in [1] and show how
to realize two par t icular improvemen t s whenever the oppor tun i ty arises.

In carrying out the subresul tant P R S algor i thm it m a y happen tha t a divisor
y, of the content of G, is available with little or no extra work. I f so, we would like
to compute the improved PRS, F,,F2 , Fk, such tha t

G, = ~,F,, i = 3, k. (34)

Making this subst i tut ion in eqs. (21) and (22) and using (32), we obtain a second
algori thm.

Algor i thm 2 (Improved PRS) .

)'3F3 = (-1) 8'+1 prem(F1,F2) (35)

(-),,-1) ~'-2+1 prem(F,-z,F,-,)
~ , F , = , ~ = 4 , . . . , k + 1,

where

h 1-8 -1 h2 = f2~'; h, = yfl'-* re '- ' , - , ' , ~ = 3 k. (36)

T h e s implest way to realize an improvemen t is to define

ACM Transact ions on Mathematmal Software, Vol 4, No 3, September 1978.

244 W.S. Brown

y = gcd(fa,f2) (37)

and note tha t y]R(j) for all j < n2, since each of these subresul tants is a
de te rminan t with one row whose only nonzero e lements are f~ and re. In part icular,
y[G, and ylH~ for i -- 3, . . . , k. Replacing y, by y in eqs. (35) and (36), and
introducing

h, = hJy,

we obtain a third algorithm.
Algorithm 3.

where

t = 2 , . . . , k, (38)

F3 = (-1) ~'+' prem(F,,FD/y

(-1) ~'-~+a prem(F,-2,F,-a)

f,_~(h,_~)8,-~ i = 4, . . . , k,
(39)

h2 = f2 8' y-a; h, = f~'- ' (h,-a) a-8'-', i = 3, . . . , k. (40)

Note t ha t Algor i thm 3 is identical to Algor i thm 1 except for the s tar t ing condi-
tions; F3 and h2 are smaller than G3 and h2, respectively, by a factor of y. Also
note tha t h, ~ I for i = 3 k, bu t h2 ~ I only when 51 > 0 or y ~ 1.

T o realize ano ther improvement , we note with H e a r n [7] tha t pseudodivision
somet imes requires fewer than the expected n u m b e r of subt rac t ion s teps and
introduces some power of the leading coefficient of the divisor into the pseudo-
remainder as an ext raneous factor. Fur thermore , one can readily modify the
pseudodivision process to compute this factor and the rest of the pseudoremainder
as separa te outputs. Accordingly, we define the modif ied pseudoremainder

mprem(F,-2,F,-~) = f,~'l-' prem(F,-2,F,-1), i = 3 k, (41)

where e,-1 is the n u m b e r of s teps saved (0 ~ e,-a ~ 3,-2).
Since y, defined in eq. (37), can always be included in),~, we also define

~ , = y , / y , i = 3 k. (42)

Subst i tu t ing eqs. (38}, (41), and (42) into eqs. (35) and (36), we obtain a four th
algori thm.

Algorithm 4.

~ ' 3 = (-1) ~'+~ f2 °~ mprem(F~,F2)/y
(__~,_1)8,_2+1 ~,-, , (43)

f*-i mprem(F, -2 F,_I)
y ~ , ffi f,_2(h,_z)~,_2 , i = 4 k + 1,

where

h2 = ~ '),-a; h, = (9,)8,_, f? ' - ' (h , -o ' -8 ' - ' , ~ = 3, . . . , k. (44)

ACM Transact ions on Mathemauca l Software, Vol 4, No, 3, September 1978

The Subresultant PRS Algorithm 245

It remains to choose the :~,. First, we reduce the fraction f d 2 / y to lowest terms and
set =~3 equal to the resulting numerator. The modified pseudoremainder is then
divisible by the denominator, and their quotient is _+ F3. Similarly, for
i > 3, we would like to reduce the fraction

(~,,_~)~,_~+1 f~/f,_2(h,_2)~,_= (45)

to lowest terms and set ~, equal to the resulting numerator, but this may involve
GCD computations too costly to be justified. As an alternative, we could expand
the numerator of eq. (43}, divide out the factors of the denominator, and then set
=~, equal to the largest product of powers of :~,_, and f_, that divides the result. As
another alternative, we could "grow" the numerator a factor at a time, dividing
out denominator factors whenever possible, and .~et ~, equal to the product of any
unused powers of ~/,_, and f_,. This strategy is appealing because trial divisions
are rarely costly unless they succeed. However, the optimal approach remains a
topic for future research.

6. TIME COMPLEXITY

We now present a qualitative analysis of the time complexity of the subresultant
PRS algorithm. Our purpose is not to obtain rigorous bounds on the computing
time, but to acquire insight into the behavior of the algorithm. In particular, this
analysis explains the surprising empirical observations of Ku and Adler [9], and
resolves the apparent contradiction between those observations and the theoret-
ical results of Collins [3]. Our technique is patterned after that used by Gentleman
and Johnson [5] in their study of the evaluation of determinants, and our
conclusions are remarkably similar.

In assessing costs, we shall assume that classical algorithms are used for
multiplication, division, and pseudodivision. That is, we reject fast Fourier trans-
forms, modular techniques, and so forth, in keeping with the fact that the
subresultant PRS algorithm is itself classical. Thus the cost of computing P =-
A B (measured in byte multiplications or word multiplications and ignoring other
operations) is simply

C (A B) = size(A)size(B), (46)

where the size function measures the total storage space (in bytes or words) that
is required for its argument. Similarly, the cost of computing an exact quotient
Q = A / B is

C (A / B) =- size(Q)size(B). (47)

To compute R = prem(A,B) in the general case, one constructs the sequence

Ro --- A, R, R~, R~+, = R, (48)

where

R, -= b R , - , - r , - , B x ~+'-~ (49)

with b -- lc(B), !", = lc(R,), and 6 = O(A) - O(B). As we progress through the

ACM Transactions on Mathematical Software, Vol 4, No 3, September 1978

246 W.S. Brown

sequence, the degrees of the R, decrease, but the coefficients nearly always grow.
Since the leading terms of bR,-1 and r,-1B need not be computed, the cost of each
of these products is bounded by O(A)size(bmax)size(rm~), where bm~x and rmax are
the largest coefficients of B and R, respectively. Hence

C(prem(A,B)) < 2(5 + 1)O(A)size(b~,~)size(rm,~). (50)

Since the polynomials G3 , Gk are subresultants, their coefficients are
determinants of coefficients of GI = F1 and G2 = F2. Accordingly, we introduce
S(l,m) to denote the size of a product of m such determinants, each of order 1.
Letting l~ denote the order of the determinants that represent the coefficients of
G,, we have

11=1; /2=1; l , = n ~ + n 2 - 2 (n , _ ~ - l) , i = 3 , . . . , k , (51)

which is an increasing function of i, and represents the loss of degree as we move
through the PRS from G~ and Ge to G,. From this definition it is easy to show
that

and

1 < i - 2 ~ ½ 1 , < ~ n l , i = 3 , . . . , k , (52)

t -2

~,, ~1<~l,-2, i = 3 , . . . , k . (53)

To construct G, via eq. (21), we must compute the pseudoremainder and then
the quotient. By eq. (50) the cost of the first step is

C, (1) <: 2(3,-2 + 1)nt_2S(l~_l,1)S(l~,5,_2 + 2), (54)

while by eq. (47), the cost of the second step is

C, (2) < (n, + 1)S(l,,1)S(1~-1,~,-2 + 1). (55)

Letting C, denote the sum of these costs, it follows that

C, < (2t~,-2 + 3)n,-2S(l,,1)S(1,,~,_2 + 2). (56)

Models of Computation

To explore the significance of this result, for the total cost
k

C = ~ C,, (57)
t z 3

we shall consider the two extreme models of polynomial computation that are
proposed in [5]. As stated there, these models "are extreme in the sense that
other models tend to lie between them" and "we suggest that most practical
problems will show aspects of both models."

In the dense model, G1 and Ge may be quite large, but the coefficients grow
rather slowly as we proceed through the PRS. By contrast, in the sparse model,

ACM Transac t ions on Mathematmal Software, Vol 4, No 3, September 1978

The Subresultant PRS Algorithm 247

G1 and G2 must be quite small compared with dense polynomials with comparable
degree vectors, but the coefficient growth in the PRS is extremely rapid. Because
of this rapid growth G~ and G2 must be reasonably small in an absolute sense too,
or we will be unable to compute the PRS because of our l imited resources. Of
course, the sparseness in the sparse case will decrease as we proceed through the
PRS, but we assume (for the sake of extremism) that G~ and Gz are so extremely
sparse that the rapid coefficient growth implied by the sparse model is sustained
to the very end.

We shall now specify the two models more precisely, and obtain a bound on C
for each of them. In both models we assume, as in [5], tha t the addition or
multiplication of polynomials never generates zero coefficients. Our only impor-
tant depar ture from [5] is tha t we measure costs in byte multiplications or word
multiplications ra ther than in integer multiplications, thus allowing for the growth
of integer coefficients. As stated in [5], this change makes both models a little
less extreme; by giving up a small measure of simplicity and "puri ty," we hope to
have made our results more realistic and convincing.

Dense Model

In the dense model, we assume tha t the G, are completely dense polynomials in
one variable with integer coefficients. Thus the sum and product of polynomials
with tl and t2 terms, respectively, are both as small as possible; the sum has
max(tx,t2} terms, while the product has t~ + t2 - 1 . For convenience we approximate
the bound on the size of a sum of integers by the maximum of their sizes; this
approximation tends to underes t imate the growth of integer coefficients and
thereby makes our model slightly "denser" than reality. We also note tha t the
size of a product of integers is the sum of their sizes. I t now follows tha t

S(1 ,m) = l m s , (58)

where s is the size of a coefficient of G1 or G2. Substi tut ing this into (56), we find

C, < s21,2n,-2(~,-2 + 2)(2~,-2 + 3) ~ s21,3n,-2(2~,-2 + 3) ~< s21k3nl(2~-~ + 3), (59)

and therefore

7 ~21 4~ C < sZlk3nl[2(h - 2) + 3(k - 2)] < ~ ~ ~k ,~1. (60)

For a normal PRS with/~ ~< 1, we can easily derive a t ighter bound. In this case,
eq. (56) yields

C, < 15 sZl,2n,-2 <~ 15 s2h2nl, (61)

and therefore

C < ~5 s 2 lk2nl(k _ 2) < 1_~ s e h3nl, (62)

in agreement with the result

C = O(s2nl 4) (63)

previously published in [1] and [3] for the normal univariate case.

ACM Transachons on Mathemat ical Software, Vol 4, No 3, September 1978

. ~,7_~ ~ -;>: ~

248 W . S . Brown

Sparse Model

In the sparse model, we assume the G, are polynomials in some main variable
with extremely sparse, multivariate, polynomial coefficients, and we assume
further tha t no combinations whatever occur when these coefficient polynomials
are added or multiplied together. Thus the sum and product of polynomials with
tl and t2 terms, respectively, are both as large as possible; the sum has tl + t2
terms, while the product has tit2. Since a determinant of order I is a sum of l!
products, each with I factors, it follows tha t

S(/,1) = l s l t t ~, (64)

and more generally tha t

S(1,m) = lms(1 ! tz) m, (65)

where the coefficients of G1 and G2 are t-term polynomials with integer coefficients
of size s. Since the determinants of interest in this paper are in fact highly
structured, the assumptions of the sparse model cannot be fully satisfied, and this
formula is certainly too extreme. However, we are using the model primarily as
a bound, and in tha t role it can certainly help us to acquire valuable insight.

Substituting eq. (65) into eq. (56), we find

C, < s21,2n,-2(8,-2 + 2)(2~,-~_ + 3)(/, ! t~') ~'-2+3

< 2s~l,4n,_2(1, ! tz') ~'-~+3 (66)

<<. 2s21k4nl(1, [tt,) ~+a,

where

= max(8, &-2) ~< h -2 . (67)

In summing over (66), the last term dominates, and it is easy to show tha t

C < 2.0001 s2h4nl(lk ! tlk) ~+3, (68)

which is our final upper bound. To obtain a lower bound, we note tha t

C I> Ck > Ck (2) = "size(Gk)size(gk_2h~:~), (69)

and therefore tha t

C > (nk + 1)S(lk,1)S(h-2,6k-2 + 1) ~ S(h,1)S(h-e, 2) > 2s2l~_2 (lk-2 ! tlk-2) 3. {70)

Although this lower bound is somewhat less fearsome than eq. (68), it remains
severely superexponential.

7. CONCLUSION

The chief drawback of the subresultant PRS algorithm is tha t the last pseudo-
remainder, flkGk, is substantially larger (overwhelmingly so in the sparse case)
than the desired subresultant, Gk, which must be obtained from fl~Gk and flh by
a very costly division. This phenomenon, which we call overshoot, could be
avoided by expressing G~ as a determinant (see [2]) and evaluating it by the

ACM Transact ions on Mathemat ica l Software, Vol 4, No. 3, September 1978

The Subresultant PRS Algorithm 249

method of nested minors (see [5]). Since each subresultant, R(]) , is a minor of the
next larger one, R(]" -1) , we could compute the entire PRS as a byproduct of
computing the resultant R(0).

In the dense extreme, this determinant method involves the evaluation of
exponentially many minors, while the total cost of the subresultant P R S algorithm
is only of order s2nl 4 (or s2nl 5 in abnormal cases), as discussed above.

However, in the sparse extreme, the situation is remarkably different. For the
determinant method it follows from [5] tha t the unit cost (that is, the cost per
unit size of Gk) is less than 3s, while for the subresultant PRS algorithm it follows
from eq. (69) that the unit cost exceeds

S(/k-2,2) = 2slk-2(lk-2 ! tl~-~) 2. (71)

Since the assumptions of the sparse model cannot be fully satisfied in this context
(see eq. (65) and the ensuing discussion), the actual difference between the two
methods is certainly less extreme than this comparison suggests. A deeper
understanding will require further study, involving less extreme models of sparse-
ness and supported by detailed empirical evidence.

In their brief examination of dense polynomials in one variable, Ku and Adler
[9] conclude that the subresultant PRS algorithm is better than the determinant
method, but their examples are too small to reveal the substantial magnitude of
the difference. In the rest of their study, they confine their at tention to ra ther
small polynomials in several variables (well removed from both of the extremes
of this paper) and conclude that the determinant method (starting from Bezout 's
determinant rather than Sylvester's) is superior. I believe it is fair to say tha t this
important practical observation and the controversy tha t followed deserve a large
share of the credit for the theoretical results of [5] and the present paper.

REFERENCES
1 BROWN, W S On Euchd's algorithm and the computation of polynomial greatest common

dwlsors J ACM 18, 4 (Oct. 1971), 478-504.
2 BROWN, W S, AND TRAUB, J.F. On Euclid's algorithm and the theory of subresultants. J. ACM

18, 4 (Oct. 1971), 505-514.
3 COLLINS, G E Comment on a paper by Ku and Alder. Comm. ACM 12, 6 (June 1969), 302-303.
4 COLLINS, G E Subresultants and reduced polynomial remainder sequences J ACM 14, 1 (Jan.

1967), 128-142.
5 GENTLEMAN, W M, AND JOHNSON, S C Analysis of algorithms A case study' Determinants of

matrices with polynomial entries ACM Trans Math Software 2, 3 (Sept 1976), 232-241.
6. GOLDSTEIN, A J, AND GRAHAM, R.L A Hadamard-type bound on the coefficmnts of a determi-

nant of polynomials SIAM Rev 16 (July 1974), 394-395.
7. HEARN, A.C An nnproved non-modular GCD algorithm. SIGSAM Bull. (ACM) 6 (July 1972),

10-15
8. KNUTH, D E The Art of Computer Prograrnmtng, Vol 2. Addison-Wesley, Reading, Mass 1969.
9 Ku, S Y, AND ADLER, R J Computing polynomial resultants Bezout's determinant vs. Collins'

reduced PRS algorithm. Comm ACM 12, 1 (Jan. 1969), 23-30.
10 MOSES, J, AND YUN, D Y Y. The EZ GCD algorithm Proc ACM Nat. Conf., Aug 1973, pp.

159-166.

Received December 1976, revised September 1977

ACM Transactions on Mathematical Software, Vol. 4, No 3, September 1978

