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Two earlier papers described the generalization of Euclid's algorithm to deal with the problem of 
computing the greatest common divisor (GCD) or the resultant of a pair of polynomials. A sequel to 
those two papers IS presented here 

In attempting such a generalization one easily arrives at the concept of a polynomial remainder 
sequence (PRS) and then quickly discovers the phenomenon of explosive coefficient growth. Fortu- 
nately, thin explosive growth is not inherent in the problem, but is only an artifact of various naive 
solutmns If one removes the content (that is, the GCD of the coefficients) from each polynomial in 
a PRS, the coefficmnt growth in the resulting primitive PRS is relatively modest. However, the cost 
of computing the content (by applying Euclid's algorithm in the coefficient domain} may be unac- 
ceptably or even proh~bltwely high, especially if the coefficients are themselves polynomials m one or 
more addltmnal variables 

The key to controlling coefficient growth without the costly computation of GCD's of coefficmnts 
is the fundamental theorem of subresuitants, which shows that every polynomial in a PRS is 
proportional to some subresultant of the first two. By arranging for the constants of proportionahty 
to be unity, one obtams the subresultant PRS algorithm, in which the coefficient growth is essentmlly 
hnear. A corollary of the fundamental theorem is given here, which leads to a simple derivation and 
deeper understanding of the subresultant PRS algorithm and converts a conjecture mentioned in the 
earher papers into an elementary remark. 

A possible alternative method of constructing a subresultant PRS is to evaluate all the subresultants 
directly from Sylvester's determinant via expansion by minors A complexity analysis is given m 
conclusion, along hnes pioneered by Gentleman and Johnson, showing that the subresultant PRS 
algorithm is supermr to the determinant method whenever the given polynomials are sufficiently 
large and dense, but is inferior m the sparse extreme 
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1. INTRODUCTION 

T h i s  p a p e r  is a s e q u e l  t o  t w o  e a r l i e r  p a p e r s  [1, 2] o n  t h e  g e n e r a l i z a t i o n  o f  E u c l i d ' s  

a l g o r i t h m  to  d e a l  w i t h  t h e  p r o b l e m  o f  c o m p u t i n g  t h e  g r e a t e s t  c o m m o n  d i v i s o r  

( G C D )  o r  t h e  r e s u l t a n t  o f  a p a i r  o f  p o l y n o m i a l s .  I n  a t t e m p t i n g  s u c h  a g e n e r a l i -  

z a t i o n  o n e  ea s i l y  a r r i v e s  a t  t h e  c o n c e p t  o f  a p o l y n o m i a l  r e m a i n d e r  s e q u e n c e  
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(PRS), and then quickly discovers the phenomenon of explosive coefficient 
growth. 

Fortunately, this explosive growth is not inherent in the problem, but is only 
an artifact of various naive solutions. If one removes the content (that is, the 
GCD of the coefficients) from each polynomial in a PRS, the coefficient growth 
in the resulting primitive PRS is relatively modest. However, the cost of com- 
puting the content (by applying Euclid's algorithm in the coefficient domain) 
may be unacceptably or even prohibitively high, especially if the coefficients are 
themselves polynomials in one or more additional variables. 

The key to controlling coefficient growth without the costly computation 
GCD's of coefficients is the discovery by Collins [4] that every polynomial in a 
PRS is proportional to some subresultant of the first two. By arranging for the 
constants of proportionality to be unity, CoUins developed the subresultant PRS 
algorithm, which is the subject of this paper. Unfortunately, Collins' formulation 
of the algorithm was too complicated for convenient application, and he therefore 
recommended the simpler reduced PRS algorithm as a practical compromise. 

Later, Brown and Traub [2] discovered the fundamenthl theorem of subresul- 
tants, and used it to obtain a much simpler formulation of the subresultant PRS 
algorithm. Also, Brown [1] derived essentially linear bounds on the coefficient 
growth in a subresultant PRS {using a then unpublished theorem of Goldstein 
and Graham [6]), while showing that the coefficient growth in a reduced PRS 
can be exponential if the sequence involves degree differences greater than unity. 
Although such abnormal sequences are a set of measure zero in the space of all 
PRS's, they are not uncommon in practice, and it is important to deal sensibly 
with them when they arise. 

A few months after [1] and [2] were published, I discovered a corollary of the 
fundamental theorem, which led to a simpler derivation and deeper understanding 
of the subresultant PRS algorithm. The new approach, which is presented in this 
paper, reveals the subresultant PRS algorithm as a simple generalization of the 
reduced PRS algorithm and converts the conjecture that was mentioned in [1] 
and [2] into an elementary remark. 

Although I cannot assert with confidence that the subresultant PRS algorithm 
is optimal for any important class of GCD problems, it is clearly the best of its 
kind and deserves to be thoroughly understood. Among its competitors are the 
modular GCD algorithm, discussed in [I], and the EZ-GCD algorithm of Moses 
and Yun [10], which is also modular. Both of these algorithms have the over- 
whelming advantage that the GCD, which is almost certain to be smaller than 
the given polynomials, can be computed without ever forming the associated 
subresultant, which is likely to be very much larger. However, for small problems 
both suffer from complexity, while for sparse problems the modular GCD algo- 
rithm suffers from fill-in. Furthermore, one can construct problems on which the 
EZ-GCD algorithm performs poorly, and such problems might conceivably be 
important in practice. 

If one's objective is to compute the resultant of a pair of polynomials rather 
than their GCD, or if the degrees of the given polynomials are not too large, then 
it may be advantageous to evaluate all of the subresultants directly from Sylves- 
ter's determinant via expansion by minors. The merits of this approach are 
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explored empirical ly by  K u  and Adler [9], and their  impor t an t  bu t  overs ta ted  
conclusions are challenged by  Collins [3]. 

Section 2 of  this pape r  establishes notat ion and res ta tes  the  fundamenta l  
t heorem of subresul tants  wi thout  proof. Sect ion 3 presents  the  new formulat ion 
of the subresul tant  P R S  algori thm, and Sect ion 4 i l lustrates it wi th  a familiar  
example.  Sect ion 5 reviews the improved  P R S  algor i thm of [1] and shows how to 
introduce two specific improvemen t s  tha t  are clearly worthwhile.  Finally, Sect ion 
6 analyzes the comput ing t ime of the a lgor i thm and compares  it wi th  the 
de te rminan t  me thod  ment ioned  above. 

2. THE FUNDAMENTAL THEOREM 

Let  I be a unique factorization domain  in which there  is some way of finding 
GCD's ,  and let I[x] denote  the domain  of polynomials  in x with coefficients in I. 
Assuming tha t  the t e rms  of a polynomial  F ~ I[x] are ar ranged in the  order  of  
decreasing exponents,  the first t e rm  is called the  leading term; its coefficient lc(F) 
is called the leading coefficient, and its exponent  0(F} is called the degree. 

Since the familiar  process of  polynomial  division with r emainder  requires  exact  
divisibility in the  coefficient domain,  it is usually impossible to car ry  it  ou t  for 
nonzero A, B E I[x]. However,  the process of pseudodivision [8, p. 369] always 
yields a unique pseudoquot ient  Q = pquo{A, B) and pseudoremainder  R = 
prem(A, B), such t ha t  bS+'A - Q B  = R and O(R) < O(B), where  b is the  leading 
coefficient of B and 6 = O(A) - O(B). 

For  nonzero A, B ~ I[x], we say tha t  A is similar to B (,4 ~ B) if there  exist 
nonzero a, fi E I such t ha t  a A  =- f iB .  Here  a and fl are called coefficients of 
similarity. 

For  nonzero F , ,  F~ ~ I[x]  with O(F1) ~> O(Fe), let F~, Fe . . . . .  Fk+l be a sequence 
of polynomials  such tha t  F~ ~ prem(F~-2, F~-I) for t = 3 . . . . .  k + 1, and F~+~ = 
prem(Fk- , ,  Fk) = 0. Such a sequence is called a polynomial  r emainder  sequence 
(PRS). F rom the definitions, it follows tha t  there  exist nonzero a,, fl, E I and 
Q, - pquo(F~-e, F~-,) such t ha t  

fl~F, = a~F~-2 - Q~F~-~, O ( F j  < O(F~-~), i =- 3 . . . . .  k + 1. (1) 

Because of the uniqueness of pseudodivision, the  P R S  beginning with  F1 and 
F2 is unique up to similarity. Fur thermore ,  it is easy to see tha t  gcd(F~, Fe) ~ 
gcd(F2, F3) . . . .  gcd(Fk_~, FD ~ Fk. Thus  the  construct ion of the P R S  yields 
the  desired GCD to within similarity. 

Le t  n, = O(FJ for i = 1 . . . .  , k, and note  tha t  nx I> n2 > " " "  > nk ~ 0. Le t  & - 
n, - n,+~ for i = 1 . . . .  , k - 1, and note tha t  6, >~ 0, while & > 0 for i > 1. I f  
8, = 1 for all i > 1, the  P R S  is called normal;  otherwise it  is called abnormal .  
Finally, let f = lc(F~) for i = 1 . . . .  , k, and let 

~, = ~._}+1, i = 3  . . . .  , k + l ,  (2) 

so tha t  eq. (1) becomes 

fl,F~ -= prem(F,-2, F,_~), i = 3 . . . .  , k + 1. (3) 

When  a method  for choosing the fl, is given, this equat ion and the te rminat ing  
condition Fk+~ = 0 const i tute  an a lgor i thm for construct ing the  PRS.  
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Next,  let R( j )  denote  t h e j t h  subresul tant  of F1 and F2 for 0 ~ j  < n2, as defined 
in [2] and [4]. I t  is easy to show tha t  R ( j )  is a polynomial  of degree a t  mos t  j, 
each of whose coefficients is a de te rminan t  of order  n~ + n2 - 2j with coefficients 
of  F1 and  F2 as its elements,  and  in par t icular  t ha t  R(0) is the  classical resultant ,  
res(F1, F2). With  our  nota t ion  and definitions now established, we are a t  last  
p repared  to s ta te  the  fundamenta l  theorem,  which shows in detail  how the P R S  
e lements  F, and the nonzero subresul tants  R(j) are similar. 

THEOREM 1. Let  F~, F2, • . .  , Fk+] be a P R S  in F[x]  with F1, F2 in [Ix], where 
F is the quotient field of I. Then for i = 3 . . . . .  k, 

R(n,-~ - 1) = "hF, -= G,, (4) 

R ( ] ) = 0 ,  n , - 1 -  l > y > n , ,  (5) 

R(n,) = O,F, ~ H,, (6) 

(7) 

where 

R( j )  = 0, n k > j ~ O ,  

t 

) ' ,  = ( - 1 ) ° ' f , - 1 1 - ~ ' - '  [I ( f¢~/a~)" ' - ' -n ' - '+~t~- '~ ' - '+~' - ' ,  
l~3 

L 

0t = (--1)'rtft 8'-1-] H (~l//Oll)nl-l--ntf l-1~z-2+8l-1' 
l=3 

with 

(s) 

(9) 

l 

a, ~ "  ~,, (nl-2 - -  n, -1  + 1 ) ( n z - i  - n, -1  + 1), (10)  
l=3 

I", =- ~ (nt-2 - n,)(nz-i - n,). (11) 
l--3 

Remarks .  This  t heo rem accounts  for all of the  R( j ) ,  ne > ]  ~> 0. I t  should be 
noted tha t  eq. (5) is vacuous  when 3~_~ ~< 2, and fu r the rmore  tha t  eqs. (4) and (6) 
are identical  when 6,-1 -- 1. Finally, we extend eqs. (6), (9), and (11) to t = 2 by  
defining 

R(n2) = f281-lf2 ------ He (12) 

which is also suggested by the  definition of R(j) as a de terminant .  

3. THE SUBRESULTANT PRS ALGORITHM 

In  this section we present ,  verify, and discuss a recursive formula  for comput ing  
fl, such tha t  F, = G, for i --- 3 . . . .  , k. We then  recast  it in the form of an algori thm, 
which is called the subresu l tan t  P R S  algori thm. 

Referr ing to eq. (4), our  goal is to choose the B, so t ha t  y3 = --- yh = 1. For  
reasons  t ha t  will become clear, i t  is helpful to define fl~+j and ,/,+~ by  extending 
eq. (8) to i -- k + 1 and requiring tha t  yk+~ = 1, even though fi~+l has  no 
significance in eq. (3) and yk+l does not  even appea r  in eq. (4). Note  tha t  the  total  
exponen t  of  fk in yk+l is 6k-1 + 1; thus  7k+, does not  depend on the undefined 
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q u a n t i t y  6h, whose  a p p e a r a n c e  is on ly  superficial .  
THEOREM 2. 

c h o o s e  

w h e r e  

T o  o b t a i n  a P R S  w~th 7, = i f o r  i = 3 . . . .  , k + 1, i t  su f f i c e s  to 

]~3 = ( - - 1 )  81+1 (13) 

1 1~8,-2+1¢ h'~,-2 f l , =  t -  , / , - 2  , -2 ,  t = 4  . . . . .  k + l ,  ( 14 )  

h2 = f2 ~' (15) 

_ r e _ ,  h i % - ,  h , - i ,  ,-1 , i = 3  . . . . .  k. (16) 

PROOF. We  begin by  se t t ing  "/a = 1 to ob ta in  eq. (13). T h e n  for  i ffi 4 . . . . .  
k + 1, we set  y,/yl-1 = 1 to ob ta in  eq. (14) wi th  

t+l 

h, = ( - 1 )  ,,-n,+,-1 f - 1  1-[ (al/flz), (17) 
1=3 

for  i - 2 , . . . ,  k - 1, and  we def ine  hk by  ex tend ing  this  to i = k. Se t t ing  i = 2 in 
eq. (17) y ie lds  eq. (15), and  f inal ly dividing h, by  h,-1 for  t = 3 . . . . .  k yields  

h , /h , -1  = (--1)~'- '+l ( f z -1/ f t )  (at+l/fl~+l) (18) 

which  in t u rn  yie lds  eq. (16). 
THEOREM 3. T h e  a u x i l i a r y  q u a n t t t i e s  h2, . . . , hk d e f m e d  in  T h e o r e m  2 s a t i s f y  

t h e  r e l a t i o n  

h, = O,f  = lc (H, ) ,  t = 2 . . . . .  k. (19) 

PROOF. First ,  no te  t h a t  

0 , f  = 0,f~/y,+l, i = 2 . . . . .  k, (20) 

s ince eqs. (13) t h r o u g h  (16) were  chosen  to m a k e  all the  y, = 1. Rep lac ing  0, b y  
eq. (9) and  y,+~ by  eq. (8), we find t h a t  the  r igh t  side of  eq. (20) is equa l  to the  
r igh t  s ide of  eq. (17), and  t he re fo re  t h a t  h, = 0if, T h e  iden t i ty  lc(H,) = 0,f~ follows 
i m m e d i a t e l y  f r o m  eq. (6). 

R e m a r k .  F r o m  eq. (19) and  the  fac t  t h a t  H,  is a subresu l t an t ,  i t  fol lows 
i m m e d i a t e l y  t h a t  all of  the  h,, and  hence  also all of  the  fl,, a re  in I, as  con j ec tu r ed  
in [1] and  [2]. 

A l g o r i t h m  1 ( S u b r e s u l t a n t  P R S ) .  Given  p r imi t ive  p o l y n o m i a l s  F1, F2 in I[x],  
we can  ob ta in  the  s u b r e s u l t a n t  P R S ,  Gl = F1, G2 = F2, G3, • . . ,  Gk, by  c o m p u t i n g  

G3 = ( - 1 )  ~+1 prem(G1,G2),  

( - 1 )  ¢-~+1 prem(G,-2 ,G, -D 
G, = g , _ z h ~  , i = 4, . . . ,  k ,  (21) 

whe re  g, = lc(G,) for  i = 1 . . . . .  k, and  

h2 = g2 ~, h, = g, '- n , - l '  , i = 3  . . . .  , k .  (22) 
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The  i terat ion stops because prem(G~-~,GD -- 0. T h e n  if nk > 0, we have 

gcd(F~,F2) = pp(Gk), res(F1,F2) = 0, (23) 

where pp denotes  the primitive part ,  while if nk = 0, we have 

gcd(F1,F2) = 1, res(F1,F2) = hk. (24) 

PROOF. First  we replace fl, in eq. (3) by eqs. (13) and (14). Then,  using 
Theo r e m 2, we replace F, by  G, and f~ by g, for all i >I 1. 

Remarks.  This  algori thm should be compared with Collins' reduced P RS  
algorithm, which is defined by 

F3 = prem(F1,F2), F, -- prem(F,-2,F,-l) ff,_~+l , i = 4 , . . . , k + l .  (25) 
,-2 

For  a normal sequence, Algorithm 1 clearly specifies the same computat ion 
except  possibly for signs. In the general case, the denominator  of eq. (21) is a 
simple generalization of the denominator  of eq. (25). Note  tha t  an abnormal i ty  at  
step i + 1 ( that  is, n,+~ < n, - 1, or in o ther  words 8, > 1) yields a denominator  of 
higher degree at  step i + 2 in the subresul tant  P R S  algori thm {21), but  does not  
do so until  step i + 3 in the reduced PRS  algori thm (25). 

To  unders tand the significance of eq. (22), we divide through by h , ,  and thus 
obtain 

h , / h , _ ~  = ( g , / h , _ ~ )  ~'-', i = 3 , . . . ,  k, (26) 

which shows tha t  h, = lc(R(n,)) is obtained from h,-1 = l c ( R ( n , ) )  and g, = 
lc(R(n,_~ - 1)) by geometric extrapolation. To  visualize this, suppose I is the 
domain of integers (or any other  domain of real numbers),  and plot lc(R(])) 
versus j on semilog paper. T h e n  the points corresponding to h,_~, g,, and h, for 
any  fixed i will lie on a straight  line. 

T h e  algori thm as presented does not  explicitly compute  the subresul tants  
//3, . . .  , Hk. However,  since H, ~ G, by the fundamental  theorem, it suffices to 
compute  

H~ = h , G , / g ,  i =- 3 . . . . .  k (27) 

a t  the end of step i. 

4. AN EXAMPLE 

Let  us consider again the example 

F l ( x )  --  x s + x 6 -  3x 4 - 3x 3 + 8x 2 + 2 x -  5 
(28) 

F 2 ( x )  = 3 x  6 + 5 x  4 -  4 x  2 -  9 x  + 21 

from [3, pp. 370-371] and [1]. For  convenience we first compute  the primitive 
PRS,  P1 = F1, P2 = F2, 1)3, . . . .  P k ,  defined by 

P ,  = R , / f l ,  (29) 

where 

R, = prem(P,-2,P~-D, fl, = content(R,) (30) 
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for i = 3 . . . .  , k. The  results, showing only the coefficients for brevity,  are 

l n, fl, P, 

1 8 1, O, 1, O, -3, -3, 8, 2, - 5  
2 6 3, O, 5, O, -4, -9, 21 
3 4 -3  5, O, - I ,  O, 3 
4 2 -45 13, 25, -49 
5 I -50 4663, -6150 
6 0 7 x 133 x 9311 1 

With  this table and the ident i ty 

(31) 

prem(aA,  bB) = ab 8+~ prem(A,B)  (32) 

where  6 = O(A) - O(B), it is easy to compute  the P R S  tha t  is de te rmined  f rom Fa 
and F2 by  any proposed algorithm. In particular,  Algor i thm 1 yields 

l G, /P,  H , / P ,  

1 1 - -  

2 1 3 

3 3 5 

4 5 13 
5 2 2 
6 22 x 7 x 9311 2 z x 7 X 9311 

where the P, are given m (31). 

(33) 

5. THE IMPROVED PRS ALGORITHM 

We shall now review the  improved  P R S  algor i thm proposed in [1] and show how 
to realize two par t icular  improvemen t s  whenever  the oppor tun i ty  arises. 

In carrying out  the subresul tant  P R S  algor i thm it m a y  happen  tha t  a divisor 
y, of the  content  of G, is available with little or no extra  work. I f  so, we would like 
to compute  the improved PRS,  F,,F2 . . . .  , Fk, such tha t  

G, = ~,F,, i = 3, . . . .  k. (34) 

Making this subst i tut ion in eqs. (21) and (22) and using (32), we obtain a second 
algori thm. 

Algor i thm 2 (Improved PRS) .  

)'3F3 = ( -1 )  8'+1 prem(F1,F2) (35) 

(-),,-1) ~'-2+1 prem(F,-z,F,-,) 
~ , F , =  , ~ = 4 , . . . , k +  1, 

where 

h 1-8 -1 h2 = f2~'; h, = yfl'-* re '- '  , - , '  , ~ = 3 . . . . .  k. (36) 

T h e  s implest  way to realize an improvemen t  is to define 
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y = gcd(fa,f2) (37) 

and note  tha t  y]R(j) for all j < n2, since each of these subresul tants  is a 
de te rminan t  with one row whose only nonzero e lements  are f~ and re. In  part icular,  
y[G, and  ylH~ for i -- 3, . . .  , k. Replacing y, by  y in eqs. (35) and (36), and 
introducing 

h, = hJy, 

we obtain  a third algorithm. 
Algorithm 3. 

where 

t = 2 , . . . ,  k,  (38) 

F3 = ( -1 )  ~'+' prem(F,,FD/y 

( -1 )  ~'-~+a prem(F,-2,F,-a) 

f,_~(h,_~)8,-~ i = 4, . . . ,  k, 
(39) 

h2 = f2 8' y-a; h, = f~'- '  (h,-a) a-8'-', i = 3, . . .  , k. (40) 

Note  t ha t  Algor i thm 3 is identical  to Algor i thm 1 except  for the s tar t ing condi- 
tions; F3 and h2 are smaller  than  G3 and h2, respectively,  by  a factor  of  y. Also 
note  tha t  h, ~ I for i = 3 . . . . .  k, bu t  h2 ~ I only when  51 > 0 or y ~ 1. 

T o  realize ano ther  improvement ,  we note  with H e a r n  [7] tha t  pseudodivision 
somet imes  requires  fewer than  the expected n u m b e r  of  subt rac t ion  s teps and 
introduces some power  of  the leading coefficient of  the divisor into the pseudo- 
remainder  as an ext raneous  factor. Fur thermore ,  one can readily modify  the 
pseudodivision process to compute  this factor  and the  rest  of  the pseudoremainder  
as separa te  outputs.  Accordingly, we define the  modif ied pseudoremainder  

mprem(F,-2,F,-~) = f,~'l-' prem(F,-2,F,-1), i = 3 . . . . .  k, (41) 

where  e,-1 is the n u m b e r  of s teps saved (0 ~ e,-a ~ 3,-2). 
Since y, defined in eq. (37), can always be included in ),~, we also define 

~ , = y , / y ,  i = 3  . . . . .  k. (42) 

Subst i tu t ing eqs. (38}, (41), and (42) into eqs. (35) and (36), we obtain  a four th  
algori thm. 

Algorithm 4. 

~ ' 3  = ( -1 )  ~'+~ f2 °~ mprem(F~,F2)/y 
(__~,_1)8,_2+1 ~,-, , (43) 

f*-i mprem(F, -2  F,_I) 
y ~ ,  ffi f,_2(h,_z)~,_2 , i = 4 . . . . .  k + 1, 

where 

h2 = ~ '  ),-a; h, = (9,)8,_, f? ' - ' (h , -o ' -8 ' - ' ,  ~ = 3, . . . ,  k.  (44) 
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It remains to choose the :~,. First, we reduce the fraction f d 2 / y  to lowest terms and 
set =~3 equal to the resulting numerator. The modified pseudoremainder is then 
divisible by the denominator, and their quotient is _+ F3. Similarly, for 
i > 3, we would like to reduce the fraction 

(~,,_~)~,_~+1 f~/f,_2(h,_2)~,_= (45) 

to lowest terms and set ~, equal to the resulting numerator, but this may involve 
GCD computations too costly to be justified. As an alternative, we could expand 
the numerator of eq. (43}, divide out the factors of the denominator, and then set 
=~, equal to the largest product of powers of :~,_, and f_, that divides the result. As 
another alternative, we could "grow" the numerator a factor at a time, dividing 
out denominator factors whenever possible, and .~et ~, equal to the product of any 
unused powers of ~/,_, and f_,. This strategy is appealing because trial divisions 
are rarely costly unless they succeed. However, the optimal approach remains a 
topic for future research. 

6. TIME COMPLEXITY 

We now present a qualitative analysis of the time complexity of the subresultant 
PRS algorithm. Our purpose is not to obtain rigorous bounds on the computing 
time, but to acquire insight into the behavior of the algorithm. In particular, this 
analysis explains the surprising empirical observations of Ku and Adler [9], and 
resolves the apparent contradiction between those observations and the theoret- 
ical results of Collins [3]. Our technique is patterned after that used by Gentleman 
and Johnson [5] in their study of the evaluation of determinants, and our 
conclusions are remarkably similar. 

In assessing costs, we shall assume that classical algorithms are used for 
multiplication, division, and pseudodivision. That is, we reject fast Fourier trans- 
forms, modular techniques, and so forth, in keeping with the fact that  the 
subresultant PRS algorithm is itself classical. Thus the cost of computing P =- 
A B  (measured in byte multiplications or word multiplications and ignoring other 
operations) is simply 

C ( A B )  = size(A)size(B), (46) 

where the size function measures the total storage space (in bytes or words) that  
is required for its argument. Similarly, the cost of computing an exact quotient 
Q = A / B  is 

C ( A / B )  =- size(Q)size(B). (47) 

To compute R = prem(A,B) in the general case, one constructs the sequence 

Ro --- A, R, . . . . .  R~, R~+, = R, (48) 

where 

R,  -= b R , - ,  - r , - , B x  ~+'-~ (49) 

with b -- lc(B), !", = lc(R,), and 6 = O(A) - O(B). As we progress through the 
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sequence, the degrees of the R, decrease, but the coefficients nearly always grow. 
Since the leading terms of bR,-1 and r,-1B need not be computed, the cost of each 
of these products is bounded by O(A)size(bmax)size(rm~), where bm~x and rmax are 
the largest coefficients of B and R, respectively. Hence 

C(prem(A,B)) < 2(5 + 1)O(A)size(b~,~)size(rm,~). (50) 

Since the polynomials G3 . . . .  , Gk are subresultants, their coefficients are 
determinants of coefficients of GI = F1 and G2 = F2. Accordingly, we introduce 
S(l,m) to denote the size of a product of m such determinants, each of order 1. 
Letting l~ denote the order of the determinants that represent the coefficients of 
G,, we have 

11=1; /2=1; l , = n ~ + n 2 - 2 ( n , _ ~ - l ) ,  i = 3 , . . . , k ,  (51) 

which is an increasing function of i, and represents the loss of degree as we move 
through the PRS from G~ and Ge to G,. From this definition it is easy to show 
that 

and 

1 < i - 2 ~ ½ 1 , < ~ n l ,  i = 3 , . . . , k ,  (52) 

t -2  

~,, ~1<~l,-2,  i = 3 , . . . , k .  (53) 

To construct G, via eq. (21), we must compute the pseudoremainder and then 
the quotient. By eq. (50) the cost of the first step is 

C, (1) <: 2(3,-2 + 1)nt_2S(l~_l,1)S(l~,5,_2 + 2), (54) 

while by eq. (47), the cost of the second step is 

C, (2) < (n, + 1)S(l,,1)S(1~-1,~,-2 + 1). (55) 

Letting C, denote the sum of these costs, it follows that 

C, < (2t~,-2 + 3)n,-2S(l,,1)S(1,,~,_2 + 2). (56) 

Models of Computation 

To explore the significance of this result, for the total cost 
k 

C = ~ C,, (57) 
t z 3  

we shall consider the two extreme models of polynomial computation that  are 
proposed in [5]. As stated there, these models "are extreme in the sense that 
other models tend to lie between them" and "we suggest that  most practical 
problems will show aspects of both models." 

In the dense model, G1 and Ge may be quite large, but the coefficients grow 
rather slowly as we proceed through the PRS. By contrast, in the sparse model, 
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G1 and G2 must  be quite small compared with dense polynomials with comparable  
degree vectors, but  the coefficient growth in the PRS  is extremely rapid. Because 
of this rapid growth G~ and G2 must  be reasonably small in an absolute sense too, 
or we will be unable to compute  the PRS  because of our  l imited resources. Of 
course, the sparseness in the sparse case will decrease as we proceed through the 
PRS,  but  we assume (for the sake of extremism) that  G~ and Gz are so extremely 
sparse that  the rapid coefficient growth implied by the sparse model  is sustained 
to the very end. 

We shall now specify the two models more precisely, and obtain a bound on C 
for each of them. In both models we assume, as in [5], tha t  the addition or 
multiplication of polynomials never  generates zero coefficients. Our only impor- 
tant  depar ture  from [5] is tha t  we measure costs in byte multiplications or word 
multiplications ra ther  than in integer multiplications, thus allowing for the growth 
of integer coefficients. As stated in [5], this change makes both  models a little 
less extreme; by giving up a small measure of simplicity and "puri ty,"  we hope to 
have made  our results more realistic and convincing. 

Dense Model 

In the dense model, we assume tha t  the G, are completely dense polynomials in 
one variable with integer coefficients. Thus  the sum and product  of polynomials 
with tl and t2 terms, respectively, are both as small as possible; the sum has 
max(tx,t2} terms, while the product  has t~ + t2 - 1 .  For convenience we approximate  
the bound on the size of a sum of integers by the maximum of their  sizes; this 
approximation tends to underes t imate  the growth of integer coefficients and 
thereby makes our model slightly "denser" than reality. We also note  tha t  the 
size of a product  of integers is the sum of their  sizes. I t  now follows tha t  

S(1 ,m)  = l m s ,  (58) 

where s is the size of a coefficient of G1 or G2. Substi tut ing this into (56), we find 

C, < s21,2n,-2(~,-2 + 2)(2~,-2 + 3) ~ s21,3n,-2(2~,-2 + 3) ~< s21k3nl(2~-~ + 3), (59) 

and therefore 

7 ~21 4~ C < sZlk3nl[2(h - 2) + 3(k - 2)] < ~ ~ ~k ,~1. (60) 

For  a normal PRS with/~ ~< 1, we can easily derive a t ighter bound. In this case, 
eq. (56) yields 

C, < 15 sZl,2n,-2 <~ 15 s2h2nl, (61) 

and therefore  

C < ~5 s 2 lk2nl(k  _ 2) < 1_~ s e h3nl, (62) 

in agreement  with the result  

C = O(s2nl  4) (63) 

previously published in [1] and [3] for the normal univariate case. 
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Sparse Model 

In the sparse model, we assume the G, are polynomials in some main variable 
with extremely sparse, multivariate, polynomial coefficients, and we assume 
further tha t  no combinations whatever occur when these coefficient polynomials 
are added or multiplied together. Thus the sum and product  of polynomials with 
tl and t2 terms, respectively, are both as large as possible; the sum has tl + t2 
terms, while the product has tit2. Since a determinant  of order I is a sum of l! 
products, each with I factors, it follows tha t  

S(/,1) = l s l  t t ~, (64) 

and more generally tha t  

S(1,m) = lms(1 ! tz) m, (65) 

where the coefficients of G1 and G2 are t-term polynomials with integer coefficients 
of size s. Since the determinants  of interest in this paper are in fact highly 
structured, the assumptions of the sparse model cannot  be fully satisfied, and this 
formula is certainly too extreme. However, we are using the model primarily as 
a bound, and in tha t  role it can certainly help us to acquire valuable insight. 

Substituting eq. (65) into eq. (56), we find 

C, < s21,2n,-2(8,-2 + 2)(2~,-~_ + 3)(/, ! t~') ~'-2+3 

< 2s~l,4n,_2(1, ! tz') ~'-~+3 (66) 

<<. 2s21k4nl(1, [ tt,) ~+a, 

where 

= max(8, . . . . .  &-2) ~< h -2 .  (67) 

In summing over (66), the last term dominates, and it is easy to show tha t  

C < 2.0001 s2h4nl(lk ! tlk) ~+3, (68) 

which is our final upper bound. To obtain a lower bound, we note tha t  

C I> Ck > Ck (2) = "size(Gk)size(gk_2h~:~), (69) 

and therefore tha t  

C > (nk + 1)S(lk,1)S(h-2,6k-2 + 1) ~ S(h,1)S(h-e, 2) > 2s2l~_2 (lk-2 ! tlk-2) 3. {70) 

Although this lower bound is somewhat less fearsome than  eq. (68), it remains 
severely superexponential. 

7. CONCLUSION 

The chief drawback of the subresultant PRS algorithm is tha t  the last pseudo- 
remainder, flkGk, is substantially larger (overwhelmingly so in the sparse case) 
than  the desired subresultant,  Gk, which must  be obtained from fl~Gk and flh by 
a very costly division. This phenomenon,  which we call overshoot, could be 
avoided by expressing G~ as a determinant  (see [2]) and evaluating it by the 
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method of nested minors (see [5]). Since each subresultant,  R(]) ,  is a minor  of the 
next larger one, R(]" -1) ,  we could compute the entire PRS  as a byproduct  of 
computing the resultant R(0). 

In the dense extreme, this determinant  method involves the evaluation of 
exponentially many minors, while the total cost of the subresultant P R S  algorithm 
is only of order s2nl 4 (or s2nl 5 in abnormal cases), as discussed above. 

However, in the sparse extreme, the situation is remarkably different. For the 
determinant  method it follows from [5] tha t  the unit cost ( that  is, the cost per 
unit size of Gk) is less than 3s, while for the subresultant PRS  algorithm it follows 
from eq. (69) that  the unit cost exceeds 

S(/k-2,2) = 2slk-2(lk-2 ! tl~-~) 2. (71) 

Since the assumptions of the sparse model cannot  be fully satisfied in this context 
(see eq. (65) and the ensuing discussion), the actual difference between the two 
methods is certainly less extreme than this comparison suggests. A deeper 
understanding will require further study, involving less extreme models of sparse- 
ness and supported by detailed empirical evidence. 

In their brief examination of dense polynomials in one variable, Ku  and Adler 
[9] conclude that  the subresultant PRS  algorithm is better than the determinant  
method, but their examples are too small to reveal the substantial  magnitude of 
the difference. In the rest of their study, they confine their at tention to ra ther  
small polynomials in several variables (well removed from both  of the extremes 
of this paper) and conclude that  the determinant  method  (starting from Bezout 's  
determinant  rather  than Sylvester's) is superior. I believe it is fair to say tha t  this 
important  practical observation and the controversy tha t  followed deserve a large 
share of the credit for the theoretical results of [5] and the present paper. 
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