
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 282 Prof. R. Fateman
Spring, 2000

Additional Notes on Polynomial GCDs, Hensel construction

These notes cover a number of topics that are covered in any of the typical texts. We pro-
vide this discussion here to try to touch on some of the highlights and offer some perspective.

First we demonstrate that interpolation can be done as a special case of Garner’s Algo-
rithm by appropriately choosing our (relatively prime) moduli.

As an example, we choose the moduli mi, to be linear polynomials,

m1 = x− b1

m2 = x− b2

. . .

mn = x− bn

and by f(x) mod mi, we shall mean f(bi). Recall from lecture that we compute

c1 = m−1
1 mod m2

c2 = (m2m1)−1 mod m3

. . .

cn−1 = (mn−1 . . .m1)−1 mod mn

If we are now given n + 1 points (b1, u1), . . . (bn+1, un+1), we may compute the nth degree
polynomial which goes through these points by Garner’s Algorithm.

Example: Suppose m1 = x , m2 = x− 1, and m3 = x− 2. Then

c1 = m−1
1 mod m2 = (x−1)x=1 = 1

c2 = (m2m1)−1 mod m3 = (x−1(x− 1)−1)x=2 = 1/2

Now suppose that we wish to determine the polynomial of degree two passing through the
points (0,5), (1,2) and (2,1). Then

1



Additional Notes on Polynomial GCDs, Hensel construction 2

v1 = u1 mod m1 = (5)x=0 = 5
v2 = (u2 − v1) · c1 mod m2 = ((2− 5) · 1)x=1 = −3
v3 = (u3 − (v1 + m1v2)) · c2 mod m3

= (1− (5 + x) · (−3) · 1/2)
∣∣∣∣
x=2

= (
3x− 4

2
)
∣∣∣∣
x=2

= 1

and now

u = v3m2m1 + v2m1 + v1 = 1 · x · (x− 1) + (−3) · x + 5 = x2 − 4x + 5

The above interpolation algorithm computes the unique polynomial of degree n passing
through the given n− 1 distinct points.

The interpolation algorithm given above is one of a number of alternatives. This is usually
called Newton’s Interpolation Formula. Other formulations (basically rearrangements with
the same number of operations) include Lagrange and divided differences interpolation. Ad-
ditional material on interpolation may be found in any introductory numerical analysis, or
see Knuth’s reference [1]. The relevant time bounds for any of these methods for interpola-
tion at an arbitrary set of points are are n(n + 1)/2 divisions (or evaluations) and n(n + 1)
subtractions. The generalization of this to v > 1 variables represents a considerable cost in
the interpolation phase of the modular GCD algorithm. It will turn out that we can improve
upon this, under certain circumstances, by using another approach.

In our lectures we discussed sparse interpolation as invented by R. Zippel [1979] for his
sparse polynomial GCD.

The best polynomial GCD algorithms in the early 1970s appear to be the ones based on
Hensel’s Lemma or variants. Let’s give this a try:

Let us try to convince you of the relevance of p-adic Representation here.

Recall the notion of p-adic number representation as the representation of integers (or
reals) in various number “systems”. We are all familiar with decimal, binary and other
representations of numbers (We used base-3 representations in class.). We may even con-
struct system with somewhat more exotic bases, such as negative bases and, as we shall see
shortly, polynomial bases. If p and N are integers, then the p-adic representation of N is
(a0, a1, . . . , am) where for i = 1, . . . ,m we have 0 < ai < p

N = a0p
0 + a1p

1 + . . . + ampm

For instance, the 3-adic representation of the integer 65 is (2,0,1,2).
We can extend this notion to polynomials. If p(x) and q(x) are polynomials, then the

p-adic representation of q is (a1, a2, . . . , am) where for i = 1, . . . ,m − 1, ai is in an integer,
am is a nonzero integer and

q(x) = a0p(x)0 + a1p(x)1 + . . . + amp(x)m

For instance the (x− 1)− adic representation of x3 is (1,3,3,1).



Additional Notes on Polynomial GCDs, Hensel construction 3

Such items are mere curiosities, as you have also seen the representation of various numbers
approximately, and to successively higher “accuracy” 3-adically, including

√
7 and 1/2.

We shall now consider how this might be used as a way of starting from an answer we know
only “approximately” modulo p to successively more accurate “higher degree” approximations
modulo pk. Eventually, for large enough k, these approximations will be complete. And if
we have been able to do this faster than by interpolation, we can save time. (For sparse
problems, this is what happens).

The Hensel Construction

Our major application for improving our approximations is to have a method of computing
from a factorization of a polynomial in a finite field, a factorization of the polynomial in a
larger computation structure. Note that this is quite close to what we do when computing
GCDs via the modular algorithm, building up the image of the GCD to a polynomial of
higher degree or a polynomial in more variables. The alternative we consider here is that
given through the Hensel Algorithm, described here and first suggested for this application
in reference [2].

The original linear Hensel Construction lifts a factorization from mod pi to mod pi+1 at
the ith step while the more quadratic construction due to Zassenhaus lifts a factorization from
mod p2i

to mod p2i+1
. Nevertheless, the linear version may require so much less computation

at each step that it may be the algorithm of choice in lifting to a given modulus.

The Linear Hensel Algorithm

Let u(x) be a monic1 (leading coefficient = 1) polynomial in Z[x] and assume v1(x) ·
w1(x) = u(x) mod p and GCD(v1, w1) = 1 mod p where p is a prime. The algorithm computes
a sequence of pairs of polynomials ((vi, wi))i=1,...,n such that

vi(x) · wi(x) = u(x) mod pi

Step I
Compute by means of the Extended Euclidean Algorithm generalized to polynomials, two

polynomials a(x) and b(x) in Zp[x] such that

(i) deg(a) < deg(w1),
(ii) deg(b) < deg(v1)

(iii) (a(x)v1(x) + b(x)w1(x) = 1) mod p

Step II
Now suppose we are given (vi, wi) and we wish to compute (vi+1, wi+1). Compute a

polynomial ci such that
1This assumption is, in general, unwarranted, and overcoming it makes the algorithm messy.



Additional Notes on Polynomial GCDs, Hensel construction 4

(pici(x) = vi(x)wi(x)− u(x)) mod pi+1

Step III
Compute (by polynomial division of a(x)ci(x) by w1(x)) the quotient qi(x) and remainder

ai(x) such that

a(x)ci(x) = qi(x)w1(x) + ai(x) mod p

and set

bi(x) := (b(x)ci(x) + qi(x)v1(x)) mod p

Observe that deg(ai) < deg(w1), deg(bi) < deg(vi) and mod p,

aiv1 + biw1 = (a · ci − w1qi)v1 + (b · ci + v1qi)w1

= ci(a · v1 + b · w1)
= ci

so in Z[x], (or Zp2 [x])

aiv1 + biw1 = ci + p · di(x)

for some di(x) in Z[x].

Step IV
Set

vi+1(x) := vi(x)− pibi(x) mod pi+1

wi+1(x) := wi(x)− piai(x) mod pi+1

Observe that, over the integers

vi+1(x)wi+1(x) = vi(x)wi(x)− pi[ai(x)vi(x) + bi(x)wi(x)] + p2i · ai(x)bi(x)
= u(x) + pi · ci(x)− pi[ci(x) + p · di(x)] + p2i · ai(x)bi(x)
= u(x)− pi+1[di(x)− pi−1 · ai(x)bi(x)]
= u(x) + pi+1 · ci+1(x)

that is,
vi+1(x)wi+1(x) = u(x) mod pi+1

Example



Additional Notes on Polynomial GCDs, Hensel construction 5

Suppose u(x) = x2 + 27x + 176. In order to improve readability, we will do arithmetic
modulo a conveniently small prime, namely 3. Knowing that we will have only positive
coefficients in the factors, we can use a positive representation of the elements, (0,1,2) rather
than the balanced representation (-1,0,1). Really, we do this to reduce the number of iterations
needed to reach the right p-adic answer. Then,

u(x) = x2 + 2 mod 3
= (x + 1)(x + 2) mod 3

and so let v1(x) = x + 1 and w1(x) = x + 2.
We now compute an a and b such that, a(x + 1) + b(x + 2) = 1 mod 3 and find a = 2 and

b = 1.
We compute c1(x) such that 3c1(x) = v1(x)− u(x) mod 9, that is,

3c1(x) = (x + 1)(x + 2)− (x2 + 27x + 176) mod 9
= 3x + 6 mod 9

and so,
c1(x) = x + 2

Now,

q1(x) = 2,

a1(x) = 0
b1(x) = 1

We compute

v2(x) = (x + 1)− (3) · (1) mod 9
= x + 7

w2(x) = (x + 2) = (3) · (0) mod 9
= x + 2

so that
x2 + 27x + 176 = (x + 7) · (x + 2) mod 9

To raise the factors from mod 9 to mod 27, we compute c2(x) such that

9c2(x) = (x + 7)(x + 2)− (x2 + 27x + 176) mod 27
= (x2 + 9x + 14)− (x2 + 14) mod 27



Additional Notes on Polynomial GCDs, Hensel construction 6

that is,
c2(x) = x

Now,

q2(x) = 2,

a2(x) = 2
b2(x) = 2

We compute

v3(x) = (x + 7)− (9)(2) mod 27
= x + 16

w3(x) = (x + 2)− (9)(2) mod 27
= x + 11

Now each of the coefficients in the factors of u(x) is less than 27, so we have reconstructed
them. We can check by division in case we are unsure, but we have in any case found that
u(x) = x2 + 27x + 176 = (x + 16)(x + 11) over Z.

Such “lifting” of factorizations by means of the Hensel Lemma replaces Garner’s algorithm,
and by a suitable generalization to multivariate coefficients, interpolation. Detailed analysis
of this algorithm was first done in David Yun’s MIT Ph.D. thesis: The Hensel Lemma in
Algebraic Manipulation. Empirical tests demonstrate its speed over interpolation when the
number of non-zero coefficients is small compared to the worst-case dense situation. If the
GCD is sparse, this so-called EZ GCD “extended Zassenhaus” algorithm appears to dominate
the earlier polynomial remainder sequence or modular GCD algorithms in terms of typical
speed.

There are other approaches, even within the Hensel construction framework. An important
practical variation by Paul Wang, named EEZGCD, provides better performance for sparse
multivariate GCD computations by preserving sparseness in intermediate expressions, lifting
the results one variable at a time. (Not discussed further in these notes)

An alternative technique first developed by Zippel in his 1979 MIT Ph.D. thesis: Prob-
abilistic Algorithms for Sparse Polynomials, is rather complicated in practice, but is based
on a reasonably simple idea: We start in the same way as a Hensel GCD algorithm. We are
given an image of some multivariate polynomial GCD calculation in some univariate image
domain. We now assume that any coefficients that are zero in a factor in the simple domain
are zero even after lifting. That is, if some factor is (say, mod some large prime p and with
y and z removed by the substitution of values for those indeterminates) 3x4 + 2x2 + 1, then
not only are the coefficients of the x3 and x terms zero in this image, but they are zero in the
final answer. There are three issues:

1. Making such assumptions, can we interpolate faster to get the complete expression of
the non-zero coefficients? (Yes, quite a bit faster sometimes: because the cost depends
on the number of non-zero terms, not the degree, this can be a big win.)



Additional Notes on Polynomial GCDs, Hensel construction 7

2. How likely is this assumption to be true? (Probabilistically speaking, the chance that
a random substitution into a polynomial will come out zero is quite small; that several
random substitutions will be zero is much smaller. A rather large literature on this
question has developed since 1979.)

3. In case the assumption does not hold, can one repair the algorithm so that it gets
the right answer (yes, Zippel’s thesis showed how), and is not degraded in asymptotic
running time. (well, it obviously takes longer, but Zippel has improved the repair steps
so that it is still extremely probable to get the answer; in some hypothetical worst case
it has been proved to be polynomial-time. (More details in lecture slides)

The final word in GCDs?

Finally, the Heuristic GCD of the Maple system is worthy of consideration. Although
it clearly cannot work well for problems in too many variables because, as we indicated
in class, the numbers you substitute in make the work grow exponentially as a function
of the number of variables, it works so well (especially in Maple) on the vast majority of
small- to medium- sized problems that it makes sense to try it first. Its speed relies on the
assumption that modern computer algebra systems have relatively efficiently-coded arbitrary-
precision arithmetic packages. This is especially true with respect to Maple, where algorithms
not implemented in the system kernel are interpreted; moving the GCD algorithm from the
interpreted library to the machine-coded kernel would be one way of speeding it up, but at
the expense of enlarging the kernel. The alternative of mapping the GCD algorithm into
computations largely in the kernel already seems especially beneficial.

The basic idea is that if you want to determine the coefficients of a polynomial p(x) =
c0 + c1x + · · ·+ ckx

k and you have a bound on the size of ci you need not have k + 1 different
values of p(xi) for interpolation. As we saw in assignment 1, you can reconstruct p from only
a single sufficiently large value p(B). This radix interpolation idea was used on your first
problem set. There is a Maple command genpoly that solves this problem, if have maple
available and wish to experiment. To compute the polynomial GCD(f, g), GCDHeu computes
a suitable bound B (heuristically chosen – the value is not a true bound which in practice is
uncomfortably large and unlikely to be achieved, but a smaller estimated bound), evaluates
f(B) and g(B), computes the GCD of these two integers, say h(B) where one hopes that
h(x) is the GCD. It then uses radix interpolation as you used in assignment 1 to reconstruct
h(B). If such a construction is possible, and if h divides both f and g, then we have the
GCD. By using evaluation to eliminate n − 1 of the n variables in a problem, this can be
extended to a general algorithm, suitable at least for modest-sized problems. One advantage
of this program is its relative simplicity to implement, and the fact that for small inputs it is
fast.

Review on “modern” polynomial GCDs

The dense modular GCD algorithm finds the GCD of two polynomials by evaluating the
polynomials at a number of points, performing a modular GCD calculation at each point and
then interpolating to obtain the result. If the GCD of two polynomials is a polynomial in n



Additional Notes on Polynomial GCDs, Hensel construction 8

variables of degree d each, then the number of evaluations and interpolations performed by
the Modular algorithms is (d + 1)(n−1).

Hence, if the GCD of two polynomials were x100
1 + x100

2 + . . . + x100
10 , the dense modular

algorithm might take months to compute it on existing machines. The best performance
of the Modular algorithm occurs when the original polynomials are univariate or when the
GCD is small, say 1, since this case involves few evaluations and univariate modular GCD
calculations (perhaps only one!).

Zippel’s sparse modular algorithm should do much better on cases such as this, where
the GCD is of high degree yet sparse. Comparisons of this sparse modular algorithm over
variations of the Hensel-based algorithm are less clear: it appears difficult to predict whether,
in any particular case whether some Hensel-based algorithm, especially the variation called
EEZGCD, is better.

GCDHeu serves well enough for many uses, and certainly for the typically small demon-
strations that might occur in sales literature, or even benchmarks. Actually, for small to
medium problems, our tests suggest the superiority of a more old-fashioned subresultant PRS
(polynomial remainder sequence). GCDHEU is, however, especially well suited to Maple’s
implementation strategy.

In combination with some clever heuristics (including avoiding GCDs by maintaining
factors throughout manipulations), the choice of “the best” GCD may not be critical for
a large majority of computer algebra system duties. When the going gets tough, some of
the algorithms shine compared to others; which shines depends on the nature of the answer
(sparse/dense small/large) rather than the inputs. One rarely has the advantage of knowing
the characteristics of the answer before beginning, and so the choice of algorithm is difficult.

What do systems use?

Macsyma has quite a collection of algorithms, including all but the GCDHeu algorithm.
For small problems, simple checks are possible which suggest the use of very simple “low
overhead” algorithms, including PRS methods. The data-structure complications of setting
up these advanced algorithms (copying over polynomials reduced mod p, keeping extra eval-
uation) are then avoided.

After some simple checking, Maple uses the GCDHeu algorithm unless it cannot get a
reasonable value for B, in which case it uses a Hensel algorithm (presumably one can look at
the algorithm on-line).

In other computer algebra systems, including Reduce and Derive, variations of the poly-
nomial remainder sequence, usually the subresultant GCD are used. Mathematica says it
“usually uses modular algorithms, including Zippel’s sparse interpolation algorithm, but in
some cases uses subresultant PRS.” Trying to cover all bases, I guess.

I have not found any specification of the algorithms used by MuPad or other general com-
puter algebra systems. I suspect that they use a subresultant PRS as a reasonable compromise
between simplicity of implementation and performance on a general class of inputs.
References

1. Knuth, D.E., The Art of Computer Programming, vol.2; Seminumerical Algorithms,
Addison Wesley, Reading, Massachusetts 1969.



Additional Notes on Polynomial GCDs, Hensel construction 9

2. Moses, J. and Yun, D., “The EZ GCD Algorithm,” Proceedings of The 1973 ACM
National Conference.

3. Miola, A. and Yun, D., “Computational Aspects of Hensel-type Univariate Polynomial
GCD Algorithms,”Proceedings of Eurosam ’74.

4. Yun, D.“A p-Adic Division With Remainder Algorithm,” SIGSAM Bulletin, vol. 8, no.
4, 1974.

5. Zippel, R., Effective Polynomial Computation, Kluwer Scientific, 1993.


