
§1. Problem of Algebra Lecture 0 Page 1

Lecture 0

INTRODUCTION

This lecture is an orientation on the central problems that concern us. Specifically, we identify three
families of “Fundamental Problems” in algorithmic algebra (§1 – §3). In the rest of the lecture (§4–
§9), we briefly discuss the complexity-theoretic background. §10 collects some common mathematical
terminology while §11 introduces computer algebra systems. The reader may prefer to skip §4-11
on a first reading, and only use them as a reference.

All our rings will contain unity which is denoted 1 (and distinct from 0). They
are commutative except in the case of matrix rings.

The main algebraic structures of interest are:

N = natural numbers 0, 1, 2, . . .
Z = integers
Q = rational numbers
R = reals
C = complex numbers
R[X] = polynomial ring in d ≥ 1 variables X = (X1, . . . , Xn)

with coefficients from a ring R.

Let R be any ring. For a univariate polynomial P ∈ R[X], we let deg(P) and lead(P) denote its
degree and leading coefficient (or leading coefficient). If P = 0 then by definition, deg(P) = −∞ and
lead(P) = 0; otherwise deg(P) ≥ 0 and lead(P) �= 0. We say P is a (respectively) integer, rational,
real or complex polynomial, depending on whether R is Z, Q, R or C.

In the course of this book, we will encounter other rings: (e.g., §I.1). With the exception of matrix
rings, all our rings are commutative. The basic algebra we assume can be obtained from classics
such as van der Waerden [22] or Zariski-Samuel [27, 28].

§1. Fundamental Problem of Algebra

Consider an integer polynomial

P (X) =
n∑

i=0

aiX
i (ai ∈ Z, an �= 0). (1)

Many of the oldest problems in mathematics stem from attempts to solve the equation

P (X) = 0, (2)

i.e., to find numbers α such that P (α) = 0. We call such an α a solution of equation (2); alterna-
tively, α is a root or zero of the polynomial P (X). By definition, an algebraic number is a zero of some
polynomial P ∈ Z[X]. The Fundamental Theorem of Algebra states that every non-constant poly-
nomial P (X) ∈ C[X] has a root α ∈ C. Put another way, C is algebraically closed. d’Alembert first
formulated this theorem in 1746 but Gauss gave the first complete proof in his 1799 doctoral thesis

c© Chee-Keng Yap March 6, 2000

§1. Problem of Algebra Lecture 0 Page 2

at Helmstedt. It follows that there are n (not necessarily distinct) complex numbers α1, . . . , αn ∈ C

such that the polynomial in (1) is equal to

P (X) ≡ an

n∏
i=1

(X − αi). (3)

To see this, suppose α1 is a root of P (X) as guaranteed by the Fundamental Theorem. Using the
synthetic division algorithm to divide P (X) by X − α1, we get

P (X) = Q1(X) · (X − α1) + β1

where Q1(X) is a polynomial of degree n − 1 with coefficients in C and β1 ∈ C. On substituting
X = α1, the left-hand side vanishes and the right-hand side becomes β1. Hence β1 = 0. If n = 1,
then Q1(X) = an and we are done. Otherwise, this argument can be repeated on Q1(X) to yield
equation (3).

The computational version of the Fundamental Theorem of Algebra is the problem of finding roots
of a univariate polynomial. We may dub this the Fundamental Problem of Computational Algebra
(or Fundamental Computational Problem of Algebra). The Fundamental Theorem is about complex
numbers. For our purposes, we slightly extend the context as follows. If R0 ⊆ R1 are rings, the
Fundamental Problem for the pair (R0, R1) is this:

Given P (X) ∈ R0[X], solve the equation P (X) = 0 in R1.

We are mainly interested in cases where Z ⊆ R0 ⊆ R1 ⊆ C. The three main versions are where
(R0, R1) equals (Z, Z), (Z, R) and (Z, C), respectively. We call them the Diophantine, real and
complex versions (respectively) of the Fundamental Problem.

What does it mean “to solve P (X) = 0 in R1”? The most natural interpretation is that we want to
enumerate all the roots of P that lie in R1. Besides this enumeration interpretation, we consider two
other possibilities: the existential interpretation simply wants to know if P has a root in R1, and
the counting interpretation wants to know the number of such roots. To enumerate1 roots, we must
address the representation of these roots. For instance, we will study a representation via “isolating
intervals”.

Recall another classical version of the Fundamental Problem. Let R0 = Z and R1 denote the
complex subring comprising all those elements that can be obtained by applying a finite number of
field operations (ring operations plus division by non-zero) and taking nth roots (n ≥ 2), starting
from Z. This is the famous solution by radicals version of the Fundamental Problem. It is well known
that when deg P = 2, there is always a solution in R1. What if deg P > 2? This was a major question
of the 16th century, challenging the best mathematicians of its day. We now know that solution
by radicals exists for deg P = 3 (Tartaglia, 1499-1557) and deg P = 4 (variously ascribed to Ferrari
(1522-1565) or Bombelli (1579)). These methods were widely discussed, especially after they were
published by Cardan (1501-1576) in his classic Ars magna, “The Great Art”, (1545). This was the
algebra book until Descartes’ (1637) and Euler’s Algebra (1770). Abel (1824) (also Wantzel) show
that there is no solution by radicals for a general polynomial of degree 5. Ruffini had a prior though
incomplete proof. This kills the hope for a single formula which solves all quintic polynomials. This
still leaves open the possibility that for each quintic polynomial, there is a formula to extract its
roots. But it is not hard to dismiss this possibility: for example, an explicit quintic polynomial that

1There is possible confusion here: the word “enumerate” means to “count” as well as to “list by name”. Since we
are interested in both meanings here, we have to appropriate the word “enumerate” for only one of these two senses.
In this book, we try to use it only in the latter sense.

c© Chee-Keng Yap March 6, 2000

§2. Algebraic Geometry Lecture 0 Page 3

does not admit solution by radicals is P (X) = X5 − 16X + 2 (see [3, p.574]). Miller and Landau
[12] (also [26]) revisits these question from a complexity viewpoint. The above historical comments
may be pursued more fully in, for example, Struik’s volume [21].

Remarks:. The Fundamental Problem of algebra used to come under the rubric “theory of equa-
tions”, which nowadays is absorbed into other areas of mathematics. In these lectures, we are
interested in general and effective methods, and we are mainly interested in real solutions.

§2. Fundamental Problem of Classical Algebraic Geometry

To generalize the Fundamental Problem of algebra, we continue to fix two rings, Z ⊆ R0 ⊆ R1 ⊆ C.
First consider a bivariate polynomial

P (X, Y) ∈ R0[X, Y]. (4)

Let Zero(P) denote the set of R1-solutions of the equation P = 0, i.e., (α, β) ∈ R2
1 such that

P (α, β) = 0. The zero set Zero(P) of P is generally an infinite set. In case R1 = R, the set
Zero(P) is a planar curve that can be plotted and visualized. Just as solutions to equation (2) are
called algebraic numbers, the zero sets of bivariate integer polynomials are called algebraic curves.
But there is no reason to stop at two variables. For d ≥ 3 variables, the zero set of an integer
polynomial in d variables is called an algebraic hypersurface: we reserve the term surface for the
special case d = 3.

Given two surfaces defined by the equations P (X, Y, Z) = 0 and Q(X, Y, Z) = 0, their intersection
is generally a curvilinear set of triples (α, β, γ) ∈ R3

1, consisting of all simultaneous solutions to the
pair of simultaneous equations P = 0, Q = 0. We may extend our previous notation and write
Zero(P, Q) for this intersection. More generally, we want the simultaneous solutions to a system of
m ≥ 1 polynomial equations in d ≥ 1 variables:

P1 = 0
P2 = 0

...
Pm = 0

(where Pi ∈ R0[X1, . . . , Xd]) (5)

A point (α1, . . . , αd) ∈ Rd
1 is called a solution of the system of equations (5) or a zero of the set

{P1, . . . , Pm} provided Pi(α1, . . . , αd) = 0 for i = 1, . . . , m. In general, for any subset J ⊆ R0[X],
let Zero(J) ⊆ Rd

1 denote the zero set of J . To denote the dependence on R1, we may also write
ZeroR1(J). If R1 is a field, we also call a zero set an algebraic set. Since the primary objects
of study in classical algebraic geometry are algebraic sets, we may call the problem of solving the
system (5) the Fundamental (Computational) Problem of classical algebraic geometry. If each Pi is
linear in (5), we are looking at a system of linear equations. One might call this is the Fundamental
(Computational) Problem of linear algebra. Of course, linear systems are well understood, and their
solution technique will form the basis for solving nonlinear systems.

Again, we have three natural meanings to the expression “solving the system of equations (5) in R1”:
(i) The existential interpretation asks if Zero(P1, . . . , Pm) is empty. (ii) The counting interpretation
asks for the cardinality of the zero set. In case the cardinality is “infinity”, we could refine the
question by asking for the dimension of the zero set. (iii) Finally, the enumeration interpretation
poses no problems when there are only finitely many solutions. This is because the coordinates of
these solutions turn out to be algebraic numbers and so they could be explicitly enumerated. It
becomes problematic when the zero set is infinite. Luckily, when R1 = R or C, such zero sets are
well-behaved topologically, and each zero set consists of a finite number of connected components.

c© Chee-Keng Yap March 6, 2000

§3. Ideal Theory Lecture 0 Page 4

(For that matter, the counting interpretation can be re-interpreted to mean counting the number
of components of each dimension.) A typical interpretation of “enumeration” is “give at least one
sample point from each connected component”. For real planar curves, this interpretation is useful
for plotting the curve since the usual method is to “trace” each component by starting from any
point in the component.

Note that we have moved from algebra (numbers) to geometry (curves and surfaces). In recognition
of this, we adopt the geometric language of “points and space”. The set Rd

1 (d-fold Cartesian product
of R1) is called the d-dimensional affine space of R1, denoted Ad(R1). Elements of Ad(R1) are called
d-points or simply points. Our zero sets are subsets of this affine space Ad(R1). In fact, Ad(R1) can
be given a topology (the Zariski topology) in which zero sets are the closed sets.

There are classical techniques via elimination theory for solving these Fundamental Problems. The
recent years has seen a revival of these techniques as well as major advances. In one line of work,
Wu Wen-tsun exploited Ritt’s idea of characteristic sets to give new methods for solving (5) rather
efficiently in the complex case, R1 = C. These methods turn out to be useful for proving theorems
in elementary geometry as well [25]. But many applications are confined to the real case (R1 = R).
Unfortunately, it is a general phenomenon that real algebraic sets do not behave as regularly as
the corresponding complex ones. This is already evident in the univariate case: the Fundamental
Theorem of Algebra fails for real solutions. In view of this, most mathematical literature treats the
complex case. More generally, they apply to any algebraically closed field. There is now a growing
body of results for real algebraic sets.

Another step traditionally taken to “regularize” algebraic sets is to consider projective sets, which
abolish the distinction between finite and infinite points. A projective d-dimensional point is simply
an equivalence class of the set Ad+1(R1)\{(0, . . . , 0)}, where two non-zero (d+1)-points are equivalent
if one is a constant multiple of the other. We use Pd(R1) to denote the d-dimensional projective
space of R1.

Semialgebraic sets. The real case admits a generalization of the system (5). We can view (5) as
a conjunction of basic predicates of the form “Pi = 0”:

(P1 = 0) ∧ (P2 = 0) ∧ · · · ∧ (Pm = 0).

We generalize this to an arbitrary Boolean combination of basic predicates, where a basic predicate
now has the form (P = 0) or (P > 0) or (P ≥ 0). For instance,

((P = 0) ∧ (Q > 0)) ∨ ¬(R ≥ 0)

is a Boolean combination of three basic predicates where P, Q, R are polynomials. The set of real
solutions to such a predicate is called a semi-algebraic set (or a Tarski set). We have effective
methods of computing semi-algebraic sets, thanks to the pioneering work of Tarski and Collins [7].
Recent work by various researchers have reduced the complexity of these algorithms from double
exponential time to single exponential space [15]. This survey also describes to applications of semi-
algebraic in algorithmic robotics, solid modeling and geometric theorem proving. Recent books on
real algebraic sets include [4, 2, 10].

§3. Fundamental Problem of Ideal Theory

Algebraic sets are basically geometric objects: witness the language of “space, points, curves, sur-
faces”. Now we switch from the geometric viewpoint (back!) to an algebraic one. One of the beauties
of this subject is this interplay between geometry and algebra.

c© Chee-Keng Yap March 6, 2000

§3. Ideal Theory Lecture 0 Page 5

Fix Z ⊆ R0 ⊆ R1 ⊆ C as before. A polynomial P (X) ∈ R0[X] is said to vanish on a subset
U ⊆ Ad(R1) if for all a ∈ U , P (a) = 0. Define

Ideal(U) ⊆ R0[X]

to comprise all polynomials P ∈ R0[X] that vanish on U . The set Ideal(U) is an ideal. Recall that
a non-empty subset J ⊆ R of a ring R is an ideal if it satisfies the properties

1. a, b ∈ J ⇒ a− b ∈ J

2. c ∈ R, a ∈ J ⇒ ca ∈ J.

For any a1, . . . , am ∈ R and R′ ⊇ R, the set (a1, . . . , am)R′ defined by

(a1, . . . , am)R′ :={
m∑

i=1

aibi : b1, . . . , bm ∈ R′}

is an ideal, the ideal generated by a1, . . . , am in R′. We usually omit the subscript R′ if this is
understood.

The Fundamental Problem of classical algebraic geometry (see Equation (5)) can be viewed as com-
puting (some characteristic property of) the zero set defined by the input polynomials P1, . . . , Pm.
But note that

Zero(P1, . . . , Pm) = Zero(I)

where I is the ideal generated by P1, . . . , Pm. Hence we might as well assume that the input to the
Fundamental Problem is the ideal I (represented by a set of generators). This suggests that we view
ideals to be the algebraic analogue of zero sets. We may then ask for the algebraic analogue of the
Fundamental Problem of classical algebraic geometry. A naive answer is that, “given P1, . . . , Pm, to
enumerate the set (P1, . . . , Pm)”. Of course, this is impossible. But we effectively “know” a set S
if, for any purported member x, we can decisively say whether or not x is a member of S. Thus we
reformulate the enumerative problem as the Ideal Membership Problem:

Given P0, P1, . . . , Pm ∈ R0[X], is P0 in (P1, . . . , Pm)?

Where does R1 come in? Well, the ideal (P1, . . . , Pm) is assumed to be generated in R1[X]. We shall
introduce effective methods to solve this problem. The technique of Gröbner bases (as popularized
by Buchberger) is notable. There is strong historical basis for our claim that the ideal membership
problem is fundamental: van der Waerden [22, vol. 2, p. 159] calls it the “main problem of ideal
theory in polynomial rings”. Macaulay in the introduction to his 1916 monograph [14] states that
the “object of the algebraic theory [of ideals] is to discover those general properties of [an ideal]
which will afford a means of answering the question whether a given polynomial is a member of a
given [ideal] or not”.

How general are the ideals of the form (P1, . . . , Pm)? The only ideals that might not be of this form
are those that cannot be generated by a finite number of polynomials. The answer is provided by
what is perhaps the starting point of modern algebraic geometry: the Hilbert!Basis Theore. A ring
R is called Noetherian if all its ideals are finitely generated. For example, if R is a field, then it
is Noetherian since its only ideals are (0) and (1). The Hilbert Basis Theorem says that R[X] is
Noetherian if R is Noetherian. This theorem is crucial2 from a constructive viewpoint: it assures us
that although ideals are potentially infinite sets, they are finitely describable.

2The paradox is, many view the original proof of this theorem as initiating the modern tendencies toward non-
constructive proof methods.

c© Chee-Keng Yap March 6, 2000

§3. Ideal Theory Lecture 0 Page 6

We now have a mapping
U �→ Ideal(U) (6)

from subsets of Ad(R1) to the ideals of R0[X], and conversely a mapping

J �→ Zero(J) (7)

from subsets of R0[X] to algebraic sets of Ad(R1). It is not hard to see that

J ⊆ Ideal(Zero(J)), U ⊆ Zero(Ideal(U)) (8)

for all subsets J ⊆ R0[X] and U ⊆ Ad(R1). Two other basic identities are:

Zero(Ideal(Zero(J))) = Zero(J), J ⊆ R0[X],
Ideal(Zero(Ideal(U))) = Ideal(U), U ⊆ Ad(R1), (9)

We prove the first equality: If a ∈ Zero(J) then for all P ∈ Ideal(Zero(J)), P (a) = 0. Hence
a ∈ Zero(Ideal(Zero(J)). Conversely, if a ∈ Zero(Ideal(Zero(J)) then P (a) = 0 for all
P ∈ Ideal(Zero(J)). But since J ⊆ Ideal(Zero(J)), this means that P (a) = 0 for all P ∈ J .
Hence a ∈ Zero(J). The second equality (9) is left as an exercise.

If we restrict the domain of the map in (6) to algebraic sets and the domain of the map in (7)
to ideals, would these two maps be inverses of each other? The answer is no, based on a simple
observation: An ideal I is called radical if for all integers n ≥ 1, Pn ∈ I implies P ∈ I. It is not hard
to check that Ideal(U) is radical. On the other hand, the ideal (X2) ∈ Z[X] is clearly non-radical.

It turns out that if we restrict the ideals to radical ideals, then Ideal(·) and Zero(·) would be
inverses of each other. This is captured in the Hilbert Nullstellensatz (or, Hilbert’s Zero Theorem
in English). After the Basis Theorem, this is perhaps the next fundamental theorem of algebraic
geometry. It states that if P vanishes on the zero set of an ideal I then some power Pn of P belongs
to I. As a consequence,

I = Ideal(Zero(I)) ⇔ I is radical.

In proof: Clearly the left-hand side implies I is radical. Conversely, if I is radical, it suffices to show
that Ideal(Zero(I)) ⊆ I. Say P ∈ Ideal(Zero(I)). Then the Nullstellensatz implies Pn ∈ I for
some n. Hence P ∈ I since I is radical, completing our proof.

We now have a bijective correspondence between algebraic sets and radical ideals. This implies that
ideals in general carry more information than algebraic sets. For instance, the ideals (X) and (X2)
have the same zero set, viz., X = 0. But the unique zero of (X2) has multiplicity 2.

The ideal-theoretic approach (often attached to the name of E. Noether) characterizes the transition
from classical to “modern” algebraic geometry. “Post-modern” algebraic geometry has gone on to
more abstract objects such as schemes. Not much constructive questions are raised at this level,
perhaps because the abstract questions are hard enough. The reader interested in the profound
transformation that algebraic geometry has undergone over the centuries may consult Dieudonné
[9] who described the subject in “seven epochs”. The current challenge for constructive algebraic
geometry appears to be at the levels of classical algebraic geometry and at the ideal-theoretic level.
For instance, Brownawell [6]and others have recently given us effective versions of classical results
such as the Hilbert Nullstellensatz. Such results yields complexity bounds that are necessary for
efficient algorithms (see Exercise).

This concludes our orientation to the central problems that motivates this book. This exercise is
pedagogically useful for simplifying the algebraic-geometric landscape for students. However, the
richness of this subject and its complex historical development ensures that, in the opinion of some

c© Chee-Keng Yap March 6, 2000

§4. Representation and Size Lecture 0 Page 7

experts, we have made gross oversimplifications. Perhaps an account similar to what we presented
is too much to hope for – we have to leave this to the professional historians to tell us the full
story. In any case, having selected our core material, the rest of the book will attempt to treat and
view it through the lens of computational complexity theory. The remaining sections of this lecture
addresses this.

Exercises

Exercise 3.1: Show relation (8), and relation (9). �

Exercise 3.2: Show that the ideal membership problem is polynomial-time equivalent to the prob-
lem of checking if two sets of elements generate the same ideal: Is (a1, . . . , am) = (b1, . . . , bn)?
[Two problems are polynomial-time equivalent if one can be reduced to the other in polynomial-
time and vice-versa.] �

Exercise 3.3*: a) Given P0, P1, . . . , Pm ∈ Q[X1, . . . , Xd], where these polynomials have degree at
most n, there is a known double exponential bound B(d, n) such that if P0 ∈ (P1, . . . , Pm)
there there exists polynomials Q1, . . . , Qm of degree at most B(d, n) such that

P0 = P1Q1 + · · ·+ PmQm.

Note that B(d, n) does not depend on m. Use this fact to construct a double exponential time
algorithm for ideal membership.
b) Does the bound B(d, n) translate into a corresponding bound for Z[X1, . . . , Xd]? �

§4. Representation and Size

We switch from mathematics to computer science. To investigate the computational complexity of
the Fundamental Problems, we need tools from complexity theory. The complexity of a problem is
a function of some size measure on its input instances. The size of a problem instance depends on
its representation.

Here we describe the representation of some basic objects that we compute with. For each class of
objects, we choose a notion of “size”.

Integers: Each integer n ∈ Z is given the binary notation and has (bit-)size

size(n) = 1 + �log(|n| + 1)�
where logarithms are always base 2 unless otherwise stated. The term “1 + . . .′′ takes care of
the sign-bit.

Rationals: Each rational number p/q ∈ Q is represented as a pair of integers with q > 0. We do not
assume the reduced form of a rational number. The (bit-)size is given by

size

(
p

q

)
= size(p) + size(q) + log(size(p))

where the “ + log(size(p))′′ term indicates the separation between the two integers.

c© Chee-Keng Yap March 6, 2000

§5. Models Lecture 0 Page 8

Matrices: The default is the dense representation of matrices so that zero entries must be explicitly
represented. An m × n matrix M = (aij) has (bit-)size

size(M) =
m∑

i=1

n∑
j=1

(size(aij) + log(size(aij)))

where the “+log(size(aij))′′ term allows each entry of M to indicate its own bits (this is some-
times called the “self-limiting” encoding). Alternatively, a simpler but less efficient encoding
is to essentially double the number of bits

size(M) =
m∑

i=1

n∑
j=1

(2 + 2size(aij)) .

This encoding replaces each 0 by “00” and each 1 by “11”, and introduces a separator sequence
“01” between consecutive entries.

Polynomials: The default is the dense representation of polynomials. So a degree-n univariate poly-
nomial is represented as a (n + 1)-tuple of its coefficients – and the size of the (n + 1)-tuple is
already covered by the above size consideration for matrices. (bit-)size

Other representations (especially of multivariate polynomials) can be more involved. In con-
trast to dense representations, sparse representations refer to sparse representation those whose
sizes grow linearly with the number of non-zero terms of a polynomial. In general, such compact
representations greatly increase (not decrease!) the computational complexity of problems. For
instance, Plaisted [16, 17] has shown that deciding if two sparse univariate integer polynomials
are relatively prime is NP -hard. In contrast, this problem is polynomial-time solvable in in
the dense representation (Lecture II).

Ideals: Usually, ‘ideals’ refer to polynomial ideals. An ideal I is represented by any finite set
{P1, . . . , Pn} of elements that generate it: I = (P1, . . . , Pn). The size of this representa-
tion just the sum of the sizes of the generators. Clearly, the representation of an ideal is far
from unique.

The representations and sizes of other algebraic objects (such as algebraic numbers) will be discussed
as they arise.

§5. Computational Models

We briefly review four models of computation: Turing machines, Boolean circuits, algebraic programs
and random access machines. With each model, we will note some natural complexity measures
(time, space, size, etc), including their correspondences across models. We will be quite informal
since many of our assertions about these models will be (with some coaching) self-evident. A
reference for machine models is Aho, Hopcroft and Ullman [1]. For a more comprehensive treatment
of the algebraic model, see Borodin and Munro [5]; for the Boolean model, see Wegener [24].

I. Turing machine model. The Turing (machine) model is embodied in the multitape Turing
machine, in which inputs are represented by a binary string. Our representation of objects and
definition of sizes in the last section are especially appropriate for this model of computation. The
machine is essentially a finite state automaton (called its finite state control) equipped with a finite
set of doubly-infinite tapes, including a distinguished input tape Each tape is divided into cells
indexed by the integers. Each cell contains a symbol from a finite alphabet. Each tape has a head

c© Chee-Keng Yap March 6, 2000

§5. Models Lecture 0 Page 9

which scans some cell at any moment. A Turing machine may operate in a variety of computational
modes such as deterministic, nondeterministic or randomized; and in addition, the machine can be
generalized from sequential to parallel modes in many ways. We mostly assume the deterministic-
sequential mode in this book. In this case, a Turing machine operates according to the specification
of its finite state control: in each step, depending on the current state and the symbols being scanned
under each tape head, the transition table specifies the next state, modifies the symbols under each
head and moves each head to a neighboring cell. The main complexity measures in the Turing
model are time (the number of steps in a computation), space (the number of cells used during a
computation) and reversal (the number of times a tape head reverses its direction).

II. Boolean circuit model. This model is based on Boolean circuits. A Boolean circuit is a
directed acyclic finite graph whose nodes are classified as either input nodes or gates. The input
nodes have in-degree 0 and are labeled by an input variable; gates are labeled by Boolean functions
with in-degree equal to the arity of the label. The set of Boolean functions which can be used as
gate labels is called the basis!of computational models of the model. In this book, we may take the
basis to be the set of Boolean functions of at most two inputs. We also assume no á priori bound
on the out-degree of a gate. The three main complexity measures here are circuit size (the number
of gates), circuit depth (the longest path) and circuit width (roughly, the largest antichain).

A circuit can only compute a function on a fixed number of Boolean inputs. Hence to compare the
Boolean circuit model to the Turing machine model, we need to consider a circuit family, which is
an infinite sequence (C0, C1, C2, . . .) of circuits, one for each input size. Because there is no a priori
connection between the circuits in a circuit family, we call such a family non-uniform. non-uniform.
For this reason, we call Boolean circuits a “non-uniform model” as opposed to Turing machines
which is “uniform”. Circuit size can be identified with time on the Turing machine. Circuit depth is
more subtle, but it can (following Jia-wei Hong be identified with “reversals” on Turing machines.

It turns out that the Boolean complexity of any problem is at most 2n/n (see [24]). Clearly this
is a severe restriction on the generality of the model. But it is possible to make Boolean circuit
families “uniform” in several ways and the actual choice is usually not critical. For instance, we
may require that there is a Turing machine using logarithmic space that, on input n in binary,
constructs the (encoded) nth circuit of the circuit family. The resulting uniform Boolean complexity
is now polynomially related to Turing complexity. Still, the non-uniform model suffices for many
applications (see §8), and that is what we will use in this book.

Encodings and bit models. The previous two models are called bit models because mathematical
objects must first be encoded as binary strings before they can be used on these two models. The
issue of encoding may be quite significant. But we may get around this by assuming standard
conventions such as binary encoding of numbers, list representation of sets, etc. In algorithmic
algebra, it is sometimes useful to avoid encodings by incorporating the relevant algebraic structures
directly into the computational model. This leads us to our next model.

III. Algebraic program models. In algebraic programs, we must fix some algebraic structures
(such as Z, polynomials or matrices over a ring R) and specify a set of primitive algebraic operations
called the basis!of computational models of the model. Usually the basis includes the ring opera-
tions (+,−,×), possibly supplemented by other operations appropriate to the underlying algebraic
structure. A common supplement is some form of root finding (e.g., multiplicative inverse, radical
extraction or general root extraction), and GCD. The algebraic program model is thus a class of
models based on different algebraic structures and different bases.

c© Chee-Keng Yap March 6, 2000

§5. Models Lecture 0 Page 10

An algebraic program is defined to be a rooted ordered tree T where each node represents either an
assignment step of the form

V ← F (V1, . . . , Vk),

or a branch step of the form
F (V1, . . . , Vk) : 0.

Here, F is a k-ary operation in the basis and each Vi is either an input variable, a constant or a
variable that has been assigned a value further up the tree. The out-degree of an assignment node
is 1; the out-degree of a branch node is 2, corresponding to the outcomes F (V1, . . . , Vk) = 0 and
F (V1, . . . , Vk) �= 0, respectively. If the underlying algebraic structure is real, the branch steps can
be extended to a 3-way branch, corresponding to F (V1, . . . , Vk) < 0, = 0 or > 0. At the leaves of T ,
we fix some convention for specifying the output.

The input size is just the number of input variables. The main complexity measure studied with
this model is time, the length of the longest path in T . Note that we charge a unit cost to each
basic operation. This could easily be generalized. For instance, a multiplication step in which one of
the operands is a constant (i.e., does not depend on the input parameters) may be charged nothing.
This originated with Ostrowski who wrote one of the first papers in algebraic complexity.

Like Boolean circuits, this model is non-uniform because each algebraic program solves problems of
a fixed size. Again, we introduce the algebraic program family which is an infinite set of algebraic
programs, one for each input size.

When an algebraic program has no branch steps, it is called a straight-line program. To see that in
general we need branching, consider algebraic programs to compute the GCD (see Exercise below).

IV. RAM model. Finally, consider the random access machine model of computation. Each
RAM is defined by a finite set of instructions, rather as in assembly languages. These instructions
make reference to operands called registers Each register can hold an arbitrarily large integer and
is indexed by a natural number. If n is a natural number, we can denote its contents by 〈n〉. Thus
〈〈n〉〉 refers to the contents of the register whose index is 〈n〉. In addition to the usual registers, there
is an unindexed register called the accumulator in which all computations are done (so to speak).
The RAM instruction sets can be defined variously and have the simple format

INSTRUCTION OPERAND

where OPERAND is either n or 〈n〉 and n is the index of a register. We call the operand direct
or indirect depending on whether we have n or 〈n〉. We have five RAM instructions: a STORE
and LOAD instruction (to put the contents of the accumulator to register n and vice-versa), a
TEST instruction (to skip the next instruction if 〈n〉 is zero) and a SUCC operation (to add one
to the content of the accumulator). For example, ‘LOAD 5’ instructs the RAM to put 〈5〉 into the
accumulator; but ‘LOAD 〈5〉’ puts 〈〈5〉〉 into the accumulator; ‘TEST 3’ causes the next instruction
to be skipped if 〈3〉 = 0; ‘SUCC’ will increment the accumulator content by one. There are two
main models of time-complexity for RAM models: in the unit cost model, each executed instruction
is charged 1 unit of time. In contrast, the logarithmic cost model, charges �lg(|n|+ |〈n〉|)� whenever
a register n is accessed. Note that an instruction accesses one or two registers, depending on
whether the operand is direct or indirect. It is known that the logarithmic cost RAM is within
a quadratic factor of the Turing time complexity. The above RAM model is called the successor
RAM to distinguish it from other variants, which we now briefly note. More powerful arithmetic
operations (ADDITION, SUBTRACTION and even MULTIPLICATION) are sometimes included
in the instruction set. Schönhage describes an even simpler RAM model than the above model,

c© Chee-Keng Yap March 6, 2000

§6. Asymptotic Notations Lecture 0 Page 11

essentially by making the operand of each of the above instructions implicit. He shows that this
simple model is real-time equivalent to the above one.

Exercises

Exercise 5.1:
(a) Describe an algebraic program for computing the GCD of two integers. (Hint: implement
the Euclidean algorithm. Note that the input size is 2 and this computation tree must be
infinite although it halts for all inputs.)
(b) Show that the integer GCD cannot be computed by a straight-line program.
(c) Describe an algebraic program for computing the GCD of two rational polynomials P (X) =∑n

i=0 aiX
i and Q(X) =

∑m
i=0 biX

i. The input variables are a0, a1, . . . , an, b0, . . . , bm, so the
input size is n + m + 2. The output is the set of coefficients of GCD(P, Q). �

§6. Asymptotic Notations

Once a computational model is chosen, there are additional decisions to make before we get a
“complexity model”. This book emphasizes mainly the worst case time measure in each of our
computational models. To each machine or program A in our computational model, this associates
a function TA(n) that specifies the worst case number of time steps used by A, over all inputs of
size n. Call TA(n) the complexity of A. Abstractly, we may define a complexity model to comprise
a computational model together with an associated complexity function TA(n) for each A. The
complexity models in this book are: Turing complexity model, Boolean complexity model, algebraic
complexity model, and RAM complexity model. For instance, the Turing complexity model refers to
the worst-case time complexity of Turing machines. “Algebraic complexity model” is a generic term
that, in any specific instance, must be instantiated by some choice of algebraic structure and basis
operations.

We intend to distinguish complexity functions up to constant multiplicative factors and up to their
eventual behavior. To facilitate this, we introduce some important concepts.

Definition 1 A complexity function is a real partial function f : R → R ∪ {∞} such that f(x) is
defined for all sufficiently large natural numbers x ∈ N. Moreover, for sufficiently large x, f(x) ≥ 0
whenever x is defined.

If f(x) is undefined, we write f(x) ↑, and this is to be distinguished from the case f(x) = ∞. Note
that we require that f(x) be eventually non-negative. We often use familiar partial functions such
as log x and 2x as complexity functions, even though we are mainly interested in their values at N.
Note that if f, g are complexity functions then so are

f + g, fg, fg, f ◦ g

where in the last case, we need to assume that (f ◦ g)(x) = f(g(x)) is defined for sufficiently large
x ∈ N.

The big-Oh notation. Let f, g be complexity functions. We say f dominates g if f(x) ≥ g(x) for
all sufficiently large x, and provided f(x), g(x) are both defined. By “sufficiently large x” or “large
enough x” we mean “for all x ≥ x0” where x0 is some unspecified constant.

c© Chee-Keng Yap March 6, 2000

§6. Asymptotic Notations Lecture 0 Page 12

The big-Oh notationasymptotic notation!big-Oh is the most famous member of a family of asymptotic
notations. The prototypical use of this notation goes as follows. We say f is big-Oh of g (or, f is
order of g) and write

f = O(g) (10)

if there is a constant C > 0 such that C · g(x) dominates f(x). As examples of usage, f(x) = O(1)
(respectively, f(x) = xO(1)) means that f(x) is eventually bounded by some constant (respectively,
by some polynomial). Or again, n log n = O(n2) and 1/n = O(1) are both true.

Our definition in Equation (10) gives a very specific formula for using the big-Oh notation. We now
describe an extension. Recursively define O-expressions as follows. Basis: If g is a symbol for a
complexity function, then g is an O-expression. Induction: If Ei (i = 1, 2) are O-expressions, then
so are

O(E1), E1 ± E2, E1E2, EE2
1 , E1 ◦ E2.

Each O-expression denotes a set of complexity functions. Basis: The O-expression g denotes the
singleton set {g} where g is the function denoted by g. Induction: If Ei denotes the set of complexity
functions Ei then the O-expression O(E1) denotes the set of complexity functions f such that there
is some g ∈ E1 and C > 0 and f is dominated by Cg. The expression E1 + E2 denotes the set of
functions of the form f1 + f2 where fi ∈ Ei. Similarly for E1E2 (product), EE2

1 (exponentiation)
and E1 ◦ E2 (function composition). Finally, we use these O-expressions to assert the containment
relationship: we write

E1 = E2,

to mean E1 ⊆ E2. Clearly, the equality symbol in this context is asymmetric. In actual usage, we
take the usual license of confusing a function symbol g with the function g that it denotes. Likewise,
we confuse the concept of an O-expression with the set of functions it denotes. By convention, the
expressions ‘c’ (c ∈ R) and ‘n’ denote (respectively) the constant function c and the identity function.
Then ‘n2’ and ‘log n’ are O-expressions denoting the (singleton set containing the) square function
and logarithm function. Other examples of O-expressions: 2n+O(log n), O(O(n)log n+nO(n) log log n),
f(n)◦O(n log n). Of course, all these conventions depends on fixing ‘n’ as the distinguished variable.
Note that 1 + O(1/n) and 1 − O(1/n) are different O-expressions because of our insistence that
complexity functions are eventually non-negative.

The subscripting convention. There is another useful way to extend the basic formulation of
Equation (10): instead of viewing its right-hand side “O(g)” as denoting a set of functions (and
hence the equality sign as set membership ‘∈’ or set inclusion ‘⊆’), we can view it as denoting some
particular function C · g that dominates f . The big-Oh notation in this view is just a convenient
way of hiding the constant ‘C’ (it saves us the trouble of inventing a symbol for this constant).
In this case, the equality sign is interpreted as the “dominated by” relation, which explains the
tendency of some to write ‘≤’ instead of the equality sign. Usually, the need for this interpretation
arises because we want to obliquely refer to the implicit constant. For instance, we may want to
indicate that the implicit constants in two occurrences of the same O-expression are really the same.
To achieve this cross reference, we use a subscripting convention: we can attach a subscript or
subscripts to the O, and this particularizes that O-expression to refer to some fixed function. Two
identical O-expressions with identical subscripts refer to the same implicit constants. By choosing
the subscripts judiciously, this notation can be quite effective. For instance, instead of inventing a
function symbol TA(n) = O(n) to denote the running time of a linear-time algorithm A, we may
simply use the subscripted expression “OA(n)”; subsequent use of this expression will refer to the
same function. Another simple illustration is “O3(n) = O1(n) + O2(n)”: the sum of two linear
functions is linear, with different implicit constant for each subscript.

c© Chee-Keng Yap March 6, 2000

§7. Complexity of Multiplication Lecture 0 Page 13

Related asymptotic notations. We say f is big-Omega of g and write

f(n) = Ω(g(n))

if there exists a real C > 0 such that f(x) dominates C · g(x). We say f is Theta of g and write

f(n) = Θ(g(n))

if f = O(g) and f = Ω(g). We normally distinguish complexity functions up to Theta-order. We
say f is small-oh of g and write

f(n) = o(g(n))

if f(n)/g(n) → 0 as n →∞. We say f is small-omega of g and write

f(n) = ω(g(n))

if f(n)/g(n) →∞ as n →∞. We write
f ∼ g

if f = g[1 ± o(1)]. For instance, n + log n ∼ n but not n + log n ∼ 2n.

These notations can be extended as in the case of the big-Oh notation. The semantics of mixing
these notations are less obvious and is, in any case, not needed.

§7. Complexity of Multiplication

We introduce three “intrinsic” complexity functions,

MB(n), MA(n), MM(n)

related to multiplication in various domains under various complexity models. These functions are
useful in bounding other complexity functions. This leads to a discussion of intrinsic complexity.

Complexity of multiplication. Let us first fix the model of computation to be the multitape
Turing machine. We are interested in the intrinsic Turing complexity TP of a computational problem
P , namely the intrinsic (time) cost of solving P on the Turing machine model. Intuitively, we expect
TP = TP (n) to be a complexity function, corresponding to the “optimal” Turing machine for P .
If there is no optimal Turing machine, this is problematic – – see below for a proper treatment of
this. If P is the problem of multiplying two binary integers, then the fundamental quantity TP (n)
appears in the complexity bounds of many other problems, and is given the special notation

MB(n)

in this book. For now, we will assume that MB(n) is a complexity function. The best upper bound
for MB(n) is

MB(n) = O(n log n log log n), (11)

from a celebrated result [20] of Schönhage and Strassen (1971). To simplify our display of such
bounds (cf. [18, 13]), we write Lk(n) (k ≥ 1) to denote some fixed but non-specific function f(n)
that satisfies

f(n)
logk n

= o(log n).

c© Chee-Keng Yap March 6, 2000

§7. Complexity of Multiplication Lecture 0 Page 14

If k = 1, the superscript in L1(n) is omitted. In this notation, equation (11) simplifies to

MB(n) = nL(n).

Note that we need not explicitly write the big-Oh here since this is implied by the L(n) notation.
Schönhage [19] (cf. [11, p. 295]) has shown that the complexity of integer multiplication takes a
simpler form with alternative computational models (see §6): A successor RAM can multiply two
n-bit integers in O(n) time under the unit cost model, and in O(n log n) time in the logarithmic cost
model.

Next we introduce the algebraic complexity of multiplying two degree n polynomials, denoted

MA(n).

The basis (§6) for our algebraic programs is comprised of the ring operations of R, where the
polynomials are from R[X]. Trivially, MA(n) = O(n2) but Lecture I will show that

MA(n) = O(n log n).

Finally, we introduce the algebraic complexity of multiplying two n × n matrices. We assume the
basis is comprised of the ring operations of a ring R, where the matrix entries come from R. This
is another fundamental quantity which will be denoted by

MM(n)

in this book. Clearly MM(n) = O(n3) but a celebrated result of Strassen (1968) shows that this is
suboptimal. The current record (see Lecture I) is

MM(n) = O(n2.376). (12)

On Intrinsic Complexity.

The notation “MB(n)” is not rigorous when naively interpreted as a complexity function. Let
us see why. More generally, let us fix a complexity model M : this means we fix a computational
model (Turing machines, RAM, etc) and associate a complexity function TA(n) to each program
A in M as in §7. But complexity theory really begins when we associate an intrinsic complexity
function TP (n) with each computational problem P . Thus, MB(n) is the intrinsic complexity
function for the problem of multiplying two binary integers in the standard (worst-case time)
Turing complexity model. But how shall we define TP (n)?

First of all, we need to clarify the concept of a “computational problem”. One way is to
introduce a logical language for specifying problems. But for our purposes, we will simply
identify a computational problem P with a set of programs in model M . The set P comprises
those programs in M that is said to “solve” the problem. For instance, the integer multiplication
problem is identified with the set Pmult of all Turing machines that, started with m#n on
the input tape, eventually halts with the product mn on the output tape (where n is the
binary representation of n ∈ N). If P is a problem and A ∈ P , we say A solves P or A is
an algorithm for P . A complexity function f(n) is an upper boundintrinsic complexity!upper
bound on the problem P if there is an algorithm A for P such that f(n) dominates TA(n). If,
for every algorithm A for P , TA(n) dominates f(n), then we call f(n) a lower boundintrinsic
complexity!lower bound on the problem P .

Let UP be the set of upper bounds on P . Notice that there exists a unique complexity function
�P (n) such that �P (n) is a lower bound on P and for any other lower bound f(n) on P , �P (n)
dominates f(n). To see this, define for each n, �P (n) := inf{f(n) : f ∈ UP }. On the other hand,
there may not exist T (n) in UP that is dominated by all other functions in UP ; if T (n) exists,

c© Chee-Keng Yap March 6, 2000

§8. Bit versus Algebraic Lecture 0 Page 15

it would (up to co-domination) be equal to �P (n). In this case, we may call �P (n) = T (n) the
intrinsic complexity TP (n) of P . To resolve the case of the “missing intrinsic complexity”, we
generalize our concept of a function: An intrinsic (complexity) function is intrinsic (complexity)
function any non-empty family U of complexity functions that is closed under domination, i.e., if
f ∈ U and g dominates f then g ∈ U . The set UP of upper bounds of P is an intrinsic function:
we identify this as the intrinsic complexity TP of P . A subset V ⊆ U is called a generating
set of U if every f ∈ U dominates some g ∈ V . We say U is principal if U has a generating
set consisting of one function f0; in this case, we call f0 a generator of U . If f is a complexity
function, we will identify f with the principal intrinsic function with f as a generator. Note
that in non-uniform computational models, the intrinsic complexity of any problem is principal.

Let U, T be intrinsic functions. We extend the standard terminology for ordinary complexity
functions to intrinsic functions. Thus

U + T, UT, UT , U ◦ T (13)

denote intrinsic functions in the natural way. For instance, U +T denotes the intrinsic function
generated by the set of functions of the form u + t where u ∈ U and t ∈ T . We say U is big-Oh
of T , written

U = O(T),

if there exists u ∈ U such that for all t ∈ T , we have u = O(t) in the usual sense. The reader
should test these definitions by interpreting MB(n), etc, as intrinsic functions (e.g., see (14) in
§9). Basically, these definitions allow us to continue to talk about intrinsic functions rather like
ordinary complexity functions, provided we know how to interpret them. Similarly, we say U is
big-Omega of T , written U = Ω(T), if for all u ∈ U , there exists t ∈ T such that u = Ω(t). We
say U is Theta of T , written U = Θ(T), if U = O(T) and U = Ω(T).

Complexity Classes. Corresponding to each computational model, we have complexity classes
of problems. Each complexity class is usually characterized by a complexity model (worst-case time,
randomized space, etc) and a set of complexity bounds (polynomial, etc). The class of problems that
can be solved in polynomial time on a Turing machine is usually denoted P : it is arguably the most
important complexity class. This is because we identify this class with the “feasible problems”. For
instance, the the Fundamental Problem of Algebra (in its various forms) is in P but the Fundamental
Problem of Classical Algebraic Geometry is not in P . Complexity theory can be characterized as
the study of relationships among complexity classes. Keeping this fact in mind may help motivate
much of our activities. Another important class is NC which comprises those problems that can
be solved simultaneously in depth logO(1) n and size nO(1), under the Boolean circuit model. Since
circuit depth equals parallel time, this is an important class in parallel computation. Although we
did not define the circuit analogue of algebraic programs, this is rather straightforward: they are like
Boolean circuits except we perform algebraic operations at the nodes. Then we can define NCA, the
algebraic analogue of the class NC . Note that NC A is defined relative to the underlying algebraic
ring.

Exercises

Exercise 7.1: Prove the existence of a problem whose intrinsic complexity is not principal. (In
Blum’s axiomatic approach to complexity, such problems exist.) �

§8. On Bit versus Algebraic Complexity

We have omitted other important models such as pointer machines that have a minor role in algebraic
complexity. But why such a proliferation of models? Researchers use different models depending on
the problem at hand. We offer some guidelines for these choices.

c© Chee-Keng Yap March 6, 2000

§8. Bit versus Algebraic Lecture 0 Page 16

1. There is a consensus in complexity theory that the Turing model is the most basic of all general-
purpose computational models. To the extent that algebraic complexity seeks to be compatible to
the rest of complexity theory, it is preferable to use the Turing model.

2. In practice, the RAM model is invariably used to describe algebraic algorithms because the
Turing model is too cumbersome. Upper bounds (i.e., algorithms) are more readily explained in the
RAM model and we are happy to take advantage of this in order to make the result more accessible.
Sometimes, we could further assert (“left to the reader”) that the RAM result extends to the Turing
model.

3. Complexity theory proper is regarded to be a theory of “uniform complexity”. This means
“naturally” uniform models such as Turing machines are preferred over “naturally non-uniform”
models such as Boolean circuits. Nevertheless, non-uniform models have the advantage of being
combinatorial and conceptually simpler. Historically, this was a key motivation for studying Boolean
circuits, since it is hoped that powerful combinatorial arguments may yield super-quadratic lower
bounds on the Boolean size of specific problems. Such a result would immediately imply non-linear
lower bounds on Turing machine time for the same problem. (Unfortunately, neither kind of result
has been realized.) Another advantage of non-uniform models is that the intrinsic complexity of
problems is principal. Boolean circuits also seems more natural in the parallel computation domain,
with circuit depth corresponding to parallel time.

4. The choice between bit complexity and the algebraic complexity is problem-dependent. For
instance, the algebraic complexity of integer GCD would not make much sense (§6, Exercise). But
bit complexity is meaningful for any problem (the encoding of the problem must be taken into
account). This may suggest that algebraic complexity is a more specialized tool than bit complexity.
But even in a situation where bit complexity is of primary interest, it may make sense to investigate
the corresponding algebraic complexity. For instance, the algebraic complexity of multiplying integer
matrices is MM(n) = O(n2.376) as noted above. Let3 MM(n, N) denote the Turing complexity of
integer matrix multiplication, where N is an additional bound on the bit size of each entry of the
matrix. The best upper bound for MM(n, N) comes from the trivial remark,

MM(n, N) = O(MM(n)MB(N)). (14)

That is, the known upper bound on MM(n, N) comes from the separate upper bounds on MM(n)
and MB(N).

Linear Programming. Equation (14) illustrates a common situation, where the best bit complex-
ity of a problem is obtained as the best algebraic complexity multiplied by the best bit complexity
on the underlying operations. We now show an example where this is not the case. Consider the
linear programming problem. Let m, n, N be complexity parameters where the linear constraints are
represented by Ax ≤ b, A is an m×n matrix, and all the numbers in A, b have at most N bits. The
linear programming problem can be reduced to checking for the feasibility of the inequality Ax ≤ b,
on input A, b. The Turing complexity TB(m, n, N) of this problem is known to be polynomial in
m, n, N . This result was a breakthrough, due to Khacian in 1979. On the other hand, it is a major
open problem whether the corresponding algebraic complexity TA(m, n) of linear programming is
polynomial in m, n.

Euclidean shortest paths. In contrast to linear programming, we now show a problem for which
the bit complexity is not known to be polynomial but whose algebraic complexity is polynomial.

3The bit complexity bound on any problem is usually formulated to have one more size parameter (N) than the
corresponding algebraic complexity bound.

c© Chee-Keng Yap March 6, 2000

§9. Miscellany Lecture 0 Page 17

This is the problem of finding the shortest paths between two points on the plane. Let us formulate
a version of the Euclidean shortest path problem: we are given a planar graph G that is linearly
embedded in the plane, i.e., each vertex v of G is mapped to a point m(v) in the plane and each
edge (u, v) between two vertices is represented by the corresponding line segment [m(u), m(v)],
where two segments may only intersect at their endpoints. We want to find the shortest (under the
usual Euclidean metric) path between two specified vertices s, t. Assume that the points m(v) have
rational coordinates. Clearly this problem can be solved by Djikstra’s algorithm in polynomial time,
provided we can (i) take square-roots, (ii) add two sums of square-roots, and (iii) compare two sums
of square-roots in constant time. Thus the algebraic complexity is polynomial time (where the basis
operations include (i-iii)). However, the current best bound on the bit complexity of this problem
is single exponential space. Note that the numbers that arise in this problem are the so-called
constructible reals (Lecture VI) because they can be finitely constructed by a ruler and a compass.

The lesson of these two examples is that bit complexity and algebraic complexities do not generally
have a simple relationship. Indeed, we cannot even expect a polynomial relationship between these
two types of complexities: depending on the problem, either one could be exponentially worse than
the other.

Exercises

Exercise 8.1*: Obtain an upper bound on the above Euclidean shortest path problem. �

Exercise 8.2: Show that a real number of the form

α = n0 ±√
n1 ±√

n2 ± · · · ± √
nk

(where ni are positive integers) is a zero of a polynomial P (X) of degree at most 2k, and that
all zeros of P (X) are real. �

§9. Miscellany

This section serves as a quick general reference.

Equality symbol. We introduce two new symbols to reduce4 the semantic overload commonly
placed on the equality symbol ‘=’. We use the symbol ‘←’ for programming variable assignments ,
from right-hand side to the left. Thus, V ← V + W is an assignment to V (and it could appear on
the right-hand side, as in this example). We use the symbol ‘:=’ to denote definitional equality, with
the term being defined on the left-hand side and the defining terms on the right-hand side. Thus,
“f(n) :=n log n” is a definition of the function f . Unlike some similar notations in the literature, we
refrain from using the mirror images of the definition symbol (we will neither write “V + W → V ”
nor “n logn =: f(n)”).

Sets and functions. The empty set is written ∅. Let A, B be sets. Subsets and proper subsets
are respectively indicated by A ⊆ B and A ⊂ B. Set difference is written A \ B. Set formation
is usually written {x : . . . x . . .} and sometimes written {x| . . . x . . .} where . . . x . . . specifies some

4Perhaps to atone for our introduction of the asymptotic notations.

c© Chee-Keng Yap March 6, 2000

§9. Miscellany Lecture 0 Page 18

properties on x. The A is the union of the sets Ai for i ∈ I, we write A = ∪i∈IAi. If the Ai’s are
pairwise disjoint, we indicate this by writing

A = �i∈IAi.

Such a disjoint union is also called a partition of A. Sometimes we consider multisets. A multiset S
can be regarded as sets whose elements can be repeated – the number of times a particular element
is repeated is called its multiplicity. Alternatively, S can be regarded as a function S : D → N where
D is an ordinary set and S(x) ≥ 1 gives the multiplicity of x. We write f ◦ g for the composition
of functions g : U → V , f : V → W . So (f ◦ g)(x) = f(g(x)). If a function f is undefined for a
certain value x, we write f(x) ↑.

Numbers. Let i denote
√−1, the square-root of −1. For a complex number z = x + iy, let

Re(z) :=x and Im(z) := y denote its real and imaginary part, respectively. Its modulus |z| is defined
to be the positive square-root of x2 + y2. If z is real, |z| is also called the absolute value . The
(complex) conjugate of z is defined to be z := Re(z)− Im(z). Thus |z|2 = zz.

But if S is any set, |S| will refer to the cardinality , i.e., the number of elements in S. This notation
should not cause a confusion with the notion of modulus of z.

For a real number r, we use Iverson’s notation (as popularized by Knuth) �r� and �r� for the ceiling
and floor functions. We have

�r� ≤ �r� .

In this book, we introduce the symmetric ceiling and symmetric floor functions:

�r�s :=
{ �r� if r ≥ 0,

�r� if r < 0.

�r�s :=
{ �r� if r ≥ 0,

�r� if r < 0.

These functions satisfy the following inequalities, valid for all real numbers r:

| �r�s | ≤ |r| ≤ | �r�s |.
(The usual floor and ceiling functions fail this inequality when r is negative.) We also use �r� to
denote the rounding function, �r� :=�r − 0.5�. So

�r� ≤ �r� ≤ �r�.
The base of the logarithm function log x, is left unspecified if this is immaterial (as in the notation
O(log x)). On the other hand, we shall use

lg x, ln x

for logarithm to the base 2 and the natural logarithm, respectively.

Let a, b be integers. If b > 0, we define the quotient and remainder functions , quo(a, b) and rem(a, b)
which satisfy the relation

a = quo(a, b) · b + rem(a, b)

such that b > rem(a, b) ≥ 0. We also write these functions using an in-fix notation:

(adiv b) := quo(a, b); (amod b) := rem(a, b).

These functions can be generalized to Euclidean domains (lecture II, §2). We continue to use ‘mod’ in
the standard notation “a ≡ b(mod m)” for congruence modulo m. We say a divides b if rem(a, b) = 0,
and denote this by “a | b”. If a does not divide b, we denote this by “a∼| b”.

c© Chee-Keng Yap March 6, 2000

§9. Miscellany Lecture 0 Page 19

Norms. For a complex polynomial P ∈ C[X] and for each positive real number k, let ‖P‖k denote5

the k-norm ,

‖P‖k :=

(
n∑

i=0

|pi|k
)1/k

where p0, . . . , pn are the coefficients of P . We extend this definition to k = ∞, where

‖P‖∞ := max{|pi| : i = 0, . . . , n}. (15)

There is a related Lk-norm defined on P where we view P as a complex function (in contrast to
Lk-norms, it is usual to refer to our k-norms as “�k-norms”). The Lk-norms are less important for
us. Depending on context, we may prefer to use a particular k-norm: in such cases, we may simply
write “‖P‖” instead of “‖P‖k”. For 0 < r < s, we have

‖P‖∞ ≤ ‖P‖s < ‖P‖r ≤ (n + 1)‖P‖∞ (16)

The second inequality (called Jensen’s inequality) follows from:

(
∑

i |pi|s)1/s

(
∑

j |pj |r)1/r
=

{
n∑

i=0

|pi|s
(
∑

j |pj |r)s/r

} 1
s

=

n∑
i=0

(
|pi|r∑
j |pj|r

) s
r

1
s

<

{
n∑

i=0

(
|pi|r∑
j |pj|r

)} 1
r

= 1.

The 1-, 2- and ∞-norms of P are also known as the weight, length, and height of P . If u is a vector
of numbers, we define its k-norm ‖u‖k by viewing u as the coefficient vector of a polynomial. The
following inequality will be useful:

‖P‖1 ≤
√

n‖P‖2.

To see this, note that n
∑n

i=1 a2
i ≥ (

∑n
i=1 ai)2 is equivalent to (n − 1)

∑n
i=1 a2

i ≥ 2
∑

1≤i<j≤n aiaj .
But this amounts to

∑
1≤i<j≤n(ai − aj)2 ≥ 0.

Inequalities. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be real n-vectors. We write a · b or 〈a,b〉
for their scalar product

∑n
i=1 aibi.

Hölder’s Inequality: If 1
p + 1

q = 1 then

|〈a,b〉| ≤ ‖a‖p‖b‖q,

with equality iff there is some k such that bq
i = kap

i for all i. In particular, we have the Cauchy-
Schwarz Inequality:

|〈a,b〉| ≤ ‖a‖2 · ‖b‖2.

Minkowski’s Inequality: for k > 1,

‖a + b‖k ≤ ‖a‖k + ‖b‖k.

This shows that the k-norms satisfy the triangular inequality.

A real function f(x) defined on an interval I = [a, b] is convex on I if for all x, y ∈ I and 0 ≤ α ≤ 1,
f(αx+(1−α)y) ≤ αf(x)+ (1−α)f(y). For instance, if f ′′(x) is defined and f ′′(x) ≥ 0 on I implies
f is convex on I.

5In general, a norm of a real vector V is a real function N : V → R such that for all x ∈ V , (i) N(x) ≥ 0 with
equality iff x = 0, (ii) N(cx) = |c|N(x) for any c ∈ R, and (iii) N(x+y) ≤ N(x)+N(y). The k-norms may be verified
to be a norm in this sense.

c© Chee-Keng Yap March 6, 2000

§9. Miscellany Lecture 0 Page 20

Polynomials. Let A(X) =
∑n

i=0 aiX
i be a univariate polynomial. Besides the notation deg(A)

and lead(A) of §1, we are sometimes interested in the largest power j ≥ 0 such that Xj divides
A(X); this j is called the tail degree of A. The coefficient aj is the tail coefficient of A, denoted
tail(A).

Let X = {X1, . . . , Xn} be n ≥ 1 (commutative) variables, and consider multivariate polynomials in
R[X]. A power product over X is a polynomial of the form T =

∏n
i=1 Xei

i where each ei ≥ 0 is an
integer. In particular, if all the ei’s are 0, then T = 1. The total degree deg(T) of T is given by∑n

i=1 ei, and the maximum degree mdeg(T) is given by maxn
i=1 ei. Usually, we simply say “degree”

for total degree. Let PP(X) = PP(X1, . . . , Xn) denote the set of power products over X.

A monomial or term is a polynomial of the form cT where T is a power product and c ∈ R \ {0}. So
a polynomial A can be written uniquely as a sum A =

∑k
i=1 Ai of monomials with distinct power

products; each such monomial Ai is said to belong to A. The (term) length of a polynomial A to be
the number of monomials in A, not to be confused with its Euclidean length ‖A‖2 defined earlier.
The total degree deg(A) (respectively, maximum degree mdeg(A)) of a polynomial A is the largest
total (respectively, maximum) degree of a power product in A. Usually, we just say “degree” of A to
mean total degree. A polynomial is homogeneous if each of its monomials has the same total degree.
Again, any polynomial A can be written uniquely as a sum A =

∑
i Hi of homogeneous polynomials

Hi of distinct degrees; each Hi is said to be a homogeneous component of A.

The degree concepts above can be generalized. If X1 ⊆ X is a set of variables, we may speak of the
“X1-degree” of a polynomial A, or say that a polynomial “homogeneous” in X1, simply by viewing
A as a polynimial in X1. Or again, if Y = {X1, . . . ,Xk} is a partition of the variables X, the
“Y-maximum degree” of A is the maximum of the Xi-degrees of A (i = 1, . . . , k).

Matrices. The set of m×n matrices with entries over a ring R is denoted Rm×n. Let M ∈ Rm×n.
If the (i, j)th entry of M is xij , we may write M = [xij]

m,n
i,j=1 (or simply, M = [xij]i,j). The (i, j)th

entry of M is denoted M(i; j). More generally, if i1, i2, . . . , ik are indices of rows and j1, . . . , j� are
indices of columns,

M(i1, . . . , ik; j1, . . . , j�) (17)

denotes the submatrix obtained by intersecting the indicated rows and columns. In case k = � = 1,
we often prefer to write (M)i,j or (M)ij instead of M(i; j). If we delete the ith row and jth column
of M , the resulting matrix is denoted M [i; j]. Again, this notation can be generalized to deleting
more rows and columns. E.g., M [i1, i2; j1, j2, j3] or [M]i1,i2;j1,j2,j3 . The transpose of M is the n×m
matrix, denoted MT , such that MT (i; j) = M(j; i).

A minor of M is the determinant of a square submatrix of M . The submatrix in (17) is principal if
k = � and

i1 = j1 < i2 = j2 < · · · < ik = jk.

A minor is principal if it is the determinant of a principal submatrix. If the submatrix in (17) is
principal with i1 = 1, i2 = 2, . . . , ik = k, then it is called the “kth principal submatrix” and its
determinant is the “kth principal minor”. (Note: the literature sometimes use the term “minor” to
refer to a principal submatrix.)

Ideals. Let R be a ring and I, J be ideals of R. The ideal generated by elements a1, . . . , am ∈ R
is denoted (a1, . . . , am) and is defined to be the smallest ideal of R containing these elements. Since

c© Chee-Keng Yap March 6, 2000

§10. Computer Algebra Systems Lecture 0 Page 21

this well-known notation for ideals may be ambiguous, we sometimes write6

Ideal(a1, . . . , am).

Another source of ambiguity is the underlying ring R that generates the ideal; thus we may some-
times write

(a1, . . . , am)R or IdealR(a1, . . . , am).

An ideal I is principal if it is generated by one element, I = (a) for some a ∈ R; it is finitely generated
if it is generated by some finite set of elements. For instance, the zero ideal is (0) = {0} and the
unit ideal is (1) = R. Writing aR :={ax : x ∈ R}, we have that (a) = aR, exploiting the presence
of 1 ∈ R. A principal ideal ring or domain is one in which every ideal is principal. An ideal is
called homogeneous (resp., monomial) if it is generated by a set of homogeneous polynomials (resp.,
monomials).

The following are five basic operations defined on ideals:

Sum: I + J is the ideal consisting of all a + b where a ∈ I, b ∈ J .

Product: IJ is the ideal generated by all elements of the form ab where a ∈ I, b ∈ J .

Intersection: I ∩ J is just the set theoretic intersection of I and J .

Quotient: I : J is defined to be the set {a|aJ ⊆ I}. If J = (a), we simply write I : a for I : J .

Radical:
√

I is defined to be set {a|(∃n ≥ 1)an ∈ I}.

Some simple relationships include IJ ⊆ I ∩ J , I(J + J ′) = IJ + IJ ′, (a1, . . . , am) + (b1, . . . , bn) =
(a1, . . . , am, b1, . . . , bn). An element b is nilpotent if some power of b vanishes, bn = 0. Thus

√
(0)

is the set of nilpotent elements. An ideal I is maximal if I �= R and it is not properly contained
in an ideal J �= R. An ideal I is prime if ab ∈ I implies a ∈ I or b ∈ I. An ideal I is primary if
ab ∈ I, a �∈ I implies bn ∈ I for some positive integer n. A ring with unity is Noetherian if every
ideal I is finitely generated. It turns out that for Noetherian rings, the basic building blocks are
primary ideals (not prime ideals). We assume the reader is familiar with the construction of ideal
quotient rings, R/I.

Exercises

Exercise 9.1: (i) Verify the rest of equation (16).
(ii) ‖A±B‖1 ≤ ‖A‖1 + ‖B‖1 and ‖AB‖1 ≤ ‖A‖1‖B‖1.

(iii) (Duncan) ‖A‖2‖B‖2 ≤ ‖AB‖2

√(
2n
n

)(
2m
m

)
where deg(A) = m, deg(B) = n. �

Exercise 9.2: Show the inequalities of Hölder and Minkowski. �

Exercise 9.3: Let I �= R be an ideal in a ring R with unity.
a) I is maximal iff R/I is a field.
b) I is prime iff R/I is a domain.
c) I is primary iff every zero-divisor in R/I is nilpotent. �

6Cf. the notation Ideal(U) ⊆ R0[X1, . . . , Xd] where U ∈ Ad(R1), introduced in §4. We capitalize the names of
maps from an algebraic to a geometric setting or vice-versa. Thus Ideal, Zero.

c© Chee-Keng Yap March 6, 2000

§10. Computer Algebra Systems Lecture 0 Page 22

§10. Computer Algebra Systems

In a book on algorithmic algebra, we would be remiss if we make no mention of computer algebra
systems. These are computer programs that manipulate and compute on symbolic (“algebraic”)
quantities as opposed to just numerical ones. Indeed, there is an intimate connection between
algorithmic algebra today and the construction of such programs. Such programs range from general
purpose systems (e.g., Maple, Mathematica, Reduce, Scratchpad, Macsyma, etc.) to those that
target specific domains (e.g., Macaulay (for Gröbner bases), MatLab (for numerical matrices), Cayley
(for groups), SAC-2 (polynomial algebra), CM (celestial mechanics), QES (quantum electrodynamics),
etc.). It was estimated that about 60 systems exist around 1980 (see [23]). A computer algebra
book that discuss systems issues is [8]. In this book, we choose to focus on the mathematical and
algorithmic development, independent of any computer algebra system. Although it is possible to
avoid using a computer algebra system in studying this book, we strongly suggest that the student
learn at least one general-purpose computer algebra system and use it to work out examples. If any
of our exercises make system-dependent assumptions, it may be assumed that Maple is meant.

Exercises

Exercise 10.1: It took J. Bernoulli (1654-1705) less than 1/8 of an hour to compute the sum of
the 10th power of the first 1000 numbers: 91, 409, 924, 241, 424, 243, 424, 241, 924, 242, 500.
(i) Write a procedure bern(n,e) in your favorite computer algebra system, so that the above
number is computed by calling bern(1000, 10).
(ii) Write a procedure berns(m,n,e) that runs bern(n,e) m times. Do simple profiling of the
functions bern, berns, by calling berns(100, 1000, 10). �

c© Chee-Keng Yap March 6, 2000

§10. Computer Algebra Systems Lecture 0 Page 23

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Massachusetts, 1974.

[2] S. Akbulut and H. King. Topology of Real Algebraic Sets. Mathematical Sciences Research
Institute Publications. Springer-Verlag, Berlin, 1992.

[3] M. Artin. Algebra. Prentice Hall, Englewood Cliffs, NJ, 1991.

[4] R. Benedetti and J.-J. Risler. Real Algebraic and Semi-Algebraic Sets. Actualités
Mathématiques. Hermann, Paris, 1990.

[5] A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Problems.
American Elsevier Publishing Company, Inc., New York, 1975.

[6] W. D. Brownawell. Bounds for the degrees in Nullstellensatz. Ann. of Math., 126:577–592,
1987.

[7] B. Buchberger, G. E. Collins, and R. L. (eds.). Computer Algebra. Springer-Verlag, Berlin, 2nd
edition, 1983.

[8] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra: Systems and Algorithms for
Algebraic Computation. Academic Press, New York, 1988.

[9] J. Dieudonné. History of Algebraic Geometry. Wadsworth Advanced Books & Software, Mon-
terey, CA, 1985. Trans. from French by Judith D. Sally.

[10] A. G. Khovanskĭı. Fewnomials, volume 88 of Translations of Mathematical Monographs. Amer-
ican Mathematical Society, Providence, RI, 1991. tr. from Russian by Smilka Zdravkovska.

[11] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Addison-Wesley, Boston, 2nd edition edition, 1981.

[12] S. Landau and G. L. Miller. Solvability by radicals in polynomial time. J. of Computer and
System Sciences, 30:179–208, 1985.

[13] L. Langemyr. Computing the GCD of two polynomials over an algebraic number field. PhD
thesis, The Royal Institute of Technology, Stockholm, Sweden, January 1989. Technical Report
TRITA-NA-8804.

[14] F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge University Press,
Cambridge, 1916.

[15] B. Mishra. Computational real algebraic geometry. In J. O’Rourke and J. Goodman, editors,
CRC Handbook of Discrete and Comp. Geom. CRC Press, Boca Raton, FL, 1997.

[16] D. A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility problems.
Theor. Computer Science, 31:125–138, 1984.

[17] D. A. Plaisted. Complete divisibility problems for slowly utilized oracles. Theor. Computer
Science, 35:245–260, 1985.

[18] M. O. Rabin. Probabilistic algorithms for finite fields. SIAM J. Computing, 9(2):273–280, 1980.

[19] A. Schönhage. Storage modification machines. SIAM J. Computing, 9:490–508, 1980.

[20] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292,
1971.

c© Chee-Keng Yap March 6, 2000

§10. Computer Algebra Systems Lecture 0 Page 24

[21] D. J. Struik, editor. A Source Book in Mathematics, 1200-1800. Princeton University Press,
Princeton, NJ, 1986.

[22] B. L. van der Waerden. Algebra. Frederick Ungar Publishing Co., New York, 1970. Volumes 1
& 2.

[23] J. van Hulzen and J. Calmet. Computer algebra systems. In B. Buchberger, G. E. Collins, and
R. Loos, editors, Computer Algebra, pages 221–244. Springer-Verlag, Berlin, 2nd edition, 1983.

[24] I. Wegener. The Complexity of Boolean Functions. B. G. Teubner, Stuttgart, and John Wiley,
Chichester, 1987.

[25] W. T. Wu. Mechanical Theorem Proving in Geometries: Basic Principles. Springer-Verlag,
Berlin, 1994. (Trans. from Chinese by X. Jin and D. Wang).

[26] K. Yokoyama, M. Noro, and T. Takeshima. On determining the solvability of polynomials. In
Proc. ISSAC’90, pages 127–134. ACM Press, 1990.

[27] O. Zariski and P. Samuel. Commutative Algebra, volume 1. Springer-Verlag, New York, 1975.

[28] O. Zariski and P. Samuel. Commutative Algebra, volume 2. Springer-Verlag, New York, 1975.

c© Chee-Keng Yap March 6, 2000

§10. Computer Algebra Systems Lecture 0 Page 25

Contents

0INTRODUCTION 1

1 Fundamental Problem of Algebra 1

2 Fundamental Problem of Classical Algebraic Geometry 3

3 Fundamental Problem of Ideal Theory 4

4 Representation and Size 7

5 Computational Models 8

6 Asymptotic Notations 11

7 Complexity of Multiplication 13

8 On Bit versus Algebraic Complexity 15

9 Miscellany 17

10 Computer Algebra Systems 22

c© Chee-Keng Yap March 6, 2000

