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PART I: INTRODUCTION

• Symbolic Computation is different from Numeric 
Computation
– Programs are data

• Lisp
• Scripting languages (programs are strings)

• Computer Algebra Systems  (CAS) go further
– Programs are data are mathematical expressions
– Usually provide interactive environments

• Mathematica, Maple, Macsyma, Axiom, Reduce, 
MuPad, many academic projects
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Other aspects of CAS

• Commercial CAS are also knowledge representation systems
– Notebooks

– Libraries

– Networking (TILU at Berkeley)

• CAS are being connected with other commercial environments
– MathCAD+Maple,  (numerics)

– Matlab+Maple, (numerics, matrix computation)

– Scientific Word + Maple or Mathematica (editor)

– new Mathematica text editor

– Academic projects (e.g. SENAC: Macsyma+ NAG library)
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CAS: Data Types and Operations

• Symbolic Functions and expressions involving them
– + * log, sin, Bessel, …

– A*x+b*cos(y) – usually “algebraic trees”

– Differentiation, Integration, Simplification, Approximation (series, 
expansions, economization…)

– Valuation  (convert an expression to a “number”)

• Extensible domains (real numbers, polynomials over the integers …)

• Arbitrary structures for numbers, symbols, strings, tables, trees 
– Input as strings

– Output as strings, plots, pictures, typeset equations, web messages
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PART II: SYMBOLIC COMPONENTS

• 3 Models: Environment vs Toolkit vs Network
– “Complete” Environments: 

• Macintosh
• Microsoft “interconnected” applications
• Advanced workstation environments 

– Toolkit:
• UNIX in all its variations
• Subroutine libraries (netlib, etc.)

– Networked model:
• “Intelligent agents” on some network
• Popular view with Java, RMI, CORBA
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We need to Re-use Symbolic Components

• System Objectives:

– Doing symbolic mathematics in support of numerical 
computation

– Doing what other systems do (numerically, graphically)
plus more
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“UNIX” style toolkits are not the way to start

• Symbolic systems have environment support issues 
[storage model, run-time semantics for mathematical 
expressions, libraries for numerical or graphical]

• Once we have this base we can add auxiliary modules 
(CAS + library)

• We can try to use webcomponents via a “shallow” web 
interfaces (e.g. OpenMath, MathML).  No persistent state 
is shared.
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What do we mean by program that manipulate 
programs?

expressions programs data

•Assemblers, interpreters,

• (pre-) Compilers, macro-expansion, etc.

•Advice takers 

•The symbolic view is that 
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Example of Advice (in Lisp)

To avoid complex results from sqrt one can ‘‘advise’’  sqrt that if 
its first argument is negative, it should instead print a message and 
replace the argument  by its absolute value.

(advise sqrt :before negativearg nil 
(unless (>= (first arglist) 0)

(format t 
"sqrt given negative number. we take (sqrt(abs ~s))"

(first arglist))
(setf arglist (list (abs (first arglist))))))
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Another Example of Advice

Pattern matching on arguments is the way this is done in some 
languages like Prolog, CLOS, and (here) in Mathematica

Mysqrt[h_]  := Sqrt[h]            (*Default case*)
Mysqrt[-h_] := Sqrt[Abs[h]]       (* works for Mysqrt[-r] *) 
Mysqrt[h_] := Sqrt[Abs[h]] /;h<0 (* works for Mysqrt[-9] *)



12

But it’s not easy to manipulate Fortran or C

We are mostly restricted to generating text to be 
inserted as into Fortran or C code.
In this next example we start with a Fortran program, convert to
Lisp, manipulate the program as data, and convert back to Fortran.

While FORTRAN (77, 90) may provide a standard for text, any 
compiler will convert such code to the moral equivalent of Lisp as 
soon as it is parsed.  This intermediate language is essential for 
optimization, code generation etc.
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Start with Fortran: Bessel Function evaluation 
(from Numerical Recipes in Fortran)

…(selected lines…)

DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,-
0.3988024D-1,

*    -0.362018D-2,0.163801D-2,-0.1031555D-1,0.2282967D-
1,

*    -0.2895312D-1,0.1787654D-1,-0.420059D-2/
...

BESSI1=(EXP(AX)/SQRT(AX))*(Q1+Y*(Q2+Y*(Q3+Y*(Q4+
*        Y*(Q5+Y*(Q6+Y*(Q7+Y*(Q8+Y*Q9))))))))

...
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Equivalent Bessel Function evaluation in 
Lisp (1)

(setf
bessi1
(* (/ (exp ax) (sqrt ax))

(poly-eval y   
( 0.39894228d0 -0.3988024d-1 -0.362018d-2  0.163801d-2 
-0.1031555d-1  0.2282967d-1 -0.2895312d-1 0.1787654d-1
-0.420059d-2))))

Just rearranging the coefficients. What is poly-eval 
function?  
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Bessel Function Evaluation in Lisp (2)

(let* ((z (+ (* (+ x -0.447420246891662d0) x) 0.5555574445841143d0))
(w (+ (* (+ x -2.180440363165497d0) z) 1.759291809106734d0)))

(* (+ (* x (+ (* x (+ (* w (+ -1.745986568814345d0 w z))
1.213871280862968d0))

9.4939615625424d0))
-94.9729157094598d0)

-0.00420059d0))

Poly-eval can do an in-line expansion that is then compiled.

Advantages include fewer multiplies (6, not 8) one more add  (9, 
not 8) but somewhat more overlap for superscalar processor.
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Bessel Function evaluation in Lisp (3)

Can we/ should we do this?  Generally we need a “license” for
rearrangement of code.

If  the programmer/ designer really wanted EXACTLY this 
sequence of computations, we would have to respect that.

Why a higher-level model is nicer than a program if the algorithm 
can then be improved to better code: Are the Bessel function 
coefficient numbers approximations to better values?
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Bessel Function evaluation in Lisp (4)

Conversion back to text for Fortran looks something like this…

“S=(X*(X*(W*(-1.745986568814345d0+W+Z) 
+1.213871280862968d0)+9.4939615625424d0)-
94.9729157094598d0)* -0.00420059d0”

Though we would question why this should be compiled better by Fortran 
than Lisp.
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Another example: the Euler Equation

The Euler equation is a favorite benchmark of Celestial Mechanics
symbolic calculation programs. 

E = u + e sin (E)

as commonly solved iteratively (for small e) gives this 
4th order expansion for E= u+A



19

The Euler Equation, 4th order solution

E= u+A  where A is 

4 3 2      4
e  sin(4 U)   3 e  sin(3 U)   (12 e  - 4 e ) sin(2 U)

A  = ----------- + ------------- + -----------------------
4 3 8 24

3
(24 e - 3 e ) sin(U)

+ --------------------
24
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The Euler Equation, 4th order solution

In Fortran as rendered by Mathematica 2.0 (buggy):

FortranForm= 
- (24*e - 3*e**3)*Sin(U)/24 + (12*e**2 -4*e**4)*Sin(2*U)/24+
- 3*e**3*Sin(3*U)/8 + e**4*Sin(4*U)/3

Note: in Fortran, 1/3 is computed as 0; this 
formatting is dangerous
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The Euler Equation, 4th order solution

in Mathematica … if we call… Expand[N[%]]

FortranForm= 
- 1.*e*Sin(U) - 0.125*e**3*Sin(U) + 0.5*e**2*Sin(2.*U) -
- 0.1666666666666666*e**4*Sin(2.*U) + 0.375*e**3*Sin(3.*U) +
- 0.3333333333333333*e**4*Sin(4.*U)

What are the precisions of the constants? Why do we 
multiply by 1.?
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The Euler Equation, 4th order solution

Maple produces

t0 = e**4*sin(4*U)/3+3.0/8.0*e**3*sin(3*U)+(12*e**2-4*e**4)*sin(2*
#U)/24+(24*e-3*e**3)*sin(U)/24

or after floating-point conversion using  evalf

t0 = 0.3333333E0*e**4*sin(4.0*U)+0.375E0*e**3*sin(3.0*U)+0.4166667
#E-1*(12.0*e**2-4.0*e**4)*sin(2.0*U)+0.4166667E-1*(24.0*e-3.0*e**3)
#*sin(U)

What are the precisions of the constants?  Do we 
really want to compute e**4 repeatedly?
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The Euler Equation, 4th order solution

After convert(expr,horner,[e]) Maple produces:

t0 = (sin(U)+(sin(2*U)/2+(3.0/8.0*sin(3*U)-sin(U)/8+(-sin(2*U)/6+s
#in(4*U)/3)*e)*e)*e)*e

Somewhat inconsistent.. 3.0/8.0? But close…

We don’t compute e**4 repeatedly, but what about 
exploiting the dependency  relationship between 
sin(u) and sin(2u)?
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Sin and Cos computation

s  := sin(u)
c  := cos(u)
s2 := 2*s*c   ;;   this is sin(2u)
c2 := 2*c*c-1  ;;  this is cos(2u)
s3 := s*(2*c2+1);; this is sin(3u)
s4 := 2*s2*c2  ;;  this is sin(4u)  etc

There’s an even better way for higher order, 
requiring only 2 mults and 2 adds for each new 
sin/cos pair.
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Sin and Cos computation even faster…

k1=sin(u), k2=4*k1^2, 
s[0]=sin(u),s[1]=1, c[0]=1, c[1]=cos(u)

The inner loop  for I>1 is

s[I]  := s[I-2]+c[I-1]     //sin(I*u)/sin(u)
c[I]  := c[I-2]-k2*s[I]    //cos(I*u)

When you need sin,
Sin(n*u) is  k1*s[n]

No computer system comes close to recognizing this automatically.
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Computing Derivatives

Many students who having studied the use of a ‘‘symbolic’’ language
like Lisp will have seen differentiation as a small exercise in
tree-traversal and transformation. They will likely view closed-form 
symbolic differentiation as trivial, if for no other reason than it can be 
expressed in a half-page of code:
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Derivatives in Lisp; irrelevant though

(defun d(e v)(if(atom e)(if(eq e v)1 0)
(funcall(or(get(car e)’d)#’undef)e v)))
(defun undef(e v)‘(d,e,v))
(defun r(op s)(setf(get op’d)(compile()‘(lambda(e v)(let((x(cadr e)))
(list’*(subst x’x’,s)(d x v)))))))
(r’cos’(* -1(sin x)))
(r’sin’(cos x))
(r’exp’(exp x))
(r’log’(expt x -1))
(setf(get’+’d)#’(lambda(e v)‘(+,@(mapcar #’(lambda(r)(d r v))(cdr e)))))
(setf(get’*’d)
#’(lambda(e v)‘(*,e(+,@(mapcar #’(lambda(r)‘(*,(d r v)(expt,r -1)))(cdr 
e))))))
(setf(get’expt’d)#’(lambda(e v)‘(*,e,(d‘(*,(caddr e)(log,(cadr e)))v))))
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Derivative of a program?

Viewing a subroutine as a manifest representation of a mathematical 
function, we can try to push this idea as far possible.

The alternative is using a ‘‘numerical’’ derivative of f(x) at a point c
computed by chosing some small Delta and computing 
(f(c+Delta)-f(c))/Delta.

Numerical differentiation yields a result of unknown, but probably low, 
accuracy.

(Useful literature has developed in the last 2 decades: ADIFOR at
Argonne National Lab for example)
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Other closed forms from CAS

Integral of 1/(z^5+1)  in Fortranform from Mathematica

(Sqrt((5 - Sqrt(5))/2.)*
- ArcTan(2*Sqrt(2/(5 - Sqrt(5)))*
- ((-1 - Sqrt(5))/4. + z)))/5. + 
- (Sqrt((5 + Sqrt(5))/2.)*
- ArcTan(2*Sqrt(2/(5 + Sqrt(5)))*
- ((-1 + Sqrt(5))/4. + z)))/5. + Log(1 + z)/5. -
- ((1 - Sqrt(5))*Log(1 - ((1 - Sqrt(5))*z)/2. + 
- z**2))/20. -
- ((1 + Sqrt(5))*Log(1 - ((1 + Sqrt(5))*z)/2. + 
- z**2))/20.

This is probably OK.  What about 1/(z^64+1) 
vs numerical integration?
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Exact or high-precision values

Arithmetic on objects of variable size is offered:
Most CAS support exact integer and rational computing.
Rational domain cannot handle  exponential, log, trignometric function
computing Å arbitrary-precision floats. 

exp(pi*sqrt(163))=262537412640768743.9999999999992500726.

This last expression is not an integer, but it is 
very close.
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Documents/ Electronic Notebooks

Output as TeX, html, xml, mathml, 
Notebooks (Mathematica, Maple, Macsyma …)
Spreadsheets (Theorist, MathCAD)
Graphics into AVS, other graphics packages

If the purpose of computing is insight, the 
documentation and analysis must play a role in 

the problem-solving environment.
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PART III:  GLUE

How do we communicate, store scientific programs/ math / 
program proofs?
Computer text files?

Output as TeX, html, xml, mathml, 
Notebooks (Mathematica, Maple, Macsyma …)
Spreadsheets (Theorist, MathCAD)
Graphics into AVS, other graphics packages
Why should computer algebra systems work 
better than (say) Perl or Tcl/Tk or Python or 

other scripting languages?
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You can’t talk effectively about math or 
programs without foundations

Experiments have shown that it is nearly impossible for two 
people to express mathematics over the telephone. 
If we treat programs like formal systems, a foundation must be 
available for making sure that syntactically valid and 
semantically consistent communication is going on.

CAS provide a basis for this communication.

All that Perl tells you is that you have a “string”.
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Development of optimizing code makes 
sense in CAS 

We hope we have shown that such transformation are quite 
plausible, and in fact reasonably easy --- if we know what 
transformations are needed --- in a suitable symbolic 
computation system.  
Compare this to  a “Compiler back end” written in C/C++ 
etc where the notion of a polynomial or a cosine is so thin.
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Trends for producing quality scientific 
software

Problem Solving Environments
• Scientific code production and testing
• Integration of user interfaces to applications
• Higher importance on

• reliability, 
• correctness, 
• verification

• Computer symbolic mathematical computation 
• an essential foundation
• a collection of tools.


