;;; -*- Mode:Common-Lisp; Package:ma; Base:10 -*- ;; ;; Written by: Richard J. Fateman ;; File: poly.lisp ;; Contains: vector-based polynomial recursive representation arithmetic ;;; (c) Copyright 1990 Richard J. Fateman, Peter Klier, Peter Norvig, Tak Yan ;;;(provide 'poly) ;;; A polynomial is either a number (integer -- for now) ;;; or a vector of length d+2 where d>0 is the degree of S ;;; S=#(mainvar coeff coeff ... coeff). ;;; ^ ^ ;;; | |-coeff of mainvar^d : non-zero ;;; |-coeff of mainvar^0 ;;; e.g. ;;; 4 + 5*x + x^2 = #(mainvar 4 5 1), where mainvar is an integer ;;; representing x in the system. ;;; Coeffs can be polynomials in other variables. ;;; Note: this is not the shortest code, but it should not be much slower ;;; than the fastest code absolutely necessary to get the job done. ;;(provide 'vector-math) (declaim (optimize (speed 3) (safety 0) (space 0) (compilation-speed 0))) (declaim (inline svref = eql make-array)) (eval-when (compile load) (provide 'poly)) (in-package :ma) ;; coefp: is defined to return true (non-nil, anyway) ;; for an element of the coefficient domain. By default, we ;; use integers. This could be changed in concert with other ;; programs to support other domains (see coef+). ;; Coefp is usually called to see if its argument is ;; (recursively) a polynomial in yet more variables, or is the ;; ``base case'' of a polynomial which is, in fact, a coefficient. ;; By defining it as "numberp" rather than "integerp" it works more ;; smoothly (no change needed for rationals or floats). (defmacro coefp (x) `(numberp ,x)) ;; mainvar: extract the main variable from a polynomial (defmacro mainvar (x) `(svref (the simple-vector ,x) 0)) ;; samevar: see if two polynomials have the same main variable (defmacro samevar (x y) `(eq (mainvar ,x) (mainvar ,y))) ;; degree: extract the degree from a polynomial (degree in main variable) (defmacro degree (x) `(- (length (the simple-vector ,x)) 2)) ;; lc: extract the leading coefficient of a polynomial (defmacro lc (x) `(svref ,x (1- (length ,x)))) ;; constc: extract the constant coefficient of a polynomial ;; with respect to its main variable (defmacro constc(x) `(svref ,x 1)) ;; monomialp: check if v is a monomial (like x, or 3x^2) (defun monomialp (v) (declare (simple-vector v)) (= (length v) (1+ (position-if-not #'(lambda(x) (equal x 0)) v :start 1)))) ;; var>: an ordering predicate on variables to determine which ;; is more "main". We could use strings or symbols for the variables ;; instead of numbers, and use alphabetic ordering for var>. ;; This seems simpler overall, since the variables might be more ;; complicated in applications (e.g. (cos z)). ;; Some easy encoding of names to numbers can be used (e.g. the ;; first symbol mentioned is 1, and then count up.) (defmacro var> (x y) `(> ,x ,y)) ;; The next set of macro definitions supplies the arithmetic ;; for coefficients. In general, any domain that can support ;; the coefficient operations below is fair game for the package. ;; More advanced operations may place additional requirements ;; on the coefficient domain (E.g. they form an algebraic Ring or Field). ;; Add/subtract/multiply two coefficients, etc. (defmacro coef+ (x y) `(+ ,x ,y)) (defmacro coef- (x y) `(- ,x ,y)) (defmacro coef* (x y) `(* ,x ,y)) (defmacro coef> (x y) `(> ,x ,y)) ;; Dividing two coefficients is not so obvious. If the coefficient ;; domain is the common-lisp rational numbers (an algebraic field) and ;; if y is non-zero, then (/ x y) is also in the same field. If the ;; coefficient domain is the integers, then division may throw the ;; computation out of that domain. (/ 1 2) is not an integer. ;; Here we assume the person or program using coef/ is knowledgeable ;; about its uses. Actually, we go further than that here. We ;; don't use coef/ in this file at all. In the places we use ;; division (in p/ ) we make the (perhaps unwarranted) assumption ;; that exact division over the integers is required. See p/. (defmacro coef/ (x y) `(/ ,x ,y)) ;; coef^ computer a coefficient to an integer power n (defmacro coef^ (x n) `(expt ,x ,n)) ;; some extra pieces just in case they're needed: remainder, negation, and ;; absolute value (defmacro coefrem (x y) `(mod ,x ,y)) (defun coefneg (x) (- x)) (defun coefabs (x) (abs x)) ;; Tests for zero and unity are important, as are constructors (defmacro coefzero () 0) ;; zero in the coefficient domain (defmacro coefone () 1) ;; unity in the coefficient domain (defmacro coefzerop (x) `(eql 0 ,x)) (defmacro coefonep (x) `(eql 1 ,x)) (defmacro coef-negative-p (x) `(and (coefp ,x) (< ,x 0))) (defun coefzerofunp (x) (eql 0 x)) ;; to funcall, we need a function ;;; This product function preserves both arguments and returns the product ;;; of two polynomials. ;; p*: return the product of v1*v2 (defun p* (v1 v2) (declare (inline make-array)) (cond ((coefp v1) (p*cv v1 v2)) ;; call function to multiply coef*poly ((coefp v2) (p*cv v2 v1)) ((samevar v1 v2) ;; two polynomials in the same main variable ;; do n X m multiplications (let (ilim jlim index ival res) (declare (fixnum ilim jlim index i j)) (setq ilim (1- (length v1)) jlim (1- (length v2))) (setq res (make-array (+ ilim jlim) :initial-element 0)) (setf (svref res 0) (mainvar v1)) (do ((i 1 (1+ i))) ((> i ilim) res) (setq ival (svref v1 i)) (unless (coefzerop ival) ;; shortcut 0 * anything = 0 (do ((j 1 (1+ j))) ((> j jlim)) (declare (fixnum i j)) (setq index (+ i j -1)) (setf (svref res index) (p+vv-zero-check (svref res index) (p* ival (svref v2 j))))))))) ((var> (mainvar v1) (mainvar v2)) (p*cv v2 v1)) (t (p*cv v1 v2)))) ;; p*cv: coefficient times polynomial vector; ;; preserves both inputs and although the result can ;; share substructure with the vector v, the top-level ;; vector is new. (true recursively) (defun p*cv (c v) (declare (inline make-array)) (cond ((coefp v) (coef* c v)) ((coefzerop c) (coefzero)) ;; 0 * anything is 0 ((coefonep c) v) ;; 1 * v = v. ;; run down the length of the vector, multiplying. ;; p* is not destructive of its arguments either. (t (let* ((v v) (len (length (the simple-vector v))) u) (declare (simple-vector v u) (fixnum len) (inline svref setf mainvar)) (setq u (make-array len)) (setf (mainvar u) (mainvar v)) (do ((i (1- len) (1- i))) ((= i 0) u) (declare (fixnum i)) (setf (svref u i) (p* c (svref v i)))))))) ;; pnegate: negate p ;; there are trivial other ways of doing this ;; like multiplying by -1. This takes less time ;; and space. (defun pnegate(v) (declare (simple-vector v)) (if (coefp v) (coefneg v) (let ((u (make-array (length v)))) (declare (simple-vector u)) (setf (svref u 0)(svref v 0)) (do ((i (1-(length v)) (1- i))) ((= i 0) u) ;; no need to call pnorm since -u is normalized (declare (fixnum i)) (setf (svref u i)(pnegate (svref v i))))))) ;; p+: sum two polynomials as vectors, non-destructively (defun p+ (v1 v2) (cond ((coefp v1) (p+cv v1 v2)) ((coefp v2) (p+cv v2 v1)) ;; reverse args ((samevar v1 v2) ;; same main var (let ((lv1 (length (the simple-vector v1))) (lv2 (length (the simple-vector v2))) (v1 v1) (v2 v2)) ;; not redundant (declare (simple-vector v1 v2) (fixnum lv1 lv2)) (cond ((> lv1 lv2) (p+into v2 v1 lv2 lv1)) ;; v1 is longer (t (p+into v1 v2 lv1 lv2))))) ((var> (mainvar v1) (mainvar v2)) (p+cv v2 v1)) (t (p+cv v1 v2)))) ;; p-: compute difference of two polynomials as vectors, non-destructively ;; this could be done trivially by u+(-v) but this is ;; faster and uses less space. (defun p- (v1 v2) (declare (simple-vector v1 v2)) (cond ((coefp v1) (p+cv v1 (pnegate v2))) ((coefp v2) (p+cv (pnegate v2) v1)) ((samevar v1 v2);; same main var ;;; aw, could do this in a pickier fashion... (p+ v1 (pnegate v2))) ((var> (mainvar v1) (mainvar v2))(p+cv (pnegate v2) v1)) (t (p+cv v1 (pnegate v2))))) ;; p+cv: add coeff to vector, non-destructively (defun p+cv(c v) (if (coefp v) (coef+ c v) (let ((v (copy-seq v))) (declare (simple-vector v)) (setf (svref v 1) (p+ c (svref v 1))) v))) ;; p+into: add terms from one polynomial v1 into another (defun p+into (v1 v2 shorter longer) (let (res) (declare (fixnum shorter longer) (simple-vector v1 v2 res) (inline p+vv-zero-check)) (setq res (make-array longer)) (setf (svref res 0) (mainvar v2)) (do ((i 1 (1+ i))) ((= i shorter)) (declare (fixnum i)) (setf (svref res i) (p+vv-zero-check (svref v1 i) (svref v2 i)))) (do ((i shorter (1+ i))) ((= i longer) (pnorm res)) (declare (fixnum i)) (setf (svref res i) (svref v2 i))))) ;; p+vv-zero-check: helper for p+into (defun p+vv-zero-check (place form) (if (coefzerop place) form (p+ place form))) ;; pnorm converts a polynomial into a normal form in case it is ;; really zero or a constant or has trailing (high degree) zero ;; coeffs. pnorm is destructive. pnorm is Not recursive except ;; in converting constant terms to manifest non-vectors. ;; Assume x is an arbitrary main-variable index: ;; #(x 5) -> 5. #(x 5 4 3 0 0) -> #(x 5 4 3). #(x 0 0) -> 0. ;; #(x 0 1) -> #(x 0 1) [no change] ;; pnorm: return the normal form of x (defun pnorm (x) (if (coefp x) x (let ((x x) pos) (declare (simple-vector x) (fixnum pos) (inline position-if-not coefzerofunp delete-if)) (setq pos (position-if-not #'coefzerofunp x :from-end t)) (cond ((= pos 0) (coefzero)) ;; nothing left but the header: zero polynomial ((= pos 1) ;; just the constant itself (pnorm (svref x 1))) ;; constant polynomial ((= pos (1- (length x))) x) (t #-kcl (delete-if #'coefzerofunp x :start pos) ;fix bug in kcl delete-if #+kcl (setq x (delete-if #'coefzerofunp x :start pos)) ))))) ;; p^v: this may seem like a dumb way to compute powers, but it's not ;; Repeated multiplication is generally faster than squaring. In this ;; representation, binomial expansion, a good bet for sparse representation, ;; is only sometimes advantageous, and then not by very much, usually. (defun p^ (x n) ;; x^n - n integer, x polynomial (cond ((integerp n) (cond ((minusp n) (error "negative powers not allowed")) ((zerop n) 1) ;; x^0 = 1 (even if x = 0) ((eql n 1) x) ;; x^1 = x ((coefp x) (expt x n)) (t (p* x (p^ x (1- n)))))) (t (error "only integer powers allowed")))) ;; p/: divide p by s; only exact divisions are performed, and ;; the result is q such that q*s = p; exact means that p, q, ;; and s all have integer coefficients. ;; This does NOT work over random coefficient domains that you might ;; construct. ;; Ordinarily a single value is returned unless there is an ;; error condition, in which case the first value is nil and the second ;; is a string which describes the problem. ;; Call p/-test if you want a "semi-predicate." ;; Look at the first (or only value). If it is non-nil, you've got ;; the exact quotient. ;; Call p/-and-barf if you want to signal an error in case ;; an exact division is not possible. (defun p/-and-barf (p s) (multiple-value-bind (v err) (catch 'p/ (p/ p s)) (cond ((null v) (error err)) (t v)))) (defun p/-test(p s) (catch 'p/ (p/ p s))) (defun p/ (p s) (cond ((coefzerop s) (throw 'p/ (values nil "Division by zero"))) ((coefonep s) p) ((coefzerop p) p) ((coefp p) (cond ((coefp s) (cond ((eql 0 (mod p s))(/ p s)) (t (throw 'p/ (values nil "Inexact integer division"))))) (t (throw 'p/ (values nil "Division by a polynomial of higher degree"))))) ((or (coefp s) (var> (mainvar p) (mainvar s))) (p/vc p s)) ((var> (mainvar s) (mainvar p)) (throw 'p/ (values nil "Division by a polynomial of higher degree"))) (t (p/helper p s)))) (defun p/vc (p s) (let ((q (copy-seq p))) (do ((i (1- (length p)) (1- i))) ((= i 0) q) (setf (svref q i) (p/ (svref q i) s))))) (defun p/helper (p s) (declare (simple-vector p s)) (let ((l1 (length p)) (l2 (length s))) (cond ((> l2 l1) (throw 'p/ (values nil "Division by a polynomial of higher degree"))) (t (let ((q (make-array (+ 2 l1 (- l2)) :initial-element 0)) (sneg (pnegate s)) (slc (lc s))) (setf (mainvar q) (mainvar p)) (do* ((i l1 (length p))) ((< i l2) (throw 'p/ (values nil "Quotient not exact"))) (setf (svref q (+ 1 i (- l2))) (p/ (lc p) slc)) (setq p (pnorm (p+ p (p* (subseq q 0 (+ 2 i (- l2))) sneg)))) (if (coefzerop p) (return (pnorm q))) (if (coefp p) (throw 'p/ (values nil "Quotient not exact"))))))))) ;; prem: return the pseudo remainder when p is divided by s ;; (You didn't learn this in high school.) Ref. Knuth, Art of Comptr. Prog. ;; vol. 2. This turns out to be important for GCD computations. (defun prem (p s) (cond ((coefzerop s) (error "Division by zero")) ((coefzerop p) p) ((coefp p) (cond ((coefp s) (coefrem p s)) (t p))) ((or (coefp s) (var> (mainvar p) (mainvar s))) (coefzero)) ((var> (mainvar s) (mainvar p)) p) (t (prem2 p s)))) ;; prem2: return the pseudo remainder when p is divided by s; p and s ;; must have the same variable. This is the usual situation. (defun prem2 (p s) (if (> (length s) (length p)) p (let* ((slc (lc s)) (l (- (length p) (length s))) (temp (make-array (+ 2 l) :initial-element 0))) (setf (mainvar temp) (mainvar p)) (do ((k l m) (m)) (nil) #-kcl(delete-if #' identity temp :start (+ 2 k)) ;; fix bug in kcl delete-if, which is non-destructive #+kcl (setq temp (delete-if #' identity temp :start (+ 2 k))) (setf (lc temp) (lc p)) (setq p (pnorm (p+ (p* p slc) (p*cv -1 (p* temp s))))) (cond ((or (coefp p) (var> (mainvar s) (mainvar p))) (return (cond ((= k 0) p) ; PATCH 12/8/94 (t (p* p (p^ slc k)))))) ; philliao ((< (setq m (- (length p) (length s))) 0) (return (cond ((= k 0) p) (t (p* p (p^ slc k))))))) (if (> (1- k) m) (setq p (p* p (p^ slc (- (1- k) m))))))))) ;; Subresultant polynomial gcd. ;; See Knuth vol 2 2nd ed p 410. or TOMS Sept. 1978. ;; pgcd2sr: return the gcd of u and v; #+ignore ;; code taken from maxima. reprogrammed without loop, later (defun pgcd2sr (p q) ;; set up so q is of same or lower degree ;; p and q have the same main variable (cond ((> (length q) (length p)) (rotatef p q))) (let*((pcont (pcontentsr p)) (qcont (pcontentsr q)) (p (p/ p pcont)) (q (p/ q qcont)) (content (pgcdsr pcont qcont))) (loop for g = 1 then (lc p) for h = 1 then (p/ (p^ g d) h^1-d) for d = (- (length p) (length q)) for h^1-d = (if (eql h 1) 1 (p^ h (1- d))) do (psetq p q q (p/ (prem p q) (p* g (p* h h^1-d)))) if (or (coefp q)(var> (mainvar p)(mainvar q))) return (if (coefzerop q) (p* content (ppartsr p))content)))) (defun pgcdsr (u v) (cond ((coefzerop u) v) ((coefzerop v) u) ((coefp u) (cond ((coefp v) (gcd u v)) (t (pcontentxsr v u)))) ((coefp v) (pcontentxsr u v)) ((var> (mainvar v) (mainvar u)) (pcontentxsr v u)) ((var> (mainvar u) (mainvar v)) (pcontentxsr u v)) (t (pgcd2sr u v)))) ;; pgcd2sr: return the gcd of p and q, which have the same main variable ;#+ignore (defun pgcd2sr (p q) ;; set up so q is of same or lower degree (cond ((> (length q) (length p)) (rotatef p q))) ;; next, remove the content (let*((pcont (pcontentsr p)) (qcont (pcontentsr q)) (p (p/ p pcont)) (q (p/ q qcont)) (content (pgcdsr pcont qcont))) (do* ((g 1 (lc p)) (h 1 (p/ (p^ g d) hpow)) (d (- (length p)(length q)) (- (length p)(length q))) (hpow 1 (if (eql h 1) 1 (p^ h (1- d))))) (nil) (psetq p q q (p/ (prem p q)(p* g (p* h hpow)))) ; (format t "~%p=~s~%q=~s~% d=~s, h=~s" p q d h) (if (coefzerop q) ;; poly remainder seq ended with zero ;; (return (p* content p)) ;bug in version prior to 11/94 (return (p* content (p/ p (pcontentsr p)))) ) (if (or (coefp q) (var> (mainvar p) (mainvar q))) ;; the remainder sequence ended with non-zero, just ;;return the gcd of the contents. (return content))))) #+ignore ;; we used this when the real pgcd2sr had a bug (defun pgcd2sr (p q)(pgcd2prim p q)) ;; this is a primitive prs, just like pgcd2sr but not as fast sometimes (defun pgcd2prim (u v) (cond ((> (length v) (length u)) (rotatef u v))) (let ((ucont (pcontentsr u)) (vcont (pcontentsr v))) (do ((c (p/ u ucont) d) (d (p/ v vcont) (ppartsr (prem c d)))) (nil) (if (coefzerop d) (return (p* (pgcdsr ucont vcont) c))) (if (or (coefp d) (var> (mainvar c) (mainvar d))) (return (pgcdsr ucont vcont)))))) ;; pcontentsr: return the content of p (see Knuth, op. cit) ;; the content is the GCD of the coefficients of the top-level in the ;; polynomial p. (defun pcontentsr (p) (cond ((coefzerop p) p) ((coefp p) (coefone)) (t (let ((len (length p))) (do ((i 2 (1+ i)) (g (svref p 1) (pgcdsr g (svref p i)))) ((or (= i len) (coefonep g)) g)))))) ; pcontentxsr: return the gcd of u and the content of p ;; this is a handy time-saver (defun pcontentxsr (p u) (cond ;;((coefzerop p) (format t "~%pcontentxsr line 1 p=~s u=~s" p u)u) ;;((coefp p) (format t "~%pcontentxsr line 2 p=~s u=~s" p u)(gcd p u)) (t (do ((i (1- (length p)) (1- i)) (g u (pgcdsr g (svref p i)))) ((or (coefonep g) (= i 0)) g))))) ; ppartsr: return the primitive part of p (defun ppartsr (p) (cond ((or (coefzerop p) (coefp p)) p) (t (p/ p (pcontentsr p))))) ;; in some of the algorithms, the cofactors will be "free". Here we're ;; just dividing the inputs by the gcd. (defun pgcd-cofac (u v)(let ((g (pgcdsr u v))) (values g (p/ u g)(p/ v g)))) ;; this program provides an ordering on polynomials, lexicographically. ;; it returns 'l (less than) 'e (equal) or 'g (greater than). ;; this ordering is recursive by main variable. There are other orderings, ;; like total degree ordering. (defun pcompare (u v) (cond ((eq u v) 'e) ;; quick check for equality ;; if u and v are coefficients, then compare their numerical values. ((coefp u)(cond ((coefp v)(cond((coef> v u) 'l) ((coef> u v) 'g) (t 'e))) ;;u is coefficient, v is not, so u << v (t 'l))) ;; v is coefficient, u is not, so u >> v ((coefp v) 'g) ;; neither is a coefficient (t (let ((um (mainvar u)) (vm (mainvar v)) (ud (degree u)) (vd (degree v)) (ctest nil)) (cond ((var> um vm) 'g) ; u has a more-main variable than v ((var> vm um) 'l) ; the reverse case ((> ud vd) 'g) ; u is higher degree u >> v ((> vd ud) 'l) ; v is higher degree, so v >> u ;; Same main variable, same degree. ;; Compare the coefficients, starting from the highest ;; degree. The first one that differs determines ;; which direction the comparison goes. (t (do ((i (1+ ud) (1- i))) ((= i 0) 'e); no differences found. u = v (setq ctest (pcompare (svref u i)(svref v i))) (if (eq ctest 'e) nil (return ctest)) ))))))) ;; compute the derivative wrt v, the encoding of a variable. ;; This assumes that there are no other dependencies on kernels, etc. (defun pderiv (p v) (labels ((pd1 (p &aux r) (cond ((coefp p) 0) ((var> v (svref p 0)) 0) ((eql (svref p 0) v) (setq r (make-array (1- (length p)))) (setf (svref r 0) v) (do ((i (1- (length p)) (1- i))) ((= i 1) (pnorm r)) (setf (svref r (1- i))(p* (- i 1) (svref p i))))) (t (setq r(copy-seq p)) (do ((i (1- (length r))(1- i))) ((= i 0) (pnorm r)) (setf (svref r i)(pd1 (svref r i)))))))) (pd1 p)))