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Abstract

Common practice is to recommend evaluation of polynomials by Horner’s rule. Here’s an example
where it is fast but doesn’t work nearly as accurately as another fairly easy method. Can a method for
Legendre polynomials be both fast and accurate? 1

1 Legendre Polynomials

A substantial literature has grown up around the useful notion of orthonormal polynomials and one prime
example is that of Legendre polynomials (also known as Legendre Functions of the First Kind and usually
written as Pn) which we encountered most recently in looking at formulas for Gaussian quadrature. In this
case we wanted to evaluate them at particular points and we have a choice of how to do so. The polynomials
can be defined in various ways, but one popular method uses the recurrence (for integer n ≥ 0):

Pn(x) :=
(2n − 1)xPn−1 − (n − 1)Pn−2

n
, P0 = 1, P1 = x

Another method is to expand this expression as a polynomial in x, extract the coefficients, and use
Horner’s rule.

Let us try an example, for P5(x) which is

63 x5 − 70 x3 + 15 x

8

Using Horner’s Rule it can be expressed as

x
(
x2

(
63 x2 − 70

)
+ 15

)
8

or by performing the indicated division:

x
(
x2

(
7.875 x2 − 8.75

)
+ 1.875

)
The recurrence, on the other hand, requires following a program. Here it is expressed in Macsyma:

1We have previously observed that Chebyshev polynomials (Tn)can be calculated using a recurrence that computes Tn+m

from Tn and Tm. For this, see papers by Fateman and Koepf [1, 3].
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h(x):=block([p0,p1,p2,p3,p4],
p0:1,
p1:x,
p2:(3*x*p1-p0)/2,
p3:(5*x*p2-2*p1)/3,
p4:(7*x*p3-3*p2)/4,

(9*x*p4-4*p3)/5);

Normally one would not write this out but express this as a loop (see Appendix) or perhaps recursively. Even
concealing the computation of coefficients (e.g. (2n − 1) and n − 1), this seems to take considerably more
multiplications than Horner’s rule: 11 vs 4, and twice as many additions. Horner’s rule is often recommended
as an efficient and usually numerically accurate way of arranging computations.

2 Do we get the same answers though?

Consider the 20th Legendre polynomial,
(34461632205x20 − 167890003050x18 + 347123925225x16 + · · ·)/262144
Alternatively, we can express the 20th Legendre polynomial as a list in terms of its coefficients, and use

Horner’s rule. The coefficients look like this (we have converted them to double-float precision):
{131460.694137573,−640449.535552979, 1324172.68838501, · · ·}
Exact computation tells us that

P20(1/2) = − 13292650571
274877906944

This is about - 0.04835838106374.
Using Horner’s Rule with exact rational coefficients and a double-float x = 1/2 gives - 0.04835839600128

where we have indicated the inaccurate digits as italics. This computation converts the exact rational
coefficients to the type of the argument x, as needed, so all the computation was done in double-float.

Putting the computation over a common denominator, using integer coefficients in the numerator, and
then evaluating numerator using Horner’s rule, we get - 0.04835838112922

Just running the recurrence in double-floats gives - 0.04835838106736, which has two more correct
digits.

Hypothesis: Don’t evaluate Legendre polynomials by Horner’s Rule, unless you are not particularly
concerned with accuracy.

We searched for more extreme examples.
Consider P20 evaluated exactly at x = 99/100 to

−118164337526931350636106929932434673288755559
524288000000000000000000000000000000000000000

which is about - 0.225380587629187299034322605.
Horner’s Rule evaluates this polynomial of degree 10 in x2 using 10 adds and 10 multiplies, plus one

squaring. Call that a total cost of 21. Unfortunately, the answer obtained in this way at x = 0.99 is -
0.22535407978638, where the digits in italics are incorrect.

Computing the same value by running the recurrence for degree 20 uses, for each of the 18 iterations,
4 floating-point multiplies, one divide, one add, and also a few integer operations. Ignoring the integer
operations, call the cost about 108 operations.

The answer is - 0.22538058762918, correct, to almost all digits.(the final 8 should be rounded up to a 9).
If we run the iteration using 100-digit bigfloat arithmetic, the answer has 99 correct digits.
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Experiments with graphing rapidly show that the worst behavior for Horner’s Rule is when |x| is just
less than 1, where the zeros of Pn for different values of n are quite close. Indeed, the value at 1, computed
exactly, is 1, but using Horner’s rule is 1.29.

A question of some interest to us is whether we can evaluate Legendre Polynomials using some other
scheme which takes no more arithmetic than Horner’s rule, yet maintains the same numerical accuracy as the
recurrence. For our motivating application, it is particularly important to have accurate values of Legendre
polynomials near their zeros, so that these zeros can be accurately computed as a component of generating
Gaussian quadrature formulas of various orders.

One possibility is to shift the Legendre polynomial, essentially re-expressing it as a Taylor series centered
at 1. In this case the Horner’s rule expansion is computed relative to y = 1 − x (or by anti-symmetry at
the other end of the unit interval), and accuracy is very high at (say) x = 99/100 or y = 1/100. This rule
does not have the symmetry of expansions about zero, and in particular the Horner’s rule at order 20 has
21 non-zero coefficients, not just 10, requiring twice as much arithmetic. This is less than the recurrence,
but with similar accuracy to the recurrence in a limited area. If it were really as accurate, a reasonable
tradeoff might be to use the expansion around 1 for numbers with absolute value in the range 0.5 to 1.
Programs using this technique are also indicated in the appendix. Unfortunately the polynomial evaluation
techniques, computed using any standard fixed-precision floating-point arithmetic, just do not appear as
smooth functions, monotonic in appropriate intervals. As such they probably cannot be used reliably for
(say) zero-finding. Their unfortunate behavior can easily be confirmed using graphics software: A close look
at a plot shows the recurrence tracing out a smooth curve, but any of several Horner’s rule computations
producing a jagged graph somewhere between 0 and 1. [2].

References

[1] R. Fateman, Lookup tables, recurrences and complexity. Proc. of ISSAC 89, ACM Press, New York,
1989, 68–73.

[2] Course Notes and Solutions for Math 128, February 2004. http://www.cs.berkeley.edu/~wkahan/Math128/M128Bsoln09Feb04.pdf.

[3] W. Koepf. Efficient Computation of Chebyshev Polynomials in Computer Algebra,
http://www.mathematik.uni-kassel.de/~koepf/cheby.pdf.

3 Appendix: Programs

These experiments were done with the Macsyma / Maxima, computer algebra system.

(
/* define a recurrence for Legendre_p polynomials*/

lp(q,x):= block([p0:1,p1:x,pn:x], /*fast and 100 percent accurate if x is rat(z), say.*/
if (q=0) then 1 else if (q=1) then x else
( for n:2 thru q do
(pn: 1/n*(x*(2*n-1)*p1-(n-1)*p0),
p0:p1,
p1:pn),

pn)),

/* Make a Horner’s rule version of a legendre polynomial*/
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list22horner(L,var,ans):= /*evaluate a list as a polynomial using Horner’s Rule */
if L=[] then ans else list22horner(rest(L),var,var*ans+first(L)),

kill(lglistz),
/* keep a list of the non-zero coefficients, memoized */
lglistz[n]:=block([r:[]], for i in poly2list(lp(n,’x),’x) do

if i#0 then r:cons(i, r), reverse(r)),

/*Compute nth legendre_p at x using Horner’s rule and the coefficients
in lglistz. */
clg(n,x) :=block([y:x^2],

(if oddp(n) then x else 1) * list22horner(lglistz[n],y,0)),

/*taylor series */
tay1[n](y):=’’horner(subst(-y,x-1,taylor(lp(n,’x),’x,1,n)),y),
/* value of a legendre polynomial near 1 and minus 1.*/
lpnear1(n,x):=tay1[n](1-x) )$
lpnearm1(n,x):=-tay1[n](x-1) )$
lpnear0(n,x):=clg(n,x)$

/* Other programs */
(g[0](x):=1, g[1](x):=x, g[n](x):= (1/n)*(x*(2*n-1)*g[n-1](x)-(n-1)*g[n-2](x)))$
sp[L](x):= sum((binomial(L,k)*binomial(-L-1,k)/2^k*(1-x)^k,k,0,L)$

/* make a list of expansion coefficients around 1-x, and also the denominator */
ex1(n):= block([h:poly2list(ratnumer(sp[n](1-’y)),’y)], [h, last(h)])$

/* similar, around 0 */
ex0(n):= block([s:rat(sp[n](’y))], [poly2list(ratnumer(s),’y),ratdenom(s)])$
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