Macsyma
Scientific Graphics Reference Manual

Macsyma Scientific Graphics Reference Manual

This document corresponds to Macsyma version 2.4.

The software described in this document is furnished only under license and may be used or copied only in
accordance with the terms of such license. Nothing contained in this document should be construed to imply
the granting of a license to make, use, or sell any of the software described herein. The information in this
document is subject to change without notice, and should not be construed to imply any representation or
commitment by Macsyma, Inc.

The Documentation Staff of Macsyma Inc. prepared this manual.

A report or thesis that contains results obtained by using Macsyma should acknowledge that the work was
done with the aid of Macsyma, a large symbolic manipulation program developed at the MIT Laboratory for
Computer Science and supported from 1975 to 1983 by the National Aeronautics and Space Administration
under grant NSG 1323, by the Office of Naval Research under grant N00014-77-C-0641, by the U.S. Depart-
ment of Energy under grant ET-78-C-02-4687, and by the U.S. Air Force under grant F49620-79-C-020, from
1982 to 1992 by Symbolics, Inc. of Concord Mass. and since by Macsyma Inc. of Arlington, Mass.

A copy of the report or thesis should also be sent to Macsyma Inc at the address below.

Macsyma, PC Macsyma and PDEase are registered trademarks of Macsyma Inc. DataViewer, MathTips,
NumKit and MathHelp are trademarks of Macsyma Inc. Matlab is a trademark of the MathWorks, Inc. All
other product names mentioned herein are trademarks of their respective owners.

This document may not be reproduced in whole or in part without the prior written consent of Macsyma
Inc.

Printed in the USA.
Printing Number and Year: 98 1

Copyright (©1998 Macsyma, Inc.
All Rights Reserved

Macsyma Inc.
20 Academy Street
Arlington, MA 02476-6436

(781) 6464550
info@macsyma.com
service@macsyma.com
Internet: ~ URL http://www.macsyma.com

E-mail:

Contents

1 Plotting and Graphics 1
1.1 Two-Dimensional Graphics 2
1.1.1 Plotting Functions of One Variable 2
1.1.2 Plotting Parametric Curves in Two Dimensions)
1.1.3 Contour Plots and Implicit Plots in Two Dimensions 6
1.1.4 Plotting Discrete Sets of Points in Two Dimensions 9

1.1.5 Plotting Vector Fields in Two Dimensions 11

1.1.6 Special Capabilities For Two Dimensional Plotting 12
1.1.6.1 Adaptive Density Plotting 12

1.1.6.2 Character Plotting (2D Only) 13

1.1.6.3 Line Plotting (2D Only) 15

1.2 Three-Dimensional Graphics. 17
1.2.1 Plotting Functions of Two Variables 18
1.2.2 Plotting Parametric Curves in Three Dimensions 20
1.2.3 Contour Plots in Three Dimensions 20
1.2.4 Plotting Discrete Sets of Points in Three Dimensions 21
1.2.5 Plotting Parametric Surfaces in Three Dimensions 21
1.2.6 Plotting Vector Fields in Three Dimensions 23

1.3 Changing Plot Geometry e 24
1.3.1 Changing the Number of Plot Points 24
1.3.2 Coordinate Transformations 25
1.3.2.1 Pre-Defined Coordinate Transformations 25

1.3.2.2 User-Defined Coordinate Transformations 28

1.3.3 Superimposing Plots 31
1.3.3.1 Basic Command for Combining Plots 31

1.3.3.2 The “Clear/Wait” Scheme 31

1.3.3.3 The “First/Same/Last” Scheme 31

1.3.3.4 Merging Plot Files o 33

1.4 Changing Plot Appearance e 34
1.4.1 Changing the View of the Plot 34
1.4.1.1 Changing Plot Scale and Perspective 34

1.4.1.2 Changing Viewpoint and Orientation 35

1.4.2 Appearance of Plotted Points, Lines and Surfaces 36

1.5

1.6

1.7

The
2.1

2.2

1.4.2.1 Line Types, Line Colors, and Plot Symbols 36

1.4.2.2 Surface Colors, Lighting and Mesh 38

1.4.23 Colors o 39
1.4.3 Changing Bounding Box and Axes 40

1.4.3.1 Bounding Box and Clipping Planes 40

1.4.3.2 Plot Axes, Axis Titles and Axis Numbers 44
1.4.4 Changing Text Labels in Plots 45

1.4.4.1 Plot Titles and Annotations 45

1.4.4.2 Contour Labels 47

1.4.4.3 Other Text Labels 47
1.4.5 Specifying a Graphics Style L 47
Animation L. e 47
1.5.1 Defining Animations With the Plot_ Animate Command 48
1.5.2 Defining Animations in the Macsyma Front End 48
1.5.3 Playback of Animation Sequences. 49
Screen Display, Files and Hardcopy 50
1.6.1 Screen Display and Redisplay L 50
1.6.2 Hardcopying Plots e 51
1.6.3 Saving Plotsin Files 52
Other Topics in Graphics L o e 53
1.7.1 Cleaning Up the Plotting Environment 53
1.7.2 Handling Plot Errors 53
1.7.3 Alternate Representations of 3D Plots 53
1.7.4 Miscellaneous Plotting Commands L 0oL 54
Macsyma Front End Math Engine 55
Entering Data into the MFE Math Engine 55
2.1.1 Import and Export — external data files 57
The mfe_data Package e 57
2.2.1 Getting Data From the MFE Math Engine 57
2.2.2 Putting Data into the MFE Math Engine from Macsyma 57
223 Viewing Data L 58

2.2.3.1 Making 2 and 3 Dimensional Plots of MFE Data 58

2.2.3.2 Smoothing and Graphing MFE Data 59

ii

List of Tables

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

Arguments of xfun and yfuno oo 29
Specifying xfun and yfun in plot oo 29
Settings for centerplot, perspective, and reverse 30
Settings for centerplot, perspective, and reverse 35
Examples of Line and Symbol Specification 37
Built-in Colors L e 39
Access to Plot Representations L e 53
Controlling Representations From replot 54

iii

iv

Chapter 1

Plotting and Graphics

This chapter describes how to produce two- and three-dimensional plots in Macsyma. You can produce five
basic kinds of plots with Macsyma:

e Plots of functions of one or two independent variables. See Section 1.1.1, page 2 and Section 1.2.1,
page 18.

Plots of parametric curves and surfaces. See Section 1.1.2, page 5 and Section 1.2.2, page 20 and
Section 1.2.5, page 21.

Contour plots and plots of implicit relations. See Section 1.1.3, page 6 and Section 1.2.3, page 20.

e Plots of discrete point sets. See Section 1.1.4, page 9 and Section 1.2.4, page 21.

Plots of vector fields. See Section 1.1.5, page 11 and Section 1.2.6, page 23.

Macsyma’s plotting commands make many default decisions about plots without bothering you to ask, such
as choices of viewpoint, plot line colors, surface coloring models, axis label numbers, and so forth. After you
become familiar with the basic plotting functions, you may wish to modify or override Macsyma’s graphics
defaults to get precisely the effects that you want.

Macsyma offers a wide range of controls so you can obtain precisely the publication-quality scientific graphics
you want. You can

e Change basic plot geometry of the plotted object itself, such as the number of plot points, the coordinate
system used, and superimposition of plots. See Section 1.3, page 24.

e Change the viewpoint, roll angle, scale and perspective. See Section 1.4.1.2, page 35.

e Change the appearance attributes of the plotted object itself, such as line colors, surface colors, lighting
and plot point symbols. See Section 1.4.2.1, page 36.

e Change the secondary elements of the plot which surround the main plotted object, such as the plot
axes, bounding box and text labels.

e Animate plots, including animating changes of surface location, shape, color, viewpoint, lighting, and
other plot attributes.

Basic plot geometry (such as number of plot points and their coordinates) can be determined only at the
time when Macsyma generates a plot. Most other plot characteristics can be changed in two basic ways.

2 CHAPTER 1. PLOTTING AND GRAPHICS
e Plot characteristics can be changed programmatically at the time the plot is generated, by changing
option variables and optional arguments to the plotting commands which generate the plot.

e Most attributes of a plot can be changed after the plot is generated, using the graphics editing capa-
bilities in the Macsyma Front End. For Macsyma 2.0 and successors, see Scientific Notebook Interface
Reference Manual for more information.

Some plot utilities are also described.

e Superimposing plots (See Section 1.3.3, page 31)
e Hardcopying plots (For Macsyma 2.0, see Section 1.6.2, page 51)

e Naming and saving plots (For Macsyma 2.0, see Section 1.6.3, page 52)

1.1 Two-Dimensional Graphics

This section discusses the main two-dimensional plotting commands in Macsyma. The main commands for
two-dimensional plotting are

e plot, Section 1.1.1, page 2

e paramplot, Section 1.1.2, page 5

contourplot and implicit_plot, Section 1.1.3, page 6

graph, Section 1.1.4, page 9

e plot2_vect, Section 1.1.5, page 11

1.1.1 Plotting Functions of One Variable

plot(y-exps, z-var,a-range,{ ’args,. .., arg:}) Special Form

Plots y-exps in the y direction, while z-var, the x-axis, takes on values specified by z-range. The inputs
argy, - .., arg, are optional. The input arguments can take various forms, each described below.

The input y-exp can be any of:

y-exps Action
erp plot plots a curve of exp against z-var.
[ezp1, ..., expy] Plots n curves of exp; against z-var. Each ezp; is evaluated in the context:

float(ev(exp;, z-var=value from z-range, numer)). An error is signaled
if this does not result in a floating-point number.

The input z-range can be any of:

1.1.

TWO-DIMENSIONAL GRAPHICS 3

x-range Meaning

low, high where low and high evaluate to numbers. The value low may be either
greater or less than high. The input z-var takes on plotnum values equally
spaced between low and high. See Section 1.3.1, page 24.

Note: The first argument is evaluated at low first. For example,
plot(1/x,x,—1,—3); calculates 1/(—1.0) before 1/(—3.0). This matters
only if the computation of the first argument changes a variable which in
turn changes the value returned by subsequent computation. Whether or
not low < high, min(low, high) is displayed on the left side of the plot.
This can be overridden using the optional argument special with reflect
as xfun. (see Section 1.3.2.2, page 28).

low, high, integer This form has the same effect as the above except that z-var takes on only
integer values between low and high inclusive.

[valy, ..., val,] z-var takes the values specified by the list of values.

arrayname where arrayname is the name of a declared floating-point one-dimensional

array. Such an array can be created by means of a command such as
array (arrayname, float, maz-index) ;. In this case, z-var takes the val-
ues from arrayname[0] through arrayname[maz-index]. (Here, maz-index
is the maximum index of arrayname.)

The optional arguments arg;, ..., arg, can appear in any order. The rule for evaluating optional
arguments is as follows: If the argument is atomic, it is evaluated, and the resulting values are used.
The inputs argy, ..., arg, can be any of the following:

Optional Argument Reference

x-label, y-label or title descriptor See Section 1.4.4, page 45.

Line type descriptor See Section 1.3, page 24.

first, last and same See Section 1.3.3.3, page 31.

polar, log, linlog, or loglin See Section 1.3.2, page 25.

An alternative form for plot is plot(y-funs, z-range, argi, ..., arg,);. Here, y-funs must be a

function of one argument or a list of functions of one argument. The functions must be either translated
or compiled functions, and they must return a floating-point number when given floating-point or integer
arguments. This form of plot acts as though you had not only given an argument to the y-funs, but
also specified that argument as the variable in the form above. For example, plot(f,-2,2); acts like
plot(f(x), x,-2, 2);. This provides a quicker evaluation of the first argument and for that reason
no checking is done on the result. If the wrong sort of number is returned, the plot is not useful.

Ezxamples
The example below Figure 1.1, page 4, illustrates how you plot sinz against x as = takes on plotnum
values between —7 and 7.

(c1) plot(sin(x), x, -%pi, %pi)$
This example Figure 1.2, page 4, illustrates how you plot a list of the first few Fibonacci numbers versus
the integer position in the list.

(c1) 1lst:makelist(fib(i), i, 1, 9);

(d1) [1, 1, 2, 3, 5, 8, 13, 21, 34]

(c2) plot(1lst[il, i, 1, length(lst), integer)$

The example Figure 1.3, page 5, illustrates how you plot f(z) as x takes the values in the specified list.
(c1) £(x):=sqrt(x+%pi)$

CHAPTER 1. PLOTTING AND GRAPHICS

0.50

Y 0.00

-0.50

-2.00 0.00 2.00

-3.1<X<3.1,-1.00<Y <1.00

Figure 1.1: Example of the Plot command

2.00 4.00 6.00 8.00

1.0<X<9.0;1.0<Y <34

Figure 1.2: Plotting at Integer Values of the Abscissa

1.1. TWO-DIMENSIONAL GRAPHICS)

(c2) translate(f)$
(c3) plot(f, [-2, 3, 100.12],
"X","F(X)","Plot made from a list of abscissa values")$

Plot made from a list of abscissa values

10.00

7.50

F(X)
5.00

2.50

0.00 50.00 100.00

-2.0<X<1.00e+2; 1.1 <Y <10.

Figure 1.3: Plot of a Macsyma Function with a list of Abscissa Values

1.1.2 Plotting Parametric Curves in Two Dimensions

paramplot(z-exps, y-exps, t-var, t-range, {’argy, ..., ‘argy}) Special Form
Plots z-exps as the z coordinate against y-exps as the y coordinate. The inputs arg;, ..., arg, are
optional.

The format for the first two arguments is the same as that for the first argument to plot. Thus if z-exps
is [zexpy, ..., zexp,] and y-exps is [yexpy, ..., yerpg], then max(n,k) curves are plotted. Assuming
n > k, they are: xerpy vs. yerpi, ..., TELPL VS. YEIDk, LETPk+1 VS. YETDk, - - ., TELPy VS. YETPE.

The inputs z-ezps and y-exps can be any of:

T-y-exps Action
exp paramplot plots a curve of (z-exp,y-exp) against t-var.
[expy, ..., expy] Plots n curves of exp; against t-var. Each exp; is evaluated in the context:

float(ev(exp;, t-var=value from z-range, numer)). An error is signaled
if this does not result in a floating-point number.

The input t-range can be any of:

t-range Meaning

6 CHAPTER 1. PLOTTING AND GRAPHICS

low, high where low and high evaluate to numbers. The value low may be either
greater or less than high. The input ¢-var takes on plotnum values equally
spaced between low and high. See Section 1.3.1, page 24.

Note: The dependent variables are evaluated at low first.

low, high, integer This form has the same effect as the above except that t-var takes on only
integer values between low and high inclusive.

[valy, ..., val,] t-var takes the values specified by the list of values.

arrayname where arrayname is the name of a declared floating-point one-dimensional

array. Such an array can be created by means of a command such as
array (arrayname, float, maz-index) ;. In this case, t-var takes the val-
ues from arrayname[0] through arrayname[maz-index]. (Here, maz-index
is the maximum index of arrayname.)

The optional arguments arg;, ..., arg, can appear in any order. The rule for evaluating optional
arguments is as follows: If the argument is atomic, it is evaluated, and the resulting values are used.
The inputs argy, ..., arg, can be any of the following:

Optional Arqgument Reference

x-label, y-label or title descriptor See Section 1.4.4, page 45.

Line type descriptor See Section 1.3, page 24.

first, last and same See Section 1.3.3.3, page 31.

polar, log, linlog, or loglin See Section 1.3.2, page 25.

An alternative form for paramplot is paramplot (y-funs, z-range, argy, ..., arg,);. Here, y-funs

must be a function of one argument or a list of functions of one argument. The functions must be
either translated or compiled functions, and they must return a floating-point number when given
floating-point or integer arguments. This form of paramplot acts as though you had not only given an
argument to the y-funs, but also specified that argument as the variable in the form above. For example,
paramplot (f,-2,2); acts like paramplot (f(x), x,-2, 2);. This provides a quicker evaluation of the
first argument and for that reason no checking is done on the result. If the wrong sort of number is
returned, the plot is not useful.

Ezamples
This example Figure 1.4, page 7, plots cost for the z-axis and sint for the y-axis as t takes on
plotnum values between 0 and 27 (see Section 1.3.1, page 24). If equalscale is true this draws
a circle (see Section 1.4.1.1, page 34).
(c1) paramplot(cos(t),sin(t), t, O, 2*)pi), equalscale:true$
This example plots f(x) vs. g(z) as = goes from 0 to 2w. The following example plots Macsyma
functions, and results in the same plot as the previous example Figure 1.4, page 7.
(c1) f£(x):=(mode_declare(x,float),cos(x))$
(c2) g(x):=(mode_declare(x,float),sin(x))$
(c3) translate(f,g)$
(c4) paramplot(f, g, x, 0, 2*%pi), equalscale:true$

1.1.3 Contour Plots and Implicit Plots in Two Dimensions

contourplot(z-funs, x-var, z-range, y-var, y-range, {’argy, ..., ’arg,}) Spectal Form

Plots level contours of the expressions z-funs, which are functions of z-var and y-var. z-funs can be
a single expression or a list of expressions. z-range and y-range can take on the same forms as the

1.1.

TWO-DIMENSIONAL GRAPHICS 7

1.00
0.50] \
Y 0.00]
-100 T 177 1T 11 T 1T 11 T 1T 11
1.00< X< 1.0 .00 -050 000 050 1.00
-1.00<Y<1.00
Z=0.00 X

Figure 1.4: Drawing a circle with the Paramplot command

range arguments to the function plot. The option variables contours, zmax, and zmin determine
what contours are displayed. Changing contours does not require any more points to be calculated,
so it makes sense to change contours in a Macsyma break, after a plot, or before using replot. The
contours are drawn using linear interpolation, so they tend to look rough, especially near saddle points,
unless plotnum or plotnumO and plotnum1 are large. Since the contour tracking algorithm is quite
smart, all contours are either closed loops, or terminate at the boundaries of the region. The argy, ...,

arg, are optional arguments. The optional arguments arg;, ..., arg, can appear in any order. The
rule for evaluating optional arguments is as follows: If the argument is atomic, it is evaluated, and the
resulting values are used. The inputs argy, ..., arg, can be any of the following:

Optional Argument Reference

x-label, y-label or title descriptor See Section 1.4.4, page 45.

Line type descriptor See Section 1.3, page 24.

first, last and same See Section 1.3.3.3, page 31.

polar, log, linlog, or loglin See Section 1.3.2, page 25.

contourplot is exactly the same as plot3d(..., contour). That is, it calculates the same points as

plot3d would, but displays the points as a contour plot.

contours default: 20 Option Variable

If contours is a positive integer, then approximately contours contours are drawn. The levels between
them are “nice” values. “Nice” means in multiples of a-10™, where a is 1, 2, or 5. The levels are computed
by the same function that determines the placement of tick marks on the axes. The contour levels are
chosen between the maximum and minimum z values to be plotted. This choice is influenced by the
settings of zmax and zmin, described below.

If contours is a negative integer, then abs(contours); evenly spaced contours are drawn. In this
case the levels are at “nasty” values and you may want to set labelcontours to false, to suppress the

CHAPTER 1. PLOTTING AND GRAPHICS

display of long numbers on the contours. Of course, the range for these contours can be restricted by
setting zmax and zmin appropriately.

If contours is a list of numbers such as contours:[1,0.5,%pi];, then those numbers are used to
determine the heights of the contours. The numbers in the list can be in any order. See also labelcon-
tours.

implicit_ plot(expr,z-var,zlo,zhi,y-var,ylo,yhi) Function

Plots the graph of functions which are implicitly specified by ezpr in the (x,y) plane. expr can be
either an expression in z-var and y-var or an equation of two expressions in z-var and y-var or a list
of expressions or equations. The inputs zlo and zhi are the lower and upper limits of the z-coordinate
and ylo and yhi are the lower and upper limits of the y-coordinate. implicit_plot uses Macsyma’s
contourplot machinery to generate the plot.

Do example(implicit_plot); for an example, and demo(implicit_plot); for a longer demonstra-
tion.

Ezxamples

This example Figure 1.5, page 8, illustrates how to calculate and display 10 contours of %yz + cosx + %;1:
where x takes plotnumO values between —6 and 6 and as y takes plotnum1 values between —3 and 3.

(c1) contours:10$
(c2) contourplot(y~2/2+cos(x)+x/2,%x,-6,6,y,-3,3)$

2.00— \
. —80
] —70
1 — 6.0
—50
Y . |
0.00 = \/ ; —40
2.00 /
. / _-2-0
T T T T T 1 T T
6.0<X<6.0 .500 0.00 5.00
3.0<Y<3.0
Z = 0.00 X

Figure 1.5: Contour plot in two dimensions

The next example Figure 1.6, page 9, illustrates plotting on a 10 x 10 grid:

(c1) contours:plotnumO:plotnuml:10$
(c2) contourplot(random(100), x, 0, 1, y, 0, 1)$

To find the zeroes of 23 = 1 in the complex plane, execute either of the following sequences of commands
resulting in Figure 1.7, page 10. The odd values for plotnumO and plotnuml improve the accuracy,
which is needed to plot the intersection point at the center of the plot. The three curved lines are the

1.1.

1.00

0.7

Y 0.50

0.2

TWO-DIMENSIONAL GRAPHICS

\Y

n
—

T

—
q
&

S

DS

—

0.00<X<1.0
0.00<Y<1.0

Z=0.00

Figure 1.6: Contours Generated by 100 Random Points in Two Dimensions

locus realpart(expression)=1 and the three straight lines are the locus imagpart(expression)=1. The roots

of 23 =1 are the three intersection points of the curved and straight lines.

(c1)
(c2)

plotnum0:plotnuml:61$
implicit_plot([realpart ((x+%i*y) "3-1),imagpart ((x+}i*y) "3-1)]1,

x,-1.5,1.5,y,-1.5,1.5)$

(c1)
(c2)

x,-1.5,1.5,y,-1.5,1.5)$

Macsyma 2.0 and successors enable you to turn on/off and edit contour labels after generating a plot using

controls in the Macsyma Front End.

(plotnumO:plotnuml:61, contours:[0], labelcontours:false)$
contourplot ([realpart ((x+%i*y) "3-1) ,imagpart ((x+%ix*y)"3-1)],

—89.
—79.
—69.
—b59.

—10.0

1.1.4 Plotting Discrete Sets of Points in Two Dimensions

graph(z-lists, y-lists, {’argy, ...

Plots points specified by the z-lists and y-lists, interpreting z-lists as a list of abscissas, and y-lists as
a list of ordinates. The inputs argy, ...

, Jargn})

The z-lists and y-lists can be in any of the formats below:

Format
[alisty, ..

., alisty)

Action

eleme

nts of y-list; are ignored.

, arg, are optional arguments.

Special Form

Each of the z-list; is a list of numbers. If the length of z-lists is less than
that of y-lists then z-lists is filled with z-list;, to make the lengths the same.
Similarly if the length of y-lists is less than that of z-lists, then y-lists is
filled with y-list; to make the lengths the same. If the length of y-lists is
k, then k curves of y-listy vs. z-listy, ...
one of the z-list; is shorter then the corresponding y-list;, then the extra

, y-listy, vs. z-listy, are plotted. If

10

CHAPTER 1. PLOTTING AND GRAPHICS

1.00

Y 0.00

-1.00

-15<X<15
-15<Y<15
Z=0.00

[z-ptny, ..., x-ptny,]

arrayname

2d-arrayname

Figure 1.7: A plot of an implicit relation

Where z-ptn; evaluates to a number. Lists of numbers are interpreted as
lists of = coordinates and y coordinates. They are inserted into a list, which

is then in the form of the first case above.
Where arrayname is the name of a declared one-dimensional array of

floating-point numbers. The elements of the array are then inserted into a
list, which is inserted into yet another list, thus producing the form of the

first case above.
Where 2d-arrayname is the name of a declared two-dimensional array of

floating-point numbers. This is interpreted as a list of lists of numbers,
which is exactly in the form of the first case above.

The optional arguments arg;, ..., arg, can appear in any order. The rule for evaluating optional
arguments is as follows: If the argument is atomic, it is evaluated, and the resulting values are used.
The inputs argy, ..., arg, can be any of the following:

Optional Argument Reference

x-label, y-label or title descriptor See Section 1.4.4, page 45.

Line type descriptor
first, last and same

See Section 1.3, page 24.
See Section 1.3.3.3, page 31.

polar, log, linlog, or loglin See Section 1.3.2, page 25.

Ezxample

This example Figure 1.8, page 11, draws a line connecting [1, 5], [2,10], and [3, 6].
(c1) graph([1,2,3], [5,10,61)%

1.1.

TWO-DIMENSIONAL GRAPHICS 11

10.00

6.00

1.00 1.50 2.00 2.50 3.00

1.0<X<3.0;50<Y<10.

Figure 1.8: Plotting discrete points in two dimensions

1.1.5 Plotting Vector Fields in Two Dimensions

plot2_vect(vecfield,x-var,z-min,z-maz, y-var,y-min,y-maz, {’argl,. .., argn}) Function

Plots vector fields and direction fields in two dimensions. wvecfield is a list of two expressions, for the
first and second components of the vector field; or a list of two functions; or one function whose value
is a list of two values. z-var is the name of the variable which is plotted horizontally, and y-var is the
name of the variable which is plotted vertically. For the region where vector basepoints are located,
z-min is the lower limit and z-maz is the upper limit of z-var, and y-min is the lower limit and y-maz
is the upper limit of y-var. The ’argi are all the optional plotting variables allowed for the special form
graph2.

The option variables plotnumO and plotnum1 control the number of plot points in the horizontal and
vertical directions respectively.

The z-y-min-mazx variables do not control the plot size directly. xmin, xmax, ymin and ymax do
this, as for other plotting functions. Usually the plot size should be a little larger than the limits of the
z-var and y-var to allow room to draw the vectors or direction lines.

plot_vect_scale default: false Option Variable

This option variable can be assigned the name of a function which is applied to the length of each
vector, before the vector is plotted by plot2_vect or plot3d_vect. plot_vect_scale can be assigned
the name of a system function (such as ’log), or a user-defined function. If the scaling function results
in a negative number or negative infinity, e.g. log(veclength) < 1 or log(veclength) = 0, then the
length of the vector is set to zero. If plot_vect_scale is assigned the value ’plot_vect_scale or
false, then no scaling occurs.

plot_vect_head default: true Option Variable

If true then plot2_vect and plot3d_vect plots vector fields with arrowheads. When false then
plot2_vect and plot3d_vect plot direction fields, in which no arrowheads are drawn, and the shaft
of each arrow is centered at the plot point.

12 CHAPTER 1. PLOTTING AND GRAPHICS

plot_vect_head_angle default: 0.5236 Option Variable

A floating point number which specifies the angle between the shaft of the vector and head edges of the
head of the vector.

plot_vect_head_size default: 0.100 Option Variable

A floating point number which specifies the length of the edges of the vector head, as a fraction of the
length of the vector shaft.

Example A sample vector field is plotted in Figure 1.9, page 12.
(c1) vect:[y/4.,x/4.1$
(c2) block([plotnumO:10, plotnuml:10],
plot2_vect(vect,x,-1,1,y,-1,1, false, false,
"Plot of Saddle Point Vector Field [Y/4,X/4]1"))$

Plot of Saddle Point Vector Field [Y/4,X/4]

1.00
Y 0.00 S [=
_ / &
. \

-1.00 T T T T T T T T
-1.1<X<11 0.00 1.00
-1.1<Y<11

Z=0.00 X

Figure 1.9: Plotting a vector field in two dimensions

1.1.6 Special Capabilities For Two Dimensional Plotting

1.1.6.1 Adaptive Density Plotting

The package adaplot does adaptive density plotting of lines in two dimensions. Adaptive density plotting is
useful for plotting curves whose curvature varies sharply, and curves for which the defining expressions are
expensive to evaluate.

There are two functions, adaplot2 and adaparamplot2:
adaplot2(yezpr,zvar,zlow,zhigh,ylow,yhigh,{ 'arg1,. .., argn}) Function

yexpr is an expression or function for the dependent variable. zvar is the name of the independent
variable, and is plotted on the horizontal axis. xlow and zhigh are the limits of zvar in plotting the
curve. (Note that these numbers do not specify the limits of the x-axis display. xmin and xmax
perform this function, as for most other Macsyma plotting functions.) yhigh-ylow is an estimate of the

1.1. TWO-DIMENSIONAL GRAPHICS 13

range of vertical-values in the plot. It is used by adaplot2 to determine the angles of various lines as
they will appear in the plot. (The limits of the y-axis display are ymin and ymaz.) The ‘argi are the
optional plotting variables allowed for the special form graph2. (No special provision has been made
for log plots, and it is recommended that the logs be applied explicitly.)

adaparamplot2(zezpr,yexpr,tlow, thigh,zlow,zhigh, ylow,yhigh,{ arg1,. .., argn}) Function

zexpr and yexpr are expressions or functions for the dependent variables. tvar is the name of the
independent parameter variable. tlow and thigh are the limits of twar used in plotting the curve.
zhigh-zlow is an estimate of the range of horizontal values in the plot. xmin and xmax determine the
limits of the display. yhigh-ylow is an estimate of the range of vertical values in the plot. ymin and
ymaz determine the limits of the display. The ’argi are the optional plotting variables allowed for the
special form graph?2.

Variables which affect the adaptive plot point density are plotnum and:
curv_tol default: 0.1 Option Variable

(A single precision floating point number.) The maximum allowable change in curve angular direction
(in radians) at a plot point, for large line segments. The maximum permitted value of dt (or dx) is
4.0% (thigh-tlow) / plotnum. Normally, curv_tol is used to control the number of plot points.

The curvature tolerance can be violated for smaller line segments (as controlled by dt_factor) or if dz
= drmin and the angular change still exceeds curv_tol.

dt_rate default: 2.0 Option Variable

(A single precision floating point number which must be greater than 1.0.) The maximum factor by
which step size can be increased or decreased in one iteration at a plot point.

dt_ratio default: 40.0 Option Variable

(A single precision floating point number.) The ratio of largest to smallest permissible step size between
plot points. This is used to control the minimum size limit for line segments.

dt_factor default: 4.0 Option Variable

(A single precision floating point number.) The factor by which curvature tolerance increases for shorter
curve segments. Raising dt_factor makes the curvature tolerance larger for short line segments, while
leaving the tolerance unchanged for the longest line permissible segments.

1.1.6.2 Character Plotting (2D Only)

Even in a modern user interface environment, character plots can be useful; for example, for sending graphical
information in text electronic mail messages.

The functions char_plot, char_paramplot, char_graph, and char_multigraph produce plots of speci-
fied functions and sets of data points. These commands are described below.

The plots produced by these commands are character plots with coordinate axes located at minimum z and y
values of the plot. The z and y coordinates are independently scaled to optimally use the specified graphing
area.

Note: This can distort the shape of the graph. Thus a circle could become an ellipse. The origin of the
graph, the lower left-hand corner, is given on the graph by the values of xorg and yorg; the computed
increments are given by the values of xdelta and ydelta and the maximum z and y values are given by
xmax and ymax. The axes are labeled with the number sequence 0, 2, 4, 6, 8, 0, 2, 4, ... as an aid in
counting the number of increments from the origin.

In Macsyma 2.0 and successors, you may need to change the font in the notebook section containing a
character plot to a fixed width font (such as Courier).

14 CHAPTER 1. PLOTTING AND GRAPHICS

char_plot(f(z), z, low, high, { argy, ..., arg,}) Function
Plots the expression f(z) in the domain low < z < high. The inputs arg, ..., arg, are optional
arguments that control the precise form of the display.

The first argument to char_plot can also be a list of functions rather than just a single function. This
allows you to plot several functions on the same set of axes.

The optional arguments can be any of the following:

argy, Description

integer Macsyma computes only integer values of the abscissa. If you spec-
ify integer, you cannot specify any other optional arguments.

list Macsyma interprets this list as a list of plotting characters to be

used to display the function. If you do not specify list, Macsyma
uses an asterisk (*). If you want to specify a special symbol such
as ; or space, you must precede that symbol with a backslash (\).
zlabel zlabel is a string that labels the x axis of the plot. zlabel is not
evaluated by Macsyma. If zlabel is false, the axis is displayed

without a label.
ylabel ylabel is a string that labels the y axis of the plot. ylabel is not

evaluated by Macsyma. If ylabel is false, the axis is displayed
without a label.

The syntax char_plot(f(x),x,[z1,22, ...,%,]); can also be used. This syntax causes char_plot
to display a plot of f(z) for each of the z; specified. When char_plot is used in this way, the keyword
integer described above is ignored even if given. The other possible optional arguments behave as
described above.

char_paramplot(f1(t), f2(t), t, low, high, {list}) Function

Plots the plane curve f(t) = (f1(¢), f2(t)) for low < t < high. The input list is an optional argument
for specifying the plotting characters. If you do not specify list, Macsyma uses an asterisk (*). For
example, char_paramplot(cos(t), sin(t), t, 0, 2x%pi); plots a circle.

The first two arguments themselves can be lists if you want to plot more than one curve at one time.
The syntax would be: char_paramplot([f1(t),gl(t),...,h1(t)], [£2(t),g2(t),...,h2(%)], t,
low, high);. This syntax plots the plane curves f£(t) = (£1,£f2), g(t) = (gl,g2), ..., h(t) =
(h1,h2) using the default plotting character (*). For example, char_paramplot([cos(t), cos(t)+7],
[sin(t), sin(t)], t, O, 2*%pi, ["@"]); plots two circles using the character “@Q” as the plotting

character.
char_graph(/zi, ..., z./, 1, --., yu/J.{ arg1, ..., arg,}) Function
Graphs the two sets of points created by (z1,41), ..., (Zn,¥yn). The inputs arg, ..., arg, are optional

arguments and are described below.

There are some variations of the char_graph function. You can specify the points you want to graph
as lists of coordinate pairs using the following syntax:

char_graph([[@, nl, ..., [, v.11);
You can also graph one z-domain over several y-ranges using the following syntax:
char_graph (zset, [ysety, ...,yset,1);

The optional arguments can be any of the following;:

argy Description
integer Macsyma computes only integer values of the abscissa. If you spec-
ify integer, you cannot specify any other optional arguments.

1.1. TWO-DIMENSIONAL GRAPHICS

list

zlabel

ylabel

Macsyma interprets this list as a list of plotting characters to be
used to display the function. If you do not specify list, Macsyma
uses an asterisk (*). If you want to specify a special symbol such
as ; or space, you must precede that symbol with a backslash (\).
zlabel is a string that labels the x axis of the plot. zlabel is not
evaluated by Macsyma. If zlabel is false, the axis is displayed

without a label.
ylabel is a string that labels the y axis of the plot. ylabel is not

evaluated by Macsyma. If ylabel is false, the axis is displayed
without a label.

char_multigraph(/[zset,, yseti], ..., [xset,, yset,]], argi, ..., arg,)

15

Function

Produces a scatter graph in the Macsyma Listener involving several a-domains each with a single y-

range.

The inputs argy, ...

, arg, are optional arguments and are described below.

The optional arguments can be any of the following:

argn
integer

list

zlabel

ylabel

Description

Macsyma computes only integer values of the abscissa. If you spec-
ify integer, you cannot specify any other optional arguments.

Macsyma interprets this list as a list of plotting characters to be
used to display the function. If you do not specify list, Macsyma
uses an asterisk (*). If you want to specify a special symbol such
as ; or space, you must precede that symbol with a backslash (\).
zlabel is a string that labels the x axis of the plot. zlabel is not
evaluated by Macsyma. If zlabel is false, the axis is displayed

without a label.
ylabel is a string that labels the y axis of the plot. ylabel is not

evaluated by Macsyma. If ylabel is false, the axis is displayed
without a label.

plotheight default: 24

Option Variable

The height of the area used for character plotting. The plotting is done on a grid that is plotheight
characters high and linel wide.

1.1.6.3 Line Plotting (2D Only)

These commands normally are not needed since the main plotting commands provide the same functionality
and adjust to the type of display on your computer.

plot2(y-exps, variable, x-range, ’arg:, ..., ’arg,)

Special Form

This function is called by the function plot when the terminal type is appropriate. It is not recom-
mended that users call this function directly.

Plots y-exps in the y direction, while variable, the z axis, takes on values specified by z-range. The
arguments can take various forms, each described in the tables below.

The input y-exp can be any of:

y-exps
exp

Action
plot2 plots a curve of exp against variable.

16 CHAPTER 1. PLOTTING AND GRAPHICS

[ezp1, ..., expy] Plots n curves of exp; against variable. Each exp; is evaluated in the con-
text: float(ev(exp;, wvariable=value from z-range, numer)). An error is
signaled if this does not result in a floating-point number.

The input z-range can be any of:

ZT-Tange Meaning

low, high where low and high evaluate to numbers. The value low may be either
greater or less than high. The input variable takes on plotnum values
equally spaced between low and high. See Section 1.3.1, page 24.

Note: The first argument is evaluated at low first. For example,
plot(1/x,x,—1,—3); calculates 1/(—1.0) before 1/(—3.0). This matters
only if the computation of the first argument changes a variable which in
turn changes the value returned by subsequent computation. Whether or
not low < high, min(low, high) is displayed on the left side of the plot.
This can be overridden using the optional argument special with reflect
as xfun. (see Section 1.3.2.2, page 28).

low, high, integer This form has the same effect as the above except that variable takes on
only integer values between low and high inclusive.

[valy, ..., val,] variable takes the values specified by the list of values.

arrayname where arrayname is the name of a declared floating-point one-dimensional

array. Such an array can be created by means of a command such as
array (arrayname, float, max-index;) ;. In this case, variable takes the
values from arrayname[0] through arrayname[maz-index]. (Here, maz-
index is the maximum index of arrayname.)

The optional arguments arg,, ..., arg, can appear in any order. The rule for evaluating optional
arguments is as follows: If the argument is atomic, it is evaluated, and the resulting values are used.
The inputs argy, ..., arg, can be any of the following:

Optional Argument Reference

x-label, y-label or title descriptor See Section 1.4.4, page 45.

Line type descriptor See Section 1.3, page 24.

first, last and same See Section 1.3.3.3, page 31.

polar, log, linlog, or loglin See Section 1.3.2, page 25.

An alternative form for plot2 is plot2(y-funs, z-range, argy, ..., arg,);. Here, y-funs must be a

function of one argument or a list of functions of one argument. The functions must be either translated
or compiled functions, and they must return a floating-point number when given floating-point or integer
arguments. This form of plot2 acts as though you had not only given an argument to the y-funs, but
also specified that argument as the variable in the form above. For example, plot2(f,-2,2); acts like
plot2(£f(x), x,-2, 2);. This provides a quicker evaluation of the first argument and for that reason
no checking is done on the result. If the wrong sort of number is returned, the plot is not useful.

graph2(z-lists, y-lists, {’arg, ..., ’argy}) Special Form

This function is called by the function graph when the terminal type is appropriate. It is not recom-
mended that users call this function directly.

This function points specified by the x-lists and y-lists, interpreting z-lists as a list of abscissas, and
y-lists as a list of ordinates. The argi, ..., arg, are optional arguments.

1.2. THREE-DIMENSIONAL GRAPHICS 17

The z-lists and y-lists can be in any of the formats below:

Format Action

[alisty, ..., zlisty] Each of the z-list; is a list of numbers. If the length of x-lists is less than
that of y-lists then z-lists is filled with z-list;, to make the lengths the same.
Similarly if the length of y-lists is less than that of z-lists, then y-lists is
filled with y-list; to make the lengths the same. If the length of y-lists is
k, then k curves of y-listy vs. z-listy, ..., y-listy vs. z-list, are plotted. If
one of the z-list; is shorter then the corresponding y-list;, then the extra
elements of y-list; are ignored.

[z-ptny, ..., z-ptny,] Where z-ptn; evaluates to a number. Lists of numbers are interpreted as
lists of coordinates and y coordinates. They are inserted into a list, which

is then in the form of the first case above.
arrayname Where arrayname is the name of a declared one-dimensional array of

floating-point numbers. The elements of the array are then inserted into a
list, which is inserted into yet another list, thus producing the form of the

first case above.
2d-arrayname Where 2d-arrayname is the name of a declared two-dimensional array of

floating-point numbers. This is interpreted as a list of lists of numbers,
which is exactly in the form of the first case above.

The optional arguments arg;, ..., arg, can appear in any order. The rule for evaluating optional
arguments is as follows: If the argument is atomic, it is evaluated, and the resulting values are used.
The inputs argy, ..., arg, can be any of the following:

Optional Argument Reference

x-label, y-label or title descriptor See Section 1.4.4, page 45.

Line type descriptor See Section 1.3, page 24.

first, last and same See Section 1.3.3.3, page 31.

polar, log, linlog, or loglin See Section 1.3.2, page 25.

1.2 Three-Dimensional Graphics

Macsyma provides plotting of functions, parametric lines and surfaces, contours, data points, and vector fields
in three dimensions. You can combine several plot commands to create a composite plot which combines
several plot elements of the same or different types.

The main commands for three-dimensional plotting are
e plot3d, Section 1.2.1, page 18
e paramplot3d, Section 1.2.2, page 20
e contourplot3d, Section 1.2.3, page 20
e graph3d, Section 1.2.4, page 21
e plotsurf, Section 1.2.5, page 21
e plot3d_vect, Section 1.2.6, page 23

e complex_plot3d, Section 1.2.1, page 20

18 CHAPTER 1. PLOTTING AND GRAPHICS

1.2.1 Plotting Functions of Two Variables

The command plot3d has two different calling sequences, both of which are described below.
plot3d(z-exprs, z-var, z-range, y-var, y-range, {’argy, ..., ‘argy}) Spectal Form

Plots z-exprs against z-var and y-var. The plot consists of curves of z-exprs against z-var (the z

coordinatey-var (the y coordinate) held fixed. The arg, ..., arg, are optional. Perspective is used and
curves further away from the viewer have those parts of them which are hidden by the closer curves
removed.

The context of evaluation is float (ev (exp;, z-var=value gotten from z-range, y-var=value gotten from
y-range, numer)) ;

The format for z-range and y-range is the same as for plot except that if y-range is of the form low,
high then y-var takes on plotnuml instead of plotnum values.

The format of optional arguments is the same as for plot except that additional option variables are
available. See \3d and contour, Section 1.7.3, page 53.

plot3d(z-funs, z-range, y-range, {’argy, ..., ’arg,}) Special Form

This is analogous to the alternative form for plot. z-funs must be a function or list of functions of
two arguments, which must return a floating-point argument when given floating-point, or integer,
if the argument integer is used for either z-range or y-range arguments. The arg,, ..., arg, are
optional arguments. The functions must be translated or compiled. If you expect to make several three
dimensional plots this form is recommended.

The optional arguments arg;, ..., arg, can appear in any order. The rule for evaluating optional
arguments is as follows: If the argument is atomic, it is evaluated, and the resulting values are used.
The inputs argy, ..., arg, can be any of the following:
Optional Argument Reference
x-label, y-label or title descriptor See Section 1.4.4, page 45.
Line type descriptor See Section 1.3, page 24.
first, last and same See Section 1.3.3.3, page 31.
polar, log, linlog, or loglin See Section 1.3.2, page 25.
plot_data(mat) Special Form

Plots a matrix of data, using the matrix indices as integer values of x and y coordinates.

Do example(plot_data); for an example.

Ezamples
In the example below Figure 1.10, page 19, the expression ze Y is plotted as x takes on plotnum values
between —2 and 2 and y takes on plotnum1l values between —1.5 and 2.5.

(c1) plot3d(exp(-x~2-y~2)*x,x,-2,2,y,-1.5,2.5)$
In this example Figure 1.11, page 19, first arrange for automatic translation, then define and plot a function
g.

(c2) translate:true$

(c3) g(x,y):=(mode_declare([x,y], float), exp(-x*x-y*y))$

(c4) plot3d(g,-2,2,-2,2)8$

not3d Keyword
Keyword for: plot3d

The additional argument not3d to plot3d causes exactly the same points to be calculated as in the
bare plot3d. Instead of plotting a three-dimensional representation of the data, the data is plotted

1.2. THREE-DIMENSIONAL GRAPHICS

-20<X<20
-1.5<Y<25
-0.43<72<0.43

Figure 1.10: Plotting a function of two variables in three dimensions

2.0<X<20
2.0<Y<20
3.35e-4<7<1.0 Y

Figure 1.11: Plotting a function which is expressed as a Macsyma function

20 CHAPTER 1. PLOTTING AND GRAPHICS
in two dimensions. Specifically one curve of z versus z for each value of y is plotted and so it is a
convenient way to plot several curves on the same plot. (not3d is not available in Macsyma 2.0 and
successors or Macsyma 419 and successors. See Section 1.3.3.3, page 31 for methods for superimposing
plots.)

complex_plot3d((z-expr, zvar, zlow, zhigh, yvar, ylow, yhigh {, view})) Function

Plots the possibly complex expression z-expr as a function of the variables xvar with range [xlow, xhigh]
and yvar with range [ylow,yhigh].

The optional variable view (default:’rectform) can be one or more of:
’rectform - plots the real and imaginary parts of z-expr.

’realpart - plots real part of z-expr.

’imagpart - plots imaginary part of z-expr.

’polarform - plots complex absolute value and argument of z-expr.
’cabs - plots complex absolute value of z-expr.

’carg - plots complex argument of z-expr.

If more than one of these symbols are included in view, then one plot is generated for each symbol.

Do example(complex_plot3d); for an example.

1.2.2 Plotting Parametric Curves in Three Dimensions

paramplot3d(/[zexpr,yexpr,zexpr]], var,varlow,varhigh) Function

Generates parametric plots of curves embedded in three dimensional space. One curve is specified
by the expressions zexpr, yexpr, and zexpr, and parameterized by the variable var. The limits on
the curve parameter var are wvarlow and warhigh. Multiple curves can be plotted with one call to
paramplot3d by giving a list-of-lists such as [xexprl,yexprl,zexprl], [xexpr2,yexpr2,zexpr2]
as the first argument to paramplot3d.

Alternatively, each curve can also be expressed as a function which returns a list of three floating point
numbers. If only one curve is plotted, no list brackets are needed. Multiple curves can be represented
as a list of such functions.

1.2.3 Contour Plots in Three Dimensions

contourplot3d(z-funs, x-var, z-range, y-var, y-range, {’argy, ..., ’arg,}) Function

Creates a contour plot in the same way as contourplot, except that the plot is represented in 3
dimensions instead of being compressed into a plane. Fach level contour appears at the appropriate
elevation. Options for contourplot3d are identical for those of contourplot. See also contours,
page 7 and labelcontours, page 47.

Macsyma 2.0 and its successors enable you to turn on/off and edit contour labels after generating a plot
using controls in the Macsyma Front End.

Ezxamples

In this example, we display in Figure 1.12, page 21, the same plot as shown in the discussion of contourplot,
Section 1.1.3, page 6. This time, however, the contour lines are shown in three dimensions. This plot can
be obtained with either of the commands shown below.

(c1) plot3d(y~2/2+cos(x)+x/2,x,-6,6,y,-3,3,contour)$
(c1) contourplot3d(y~2/2+cos(x)+x/2,x,-6,6,y,-3,3)%

1.2.

THREE-DIMENSIONAL GRAPHICS 21

—38.0
—7.5
—7.0
—=6.5
—6.0
—b5.5
—5.0
—4.5
—4.0
—35
—3.0

-6.0<X<6.0
-3.0<Y<3.0 2.00 5.00
-25<7<8.0 Y

—20
—25

Figure 1.12: Contour plot in three dimensions

1.2.4 Plotting Discrete Sets of Points in Three Dimensions

graph3d(z-lists, y-lists, z-lists, {’argy, ..., ’arg,}) Special Form

This special form takes three arguments where graph took two and interprets them as lists of z, y
and z points. It uses these points to draw lines using the three dimensional transformations. It can be
used to add lines or axes to your three dimensional plot (see Section 1.3.3.3, page 32). The hidden line
routines are not used.

The argy, ..., 'arg, are optional arguments.
The optional arguments arg;, ..., arg, can appear in any order. The rule for evaluating optional
arguments is as follows: If the argument is atomic, it is evaluated, and the resulting values are used.
The inputs argy, ..., arg, can be any of the following:

Optional Argument Reference

x-label, y-label or title descriptor See Section 1.4.4, page 45.

Line type descriptor See Section 1.3, page 24.

first, last and same See Section 1.3.3.3, page 31.

polar, log, linlog, or loglin See Section 1.3.2, page 25.

1.2.5 Plotting Parametric Surfaces in Three Dimensions

plotsurf(see below) Function

This function plots two-dimensional surfaces embedded in three-dimensional space. Each surface is repre-
sented in parametric form as [z(s,t), y(s,t), z(s,t)], where s and ¢ are continuous real parameters, and x(s, t),
y(s,t) and z(s,t) are real-valued continuous functions. plotsurf plots a grid of plotnumoO x plotnum1 plot
points, and interpolates quadrilaterals between the plot points. plotsurf permits you to construct a surface

22 CHAPTER 1. PLOTTING AND GRAPHICS

from several sections, each of which is plotted at plotnumO x plotnuml plot points. (plotnumO and
plotnum1 can be lists of integers, so that each surface section can have a nodal grid of a different integer
size.)

plotsurf has four calling syntaxes, in which the surface(s) are specified by mathematical expressions, func-
tions, or arrays:

e plotsurf([[x1l,y1,z1],...,[xn,yn,zn]],s,slo,shi,t,tlo,thi), where

— The first argument represents n surfaces with n triples of expressions. Each expression evaluates
to a floating-point number and may reference the variables s and t.

s and t are the parameters used to specify the surface.

slo and shi give the lower and upper limits of the parameter s.

tlo and thi give the lower and upper limits of the parameter t.
e plotsurf([f1,£f2,...,fn],slo,shi,tlo,thi), where

— The first argument represents n surfaces with n functions, each of which has two arguments and
returns a triple of floating-point numbers. Each function must have been defined before the call
to plotsurf. Note that the arguments to the functions £1,...,fn do not appear explicitly in the
call to plotsurf, either in the list [f1,...,fn] or in the other arguments to plotsurf.

— slo and shi give the lower and upper limits of the first parameter.

— tlo and thi give the lower and upper limits of the second parameter.

e plotsurf (f,slo,shi,tlo,thi)

When only one surface is plotted as in calling sequence (2), the list brackets surrounding the function
name f may be omitted.

e plotsurf ([nodes,polygons])

Plots a surface which is specified by node points and polygons. In this case, the surface to be plotted
is not specified in parametric form. The two arguments are:

— nodes is a two-index array of nodal coordinates, where the first index is the node number, and the
second index is one of [0, 1, 2] to specify the first, second or third coordinate. (Arrays in Macsyma
start with index value 0.) The value of each element in the array is a floating point number.

Note: the arrays must be complete arrays.

— polygons is a one-index array, where the index is the number of a polygon in the image. Each
element of the array is a list of three or more (up to 32) integers, which specifies the nodes which
form the corners of a polygonal face. Triangles, quadrilaterals and other n-gons can be mixed in
the same image. (Note that the amount of storage allocated for each face is determined by the
n-gon with the greatest number of sides.)

Do example (plotsurf); for an example. For a function to compute the curvature of a two-dimensional plot
in three-dimensional space, use curvsurf. See the Macsyma Mathematics and System Reference Manual for
more information.

plot_tessellation default: 4 Option Variable

A value of 4 means that two-dimensional surfaces are tessellated with quadrilaterals. A value of 3 means
that two-dimensional surfaces are tessellated with triangles. Currently plot_tessellation affects the
behavior of plotsurf, and not of plot3d.

Do example(plot_tessellation); for an example.

1.2. THREE-DIMENSIONAL GRAPHICS 23

Ezxample
The following command plots a sphere which is surrounded by a torus. The result is shown in Figure 1.13,
page 23.
(c1) block([equalscale:true,plotnumO:17,plotnumi:13,
title:"A Sphere and a Torus Superimposed"],
plotsurf ([[cos(ph)*sin(th),sin(ph)*sin(th),cos(th)],
[cos(ph) *(3+sin(2*th)) ,sin(ph)* (3+sin(2*th)),cos(2*th)]1],ph,-%pi,%pi,th,0,%pi))$

Z A Sphere and a Torus Superimposed

-40<X<4.0
-40<Y<4.0
-1.0<ZzZ<10

Figure 1.13: Plot of two parametric surfaces with one command

1.2.6 Plotting Vector Fields in Three Dimensions

plot3d_vect(vecfield, z-var,x-min,x-maz, y-var,y-min,y-mazx, 2z-var,z-Min,z- Function
maz, {’argl,. .., argn})

This function plots vector fields and direction fields in three dimensions. The calling arguments are as
follows:

e vecfield is a list of three expressions, for the three components of the vector field; or a list of three
functions; or one function whose value is a list of three values.

e z-var, x-min, r-max are the name and limits of the first variable.
e y-var, y-min, y-maz are the name and limits of the second variable.
e z-var, z-min, z-mazx are the name and limits of the third variable.

e The ’argi are all the optional plotting variables allowed for the special form graph3d. (However,
placing plot symbols at each point will result in plotting the symbol at the head, tail, and arrow
tips of each vector drawn.

24 CHAPTER 1. PLOTTING AND GRAPHICS

The option variables plotnumO, plotnuml, and plotnum2 control the number of plot points in
the two horizontal directions and height directions respectively. If plotnum?2 is not specified, then
plot3d_vect assigns it the value of plotnuml1. The arguments z-min, y-min, x-mazx, y-maz, z-min
and z-mazx do not control the plot size directly. xmin, xmax, ymin, ymax, zmin, and zmax do this,
as for other plotting functions.

To plot direction fields, see plot_vect_head and related option variables, Section 1.1.5, page 11.
Direction fields have no vector heads and center plotted lines at each plot point.

Ezxample

Figure 1.14, page 24, shows a sample direction field.
(c1) vect:[-y/8,x/8,sqrt(x"2+y~2)/8]$%
(c2) block([plotnumO:4, plotnuml:4, plotnum2:9,
xmin:-1.0,ymin:-1.0,zmin:-1.0,xmax:1.0,ymax:1.0,zmax:1.0,viewpt: [10.,10.,2.1],
plot3d_vect(vect,x,-1,1,y,-1,1,z,-1,1,false,false,
"Plot of Spiral Vector Field [-Y/8,X/8,sqrt(x"2+y~2)/8]1"))$

z Plot of Spiral Vector Field [-Y/8,X/8,sqrt(x"2+y"2)/8]

XJ\Y

|
|

1.003——// N —_—

0.504+——1—1

_ N
20.00— | Li T
><

-1.00+
-1.0<X<1.0 -1.00 -1.00
1.0<Y<10 -0.50 0o 0.50 05 0-00 -0.50
-1.0<Z<1.0 ' 1.00 ™

Y X

Figure 1.14: Plot of a vector field in three dimensions

1.3 Changing Plot Geometry

1.3.1 Changing the Number of Plot Points

The number of plot points and their coordinate locations are determined when a plot is first generated by
Macsyma. While most other plot attributes can be edited in the Macsyma Front End after a plot is generated,
the number and locations of plot points can only be modified by regenerating the plot from Macsyma.

plotnum default: 100 Option Variable

The number of points plotted on each line by plot and paramplot when given the low, high type of
variable range.

1.3. CHANGING PLOT GEOMETRY 25

plotnumO default: 20 Option Variable
plotnum1 default: 20 Option Variable

The values of plotnumO and plotnuml are the numbers of plot points along the first and second
coordinate axes respectively in three-dimensional plots. For parametric surfaces generated by plotsurf,
they specify the number of plot points along the direction of the first and second parameters respectively.
plotnumO an plotnum1 affect the number of plot points generated by plot3d, plotsurf, contourplot,
contourplot3d, plot2_vect and plot3d_vect.

When plotting several parametric surfaces in one call to plotsurf, plotnumO and plotnum1 can have
as their values lists of integers, whose length is equal to the number of surfaces in the call to plotsurf.

plotsurf plots the first surface using the first elements of the lists plotnumO and plotnum1, and so
forth.

plotnum?2 default: plotnum?2 Option Variable

The number of plot points in the vertical direction for plot3d_ vect. If plotnum2 is not specified, the
value of plotnum1 is used.

1.3.2 Coordinate Transformations

1.3.2.1 Pre-Defined Coordinate Transformations

Six types of coordinate grids are recognized by the two dimensional plotting functions. Their names are
polar, log, linlog, loglin, lin, and loglog. If one of polar, log, linlog, loglin or loglog appear as an
optional argument to one of the two-dimensional plotting functions, then the plots appear on the appropriate
scale.

Grid Type Description

polar Polar coordinate system. The arguments of the plotting functions
now are used to denote 6 and r instead of x and y respectively.

log or loglog Causes both axes to appear on a log(scale.

linlog Causes the y axis to appear on a logig scale.
loglin Causes the x axis to appear on a logo scale.
lin Both x and y scales are linear.

Ezxamples

Plot a circle in Figure 1.15, page 26.

(c1) equalscale:true$

(c2) plot(1l, t, O, 2*)pi, polar)$
Replot the object on a linear scale, which gives a horizontal line in Figure 1.16, page 26. (After generating
this plot, we thickened the line using the graphics controls in the Macsyma Front End so you can more easily
distinguish it from the coordinate grid lines.)

(c3) replot(true,lin), equalscale:false$

Plot an exponential on a log-linear scale in Figure 1.17, page 27:
(c4) plot(exp(x), x, 0, 10, linlog)$

This example plots some points on log-log scale in Figure 1.18, page 27. The slope shows that y ~ /x.
(c5) graph([1,2,5,10,50,100], [1,1.5,2.5,3,7,10], log);

When a plot is created the untransformed point values of the plotted object are saved, along with the
type of coordinate transformation. The coordinate transformation is reapplied each time you replot. You
can change the type of transformation either by using the command replot. Specifying lin as the second
argument to replot results in no coordinate transformation being performed.

26 CHAPTER 1. PLOTTING AND GRAPHICS

1.00
0.50] \
Y 0.00-]
O o e o o o o B B B O LB
1.00< X< 1.0 .00 -050 000 050 1.00
-1.00<Y<1.00
Z=0.00 X

Figure 1.15: Plotting in polar coordinates

0.00<X<6.3;-21<Y<41

Figure 1.16: Replot the previous plot with a different coordinate transformation

1.3. CHANGING PLOT GEOMETRY

10M—
10733
Y]
1072
107
10/\0 T T T T T T T T T T T T
0.00 2.50 5.00 7.50 10.00
X
0.00 < X < 10.0; 10M0.00 < Y < 10™4.3
Figure 1.17: Plot using linear and logarithmic scales
1071
Y i
10/\0 T T T T T LI T T T LI
10"0 10M 1072
X

1070.00 < X < 1072.0; 10"0.00 < Y < 1071.0

Figure 1.18: Plot using log-log scaling

27

28 CHAPTER 1. PLOTTING AND GRAPHICS

The coordinate transformation can also be changed from a Macsyma break.

1.3.2.2 User-Defined Coordinate Transformations

Two Dimensional Transformations If the optional argument special appears in the call to plot, then
immediately before displaying your data, plot looks at the values of xfun (default: false) and yfun (default:
false). If the values are false the data is scaled in the normal way and is plotted. If either value is nonfalse,
then it should be the name of a function of one to three arguments which defines a transformation between
the data and the z and y screen coordinates. The standard linear scaling is still applied to the result of this
transformation, to make your plot fit on the screen. The functions must be translated or compiled and must
return a floating-point result.

The way they work is best illustrated by an example. The predefined functions polarx and polary are
equivalent to:
polarx(x,y) :=y*cos(x)$
polary(x,y) :=y*sin(x)$
We can set xfun and yfun to these two functions respectively, as shown in the example below. Thus x and
y become the 6 and r coordinates of a polar system. This forces a transformation just prior to plotting in
Figure 1.19, page 28:
(c1) xfun:polarx$
(c2) yfun:polary$
(c3) plot(8+sin(8*x), x, 0, 2%)pi, special), equalscale:true$

5.00
Y 0.00
-5.00
LI LI T T T T LI
-8.8<X<838 -5.00 0.00 5.00
-8.8<Y<8.38
Z=0.00 X

Figure 1.19: Plot which uses built-in transformation to polar coordinates

This command sequence produces plotnum z data points, ranging from 0 to 27 and plotnum y data points,
each having value 1 in this case. These z and y values are given to the polarx and polary functions as
the first and second arguments. The values of these two functions are then supplied to the normal scaling
routines. Thus this plot command would produce a circle if equalscale:true, otherwise an ellipse would
be produced. This plot could of course also be generated using the polar optional argument to the plot
command.

1.3. CHANGING PLOT GEOMETRY 29

The arguments of xfun and yfun are shown in Table 1.1, page 29.

Function One Arg Two Args Three args
xfun X X,y X, Y, Z
yfun y X,y X, Y, %

Table 1.1: Arguments of xfun and yfun

The first argument to plot is interpreted as a y variable and its second argument as an x variable. For
paramplot and graph the first arguments are x variables and the second arguments are y variables. For all
the two dimensional plotting functions the z variable is 0.0. (See Section 1.3.2.2, page 29 for the coordinate
conventions for the three dimensional plotting functions).

polarx and polary are predefined in the plot files. Other predefined xfuns and yfuns that may be of use
are shown below. The mode_declares have been omitted.
plot_loglO(x) := if x=0.0

then -90.0
else log(abs(x))/log(10.)$
reflect(x) 1=-x$
ytox(x,y) = y$
xtoy(x,y) = x$
ztoy(x,y,2) 1= z$
ztox(x,y,z) = z$
rotatex(x,y) 1= x*cosang - y*sinang$
rotatey(x,y) 1= x*sinang + y*cosang$

initrotate(ang) :=(cosang:cos(ang) ,sinang:sin(ang))$)

sinang and cosang are set up by initrotate.

Ezxample

In this example Figure 1.20, page 30, the xfun and yfun cause z and y to be swapped. Thus the plot of
sinz actually displays sin™! z vs. .

(c1) xfun:ytox$

(c2) yfun:xtoy$

(c3) plot(sin(x),x,-%pi/2,%pi/2,special)$

The xfuns and yfuns implied by the optional arguments are shown in Table 1.2, page 29.

Argument xfun yfun

polar polarx polary

log plot_logl0 plot_logl0
linlog false plot_logl0
loglin plot_logl0 false

lin false false

Table 1.2: Specifying xfun and yfun in plot

Three Dimensional Transformations The perspective transformations work by the same xfun and
yfun mechanism documented above. If you want to change the transformation, here are the names of the
functions used, although it is probably quite easy to confuse the function that figures out the hidden lines.
The hidden line routine also makes use of the variable howclose. howclose should evaluate to the name
of a function of three arguments (z, y and z) and should give a measure of how close the point [z, y,z] is

30 CHAPTER 1. PLOTTING AND GRAPHICS

Y 0.00
-1.00
T T T T T T T T T T T T T T T T
-1.00 -0.50 0.00 0.50 1.00
10<X<10,-16<Y<16 X

Figure 1.20: Plot using built-in transformation to switch X and Y

to the viewer. It is not necessary that this function return the exact distance to [z,y,z] but it should be a
monotonically increasing function of that distance.

The option variables centerplot, perspective and reverse determine which of the functions xfun, yfun
and howclose are used. Table 1.3, page 30, shows the names of those functions that are used for particular
settings of these option variables.

centerplot perspective reverse xfun yfun howclose
nonfalse true false p3dx p3dy howclose3d
nonfalse true true p3dxr p3dyr howclose3d
nonfalse false false np3dx np3dy howclosenp3d
nonfalse false true np3dxr np3dyr howclosenp3d
false true false old3dx old3dy howcloseold3d
false true true old3dxr old3dyr howcloseold3d
false false false oldnp3dx oldnp3dy howcloseoldnp3d
false false true oldnp3dxr oldnp3dyr howcloseoldnp3d

Table 1.3: Settings for centerplot, perspective, and reverse

initperspec(cz, cy, cz, vz, vy, v2) Function

For three dimensional perspective plots, the type of view is specified by doing initperspec(cx, cy,
cz, vx, vy, vz)$ where [vz, vy, vz] is the viewpt and [cz, cy, cz] is the centerplot. The optional
argument not3d causes yfun to be bound to ztoy.

1.3. CHANGING PLOT GEOMETRY 31

1.3.3 Superimposing Plots
1.3.3.1 Basic Command for Combining Plots

combine_ plots is the simplest way to superimpose plots.
combine_ plots(list_ of- plots {, args}) Function

Combines the plots in the list list_ of_ plots into one plot. The plots must be all two dimensional or all
three dimensional. list_ of- plots can contain plot commands or strings which evaluate to plot commands.

combine_plots is a more convenient way to combine plots than the older graphics switches clear,
wait, first, same and last.

Do example (combine_plots); for an example.

1.3.3.2 The “Clear/Wait” Scheme

You can superimpose plots by governing when the plotting commands clear the screen. Two option variables
must be reset to accomplish this:

clear default: true Option Variable

If this option variable is set to true, the screen is cleared before beginning a new plot. If this option
variable is set to false, the new plot is superimposed on the most recently generated plot. Clearing
occurs just before a plot is done, so setting clear to false before generating the superimposed plots
prevents the previous plot from being cleared.

wait default: true Option Variable

If this option variable is set to true, Macsyma waits for you to send a continuation signal (type a space
character in older versions of Macsyma) before processing can continue after a plot is produced. This
setting is intended to allow you time to view the plot. When wait is set to false, Macsyma continues
to the next command without waiting for a continuation response from the user.

These two option variables should be set to false for sequential superposition of a set of plots. The example
below illustrates the use of wait and clear to superimpose four plots. The example begins by enabling
clearing and disabling waiting. This assures that the screen starts fresh, and that the superposition can
proceed without pausing. After the first plot is displayed, clearing is disabled. Plotting continues, until just
before the last plot, when waiting is restored. After the last plot, clearing is restored.

Ezxample
(c1) (clear:true, wait:false,
plot(...),
clear:false,
plot(...),
graph(...),
wait:true,
plot(...),

clear:true)$

1.3.3.3 The “First/Same/Last” Scheme

The first/same/last scheme for superimposing plots is more convenient than the clear/wait scheme for
most purposes. All three of these keywords can be used as keyword arguments to nearly all the plotting
functions and to replot.

The first/same/last scheme cannot be used with the plotting commands plotsurf and paramplot3d. Use
the clear/wait scheme with these commands.

32

first

CHAPTER 1. PLOTTING AND GRAPHICS

Keyword
Keyword for: plot, graph, paramplot, contourplot, replot, plot3d

When given as a keyword argument to a plotting function, first is used to indicate that the plot is to be
the first of a series of plots that are to be superimposed or plotted in different parts of the screen. It has
the effect of setting clear to true and wait to false before plotting and clear to false after plotting.
This option variable is in effect during the plotting process only. It does not become a property of the
plot itself.

same Keyword

last

Keyword for: plot, graph, paramplot, contourplot, replot

This keyword forces the plotting functions to use the same scale and window as the previous plot. It
suppresses display of the axes, the date and the plot bounds. The intention is to make superposition of
plots convenient. Specification of a title and labels is allowed, but if the previous plot which defines the
scale of this plot did not have them they may appear in the wrong place, wrapped around the screen. If
you want to specify a title, then you should probably specify a null title " " in the original plot. This
option variable is in effect during the plotting process only. It does not become a property of the plot
itself.

Keyword
Keyword for: plot, graph, paramplot, contourplot, replot, plot3d

When given as a keyword argument to a plotting function, last is used to say that this plot is to be
the last of a series of plots that are to be superimposed or plotted in different parts of the screen. It
has the effect of setting wait to true before plotting and clear to true after plotting. This option
variable is in effect during the plotting process only. It does not become a property of the plot itself.

Ezxamples

This example illustrates how to superimpose two curves using one plotting command in Figure 1.21, page 32.

(c1) plot([x+1,x"2+1], x, -1, 1)$

2.00

1.50

Y 1.00

0.50

0.00FTTT T T T T T T T T T T T
-1.00 -0.50 0.00 0.50 1.00

X

-1.0<X<1.0;0.00<Y<2.0

Figure 1.21: Plotting two curves with one plotting command

1.3. CHANGING PLOT GEOMETRY 33

To superimpose plots generated with separate plotting commands, the normal sequence is:
(plot(..., first),
plot(..., same),
plot(..., same),

plot(..., same, last)
This example, Figure 1.22, page 33, superimposes three curves, and uses line colors (which do not show in
this book) and plot point symbols to distinguish the curves. The option variables ymin and ymax are used
to clip the plot of the tangent function.
(c1) plot(sin(x),x,0,2*)pi,first)$
(c2) plot(cos(x),x,0,2*)pi,same, [1])$
(c3) plot(tan(x),x,0,2%)pi,same,last, [510]), ymax:4, ymin:-4$

0.00<X<6.3;,-40<Y<4.0

Figure 1.22: Superimposition of plots using the first/same/last scheme

1.3.3.4 Merging Plot Files

merge_plot_files is available only in versions of Macsyma with file-based graphics, which includes Macsyma
419 and successors but not Macsyma 2.0 and successors.

merge_plot_files([finfilel, infile2)) Special Form
merge_plot_files(finfilel, infile2, ...], outfile) Special Form
merge_plot_files(/[infile], [[tx,ty,tz], [sz,sy,sZ]]], infile2], outfile) Special Form

This command merges plot files into a new file. The resulting image is an overlay of the input plots
using range and perspective information from the aggregate. This function takes 1 required and 1
optional argument.

The required first argument is a list of infile entries. Each entry may be either the name of a file or
a list consisting of a filename followed by a transformation list. The transformation list consists of a
translation and a scaling, each specified by a list of 3 floating point numbers, one for each axis. The

34 CHAPTER 1. PLOTTING AND GRAPHICS

effect is to transform the infile data first by the translation then by the scaling, before merging it in the
outfile. The default translation is [0,0,0] and the default scaling is [1, 1, 1].

The optional second argument, outfile, is specified as a file name or file pathname in double quota-
tion marks. If not supplied, outfile defaults to plot_file. When file names are used without path-
names, Macsyma assumes that the files are located in the directory plot_ directory (which defaults to
macsyma:plots;) with a filetype of plot_file_type (which defaults to plt).

1.4 Changing Plot Appearance
There are usually three ways to change the appearance of a plot in Macsyma.

e You can alter the plot under program control (from the keyboard, or in a batch file) at the time it is
generated, using the various plotting commands and option variables in Macsyma.

e You can alter the appearance of the plot after it is generated, using the graphics editing controls in
the Macsyma Front FEnd.

e You can alter the appearance of the plot after it is generated using graphics styles in the Macsyma
Front End. You can specify a graphics style under program control.

This section principally discusses the programmatic methods of altering plot appearance. You can find more
information about graphics editing controls and styles in the Macsyma Front End in the Scientific Notebook
Interface Reference Manual.

1.4.1 Changing the View of the Plot
1.4.1.1 Changing Plot Scale and Perspective

By default, Macsyma scales plots automatically to be as large as possible, while still allowing plots to fit
comfortably in the available screen area. Macsyma provides two ways to change the scaling of plots with
keyboard commands.

plot_size default: 75 Option Variable

Determines the size of the plotted object as a percentage of the linear size of the plotting window in
the Macsyma Front End. plot_size must be an integer between 2 and 200 inclusive. See also Scale:
Initial Height % and andScale: Initial Width % The Attribute Notebook: Graphics Height
has a default value of 4 inches.

By default, Macsyma scales plots by different factors in different dimensions, so that plots fill most of the
available screen area. While for many purposes this is desirable, sometimes you want the different directions
in a plot to be scaled equally (for example, so that a circle appears as a circle and not as an ellipse). The
option variable equalscale controls the relative scaling of different directions in plots.

equalscale default: false Option Variable

If this option variable is set to true, plot ensures that the scales are the same in both directions. Thus
if the window is rectangular, and equalscale is false, a circle appears as an ellipse, whereas with
equalscale:true; it appears as a circle.

Macsyma 2.0 and successors enable you to change the scale, perspective, viewpoint and many other attributes
of a plot after the plot is generated, using the controls in the Graphics | Camera View dialog in the
Macsyma Front End. equalscale corresponds to the attribute settings in the Macsyma Front End shown in
the Table 1.4, page 35.

1.4. CHANGING PLOT APPEARANCE 35

Dimensions equalscale World Scaling Window Scaling
2D false Normalized Fit to pane

2D true None Isotropic

3D false Normalized Isotropic

3D true None Isotropic

Table 1.4: Settings for centerplot, perspective, and reverse

1.4.1.2 Changing Viewpoint and Orientation

The option variables viewpt, centerplot, plot_roll, perspective and reverse, allow you to govern the
perspective view of a plot.

viewpt default: viewpt Option Variable

viewpt can be set to a list of three numbers which specify the rectangular coordinates of the viewpoint
from which the observer views the plot. A projection of the plotted object is made onto a plane
perpendicular to the line of sight, which is a line joining the points viewpt and centerplot. After
a plot is generated, the value of viewpt which was used to generate the plot is stored in the system
variable viewpt1.

centerplot default: centerplot Option Variable

centerplot can be set to a list of three numbers which specify the rectangular coordinates of a point
on the line of sight. The plotted object is projected with parallel rays onto a plane perpendicular to
a line joining viewpt and centerplot. After a plot is generated, the value of centerplot which was
used to generate the plot is stored in the system variable centerplotl.

When a plot is first generated, the default distance between the viewpoint and the object is determined
to give a good perspective view of the object. After the plot is generated, changing viewpt will change
the viewpoint without changing the effective centerplot, so that the distance between the viewpoint and
the object changes. If you change centerplot, the default algorithm is again applied to determine the
viewing distance.

plot_roll default: 0.0 Option Variable
This is the angle of rotation (in degrees) of a plotted image about the line of sight. When using the
default viewpoint (viewpt) in the first octant, a value of zero means that the x — y plane is horizontal.

If viewpt and centerplot are unbound, the default, then effective values of these variables are chosen as
follows.

1. The extreme values of the coordinates are determined. This gives the two points min: [zmin, ymin,
zmin], max: [emazx, ymax, zmax].

2. centerplot is chosen as (min + maz)/2
3. viewpt is chosen as max + 3(mazr — min).

4. The view is chosen so that the z axis is vertical, the z axis is increasing towards you to the left and
the y axis is increasing towards you to the right.

Ezample

This plot was shown earlier to illustrate the use of plot3d, Section 1.10, page 19.
(c1) plot3d(exp(-x~2-y~2)*x,x,-2,2,y,-1.5,2.5)$

Move the viewpoint.
(c2) viewpt:[-10,10,0.5]%

36 CHAPTER 1. PLOTTING AND GRAPHICS

(c3) replot();
(c4) reset(viewpt)$

0.00<X<6.3;,-40<Y<4.0

Figure 1.23: Plot with adjusted viewpoint

Before you set either viewpt or centerplot, you might want to look at the values of viewptl or center-
plotl, the values that plot3d assumed in doing the previous plot. Likewise xmax3d, ymin3d etc. are the
values of xmax, ymin used by plot3d to determine the default viewpt and centerplot.

perspective default: true Option Variable

If this option variable is set to false, it causes plot3d to use a nonperspective view. This is equivalent
to extending the viewing position out to infinity along a line connecting viewpt and centerplot.

Macsyma 2.0 and successors enable you to alter the viewpoint, center, scale and many related attributes of
a graphic after it has been generated, using graphics controls in the Macsyma Front End.

1.4.2 Appearance of Plotted Points, Lines and Surfaces
1.4.2.1 Line Types, Line Colors, and Plot Symbols

If a list (or an atom that evaluates to a list) appears as an optional argument to a plotting function, then
that list is taken as a specification of the line type to be used for the plot. The elements of the list are
evaluated once and the elements of the resultant list must be all integers. If this list has the form [type;,
typea, . .., type;, ..., typex] then the i*" curve is plotted with line of type type;. The (k4 1)t" curve is plotted
with line of type type; and so on. Omitting this optional argument is equivalent to specifying [0], that is, all
the curves are plotted with line of type 0. A line of type 0 is solid line with no symbols.

The curves drawn by the plot functions may be drawn as one of nine types of colored and dashed line, with
one of nine types of symbol drawn at the data points. In general the line type type; is a positive integer of
the form abed where a, b, ¢, and d are digits between 0 and 9, where leading zeroes may be omitted. The
four digits have the following meanings:

1.4. CHANGING PLOT APPEARANCE 37

d Line-type. Line-type 0, the default, is a solid line. Line-type of 9 defaults to no line.
¢ Symbol-type. Symbol 0 is defined to mean no symbol. Symbol 9 is defined to mean a dot.

b Number of data points with no symbol between the data points with a symbol. If b = 9 then b is set to
plotnum-1. If b = 98 then b is set to plotnum-2. plotnum is taken here to mean the number of point
in the plot.

a The first symbol is put at data point number 1 if a = 0 and at b + 2 — a otherwise.

Table 1.5, page 37, gives some examples of line and symbol specification.

abcd Meaning

0 Plain line.

10 Symbol 1 at every point; plain line.
19 Symbol 1 at every point.

99 A dot at every point.

124 Symbol 2 at every other point; line 4.
9874 Line 4 with symbol 7 at end points.
9974 Line 4 with symbol 7 at first point.
19974 Line 4 with symbol 7 at last point.

Table 1.5: Examples of Line and Symbol Specification

Ezamples

The following commands plot three trigonometric functions with different line types and different plot sym-
bols. sin(z) appears with the default line type 0 (solid red), cos(x) appears with line type 1 (solid blue), and
tan(z) appears with line type 0, and plot symbol type 1 at every sixth plot point (skipping five plot points
between plot symbols). The plot is shown in Section 1.22, page 33, Figure 1.22, page 33.

(c1) plot(sin(x),x,0,2*)pi,first)$

(c2) plot(cos(x),x,0,2%)pi,same, [1])$

(c3) plot(tan(x),x,0,2%)pi,same,last, [510]), ymax:4, ymin:-4%

Plot some sinusoidal curves with different colors and different plot point symbols, skipping ten plot points
between plot symbols in Figure 1.24, page 38.
(c1) plot([cos(3*x)-7,sin(2*x)-4,cos(x),sin(2*x)+4,cos(3*x)+7],
x,0,2%%pi, [510,521,532,543,554]), ymin:-10, ymax:10$

Note: This graph has been enhanced with the Macsyma Front End program to produce better appearing
grey scales and symbols rather than color for xerox reproduction. Other graphical attributes have been
edited after the plot was generated to change axis labels and locations as well.

Macsyma 2.0 and successors enable you to alter the appearance of plot points and plotted lines after a plot
has been generated, using graphics controls in the Macsyma Front End.

38 CHAPTER 1. PLOTTING AND GRAPHICS

10.00:
Y 0.00
/\/\//
_\/\//\//
_looo T T T T T T T T T
0.00 2.00 4.00 6.00

0.00<X<6.3;-10. <Y < 10.

Figure 1.24: Plot of five functions with different line and point styles

1.4.2.2 Surface Colors, Lighting and Mesh

color_function default: color_rainbow_in_z Option Variable

The symbolic name of a function of the coordinates [X1,X2,X3], whose value at each point determines
the color to be used at that point. For example,

(c1) colorf(X1,X2,X3):= sqrt(x1*X1+X2*X2+X3*X3)$

(c2) color_function:colorf$

makes the color hue a function of the radius of each plot point from the coordinate center (0,0,0). As
the color hue index increases through the interval [0.,1.], the hue ranges from red through the rainbow
back to red. For values greater than 1.0, the fractional part of the color index is used to obtain a value
in the range [0.,1.] . In this example, the illumination and intensity of color are set automatically.

In Macsyma 2.0 and successors, color_function has these additional features.

e color_function is a function of the actual coordinates. If you want the color_function to use
normalized coordinates, then you should write the function using the variable combinations (z-
azminl)/(zmazl-zminl) and so forth. The values of color_function are not normalized, but are
used as calculated.

e color_function can control intensity-hue-saturation (IHS) color coordinates or red-green-blue
(RGB) color coordinates. The color function must return a list of three numbers or a list of three
numbers plus a symbol.

e In the Macsyma Front End, users can change many aspects of the color distribution of lines and
surfaces after a plot has been generated.

e In the Macsyma Front End, users can set the colors and positions of two spot lights and the color
of one ambient light.

For example,

1.4. CHANGING PLOT APPEARANCE

e [0.667,0.833,0.50] specifies THS color coordinates.
e [0.667,0.833,0.5,THS] specifies the same THS color coordinates.
e [0.82,0.82,0.918,RGB] specifies the same color in RGB coordinates.

39

Macsyma 2.0 and successors enable you to change colors, lighting and many other properties of plotted
points, lines and surfaces after a plot is generated, using commands in the Macsyma Front End.

1.4.2.3 Colors

Colors of plotted lines are controlled from Macsyma by line type codes of the form ”[integer|” as a keyword

to the plotting command. See the Macsyma Reference Manual for more information.

Colors of plotted surfaces are controlled from Macsyma by the option variable color_function.

Macsyma has the following built-in colors.

color_red
color_yellow
color_green
color_blue_green
color_magenta
color_gray

color_red default:
color_dark_red default:
color_orange default:
color_yellow default:

color_olive default:

color_yellow_green default:

color_green default:
color_dark_green default:
color_cyan default:
color_blue_green default:
color_blue default:
color_dark_blue default:
color_magenta default:
color_purple default:
color_white default:

color_gray default:

color_dark_red color_orange

color_yellow_green
color_dark_green
color_dark_blue
color_purple color_white

color_black

Table 1.6: Built-in Colors

Option
Option
Option
Option
Option
Option
Option
Option
Option
Option
Option
Option
Option
Option
Option
Option

Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Variable

40 CHAPTER 1. PLOTTING AND GRAPHICS

color_black default: Option Variable

To make a plotted surface all of one color, say magenta, set color_function: color_magenta before
submitting the plot command.

1.4.3 Changing Bounding Box and Axes

Macsyma 2.0 and successors enable you to alter the appearance of the bounding box and axes in a plot after
it has been generated, using graphics controls in the Macsyma Front End.

1.4.3.1 Bounding Box and Clipping Planes

All Macsyma plotting commands accept arguments which specify the ranges of the independent variables
which are to used to generate the plotted object. In the case of parametric plotting commands like param-
plot, paramplot3d and plotsurf, these arguments define limits of parameters values and do not by them-
selves define limits to the coordinate ranges.

Macsyma provides option variables for specifying the range of coordinate values for the independent and
dependent variables to appear in a plot. Macsyma also reports, as the values of system variables, the limiting
values of the coordinates after a plot has been generated.

All of the plotting option variables whose default state is unbound, such as xmax, have corresponding system
variables whose names are obtained by appending a “1” to the end of the unbound option variable name:
xmax1. These system variables should be read only, not set, and their values may be loosely defined to be
the value that plot assumed for the option variable. The value is correct only if plot has calculated it.

For example:

Ezample

(c1) plot(x, x, 0, 10.1)$

(c2) ymax;

(d2) ymax
(c3) ymax1;

(d3) 11.0

xmax1 default: xmax1 System Variable

Contains the maximum value of the z-coordinate of the most recently produced plot, computed after
the transformation functions were applied, and after rounding to the nearest tickmark. xmax1 has
an associated option variable xmax. The maximum and minimum values of xmax that plot obtains
are rounded up and down to the nearest tick mark, unless ticknum is negative. See Section 1.4.3.2,
page 45.

xmax default: xmax Option Variable

In choosing the scale for a plot, plot looks at the maximum and minimum values of zmaz of the points
it has calculated. However if xmax has a numeric value then that value is used instead of the one found
from the points themselves. To get back to the default value, type kill (xmax) ;.

This option variable is especially important when changing the scale of three dimensional plots, because
xmax refers to the value after the perspective transformations, and so may be quite unrelated to the
data points.

ymax1 default: ymax1 System Variable

Contains the maximum value of the y-coordinate of the most recently produced plot, computed after
the transformation functions were applied, and after rounding to the nearest tickmark. ymax1 has
an associated option variable ymax. The maximum and minimum values of ymax that plot obtains
are rounded up and down to the nearest tick mark, unless ticknum is negative. See Section 1.4.3.2,
page 45.

1.4. CHANGING PLOT APPEARANCE 41

ymax default: ymax Option Variable

In choosing the scale for a plot, plot looks at the maximum and minimum values of ymaz of the points
it has calculated. However if ymax has a numeric value then that value is used instead of the one found
from the points themselves. To get back to the default value, type kill (ymax) ;.

This option variable is especially important when changing the scale of three dimensional plots, because
ymax refers to the value after the perspective transformations, and so may be quite unrelated to the
data points.

zmax1 default: zmax1 System Variable

Contains the maximum value of the z-coordinate of the most recently produced plot, computed after
the transformation functions were applied, and after rounding to the nearest tickmark. zmax1 has
an associated option variable zmax. The maximum and minimum values of zmax that plot obtains
are rounded up and down to the nearest tick mark, unless ticknum is negative. See Section 1.4.3.2,
page 45.

zmax default: zmax Option Variable

In choosing the scale for a plot, plot looks at the maximum and minimum values of zmaz of the points
it has calculated. However if zmax has a numeric value then that value is used instead of the one found
from the points themselves. To get back to the default value, type kill (zmax) ;.

This option variable is especially important when changing the scale of three dimensional plots, because
zmax refers to the value after the perspective transformations, and so may be quite unrelated to the
data points.

xminl default: xminl System Variable

Contains the maximum value of the z-coordinate of the most recently produced plot, computed after
the transformation functions were applied, and after rounding to the nearest tickmark. xminl has
an associated option variable xmin. The maximum and minimum values of xmin that plot obtains
are rounded up and down to the nearest tick mark, unless ticknum is negative. See Section 1.4.3.2,
page 45.

xmin defaoult: xmin Option Variable

In choosing the scale for a plot, plot looks at the maximum and minimum values of xmin of the points
it has calculated. However if xmin has a numeric value then that value is used instead of the one found
from the points themselves. To get back to the default value, type kill (xmin) ;.

This option variable is especially important when changing the scale of three dimensional plots, because
xmin refers to the value after the perspective transformations, and so may be quite unrelated to the
data points.

yminl default: yminl System Variable

Contains the maximum value of the y-coordinate of the most recently produced plot, computed after
the transformation functions were applied, and after rounding to the nearest tickmark. yminl has
an associated option variable ymin. The maximum and minimum values of ymin that plot obtains
are rounded up and down to the nearest tick mark, unless ticknum is negative. See Section 1.4.3.2,
page 45.

ymin default: ymin Option Variable

In choosing the scale for a plot, plot looks at the maximum and minimum values of ymin of the points
it has calculated. However if ymin has a numeric value then that value is used instead of the one found
from the points themselves. To get back to the default value, type kill (ymin) ;.

This option variable is especially important when changing the scale of three dimensional plots, because
ymin refers to the value after the perspective transformations, and so may be quite unrelated to the
data points.

42 CHAPTER 1. PLOTTING AND GRAPHICS

zminl default: zminl System Variable

Contains the maximum value of the z-coordinate of the most recently produced plot, computed after
the transformation functions were applied, and after rounding to the nearest tickmark. zminl has
an associated option variable zmin. The maximum and minimum values of zmin that plot obtains
are rounded up and down to the nearest tick mark, unless ticknum is negative. See Section 1.4.3.2,
page 45.

zmin default: zmin Option Variable

In choosing the scale for a plot, plot looks at the maximum and minimum values of zmin of the points
it has calculated. However if zmin has a numeric value then that value is used instead of the one found
from the points themselves. To get back to the default value, type kill (zmin) ;.

This option variable is especially important when changing the scale of three dimensional plots, because
zmin refers to the value after the perspective transformations, and so may be quite unrelated to the
data points.

zmax1 default: zmax1 System Variable

zmax1 is of use only for contour plots. It is equal to zmax if it has a value, or to the maximum value
of the first argument to contourplot, if zmax is unbound. Its value is meaningless if contours is a
list, because contourplot does not need to compute zmax in that case.

zmax default: zmax Option Variable

This option variable is useful for controlling contour plotting. It can be set to the maximum value of z
for which a contour is desired. Its value is ignored if contours is a list, because contourplot does not
need to compute zmax in that case.

zminl default: zminl System Variable

zminl is of use only for contour plots. It is equal to zmin if it has a value, or to the minimum value
of the first argument to contourplot, if zmin is unbound. Its value is meaningless if contours is a
list, because contourplot does not need to compute zmin in that case.

zmin default: zmin Option Variable

This option variable is useful for controlling contour plotting. It can be set to the minimum value of z
for which a contour is desired. Its value is ignored if contours is a list, because contourplot does not
need to compute zmin in that case.

The functions xmax3d, xmin3d, ymax3d, ymin3d, zmax3d, and zmin3d are of use only for three di-
mensional plots. These are the values of the three dimensional data before transforming it to two dimensions.
This information is valid only if plot3d calculated it to determine either the default viewpt or the default
centerplot.

The functions viewptl and centerplotl are also only of use with three dimensional plots. They are useful
to look at before you change viewpt or centerplot.

Ezamples

Consider the following plot Figure 1.25, page 43, of a function with a singularity at the origin. Because
plotnumO and plotnum1 default to even numbers, there is no plot point at the singularity, and the plot
has a finite height.
(c1) plot3d(1/(x"2+y~2),x,-3,3,y,-3,3)$
The option variable zmax can be set to clip this plot at a specified height as shown in Figure 1.26, page 43.
(c2) zmax:2;
(d2) 2
(c3) replot()$
Macsyma 2.0 and successors enable you to change many properties of the bounding box and axes in plots
after a plot is generated, using controls in the Macsyma Front End.

1.4. CHANGING PLOT APPEARANCE 43

L

N

.?Illlllllll

Y
o
o

0.00
2.00 2.00
X -2.00 0.00
Y
3.0<X<3.0
30<Y<30

5.56e-2 < Z < 5.50e+11

Figure 1.25: Plot of a singular function

AR
S
Z 1.00 I,’,”” X ‘\0\::‘\‘\
&0y, W

-3.0<X<3.0
-3.0<Y<3.0 Y 2.00
5.56e-2<72<20

Figure 1.26: Plot of a singular function which is truncated at z=2

44 CHAPTER 1. PLOTTING AND GRAPHICS

Macsyma 2.0 provides a clipping slider to slice through 3D objects. It is located in the Camera View
dialog in the Macsyma Front End.

1.4.3.2 Plot Axes, Axis Titles and Axis Numbers

xlabel default: xlabel Option Variable

The value of this option variable can be set to a string, which will appear as the label for the X-axis
(the axis for the first variable) in any 2D or 3D plot drawn by Macsyma. See also label, page 45.

ylabel default: ylabel Option Variable

The value of this option variable can be set to a string, which will appear as the label for the Y-axis
(the axis for the second variable) in any 2D or 3D plot drawn by Macsyma. See also label, page 45.

plotnumprec default: 2 Option Variable

This option variable controls the number of digits of precision displayed to the right of the decimal
point in axis labels, bounds labels and contour labels.

Ezxample
The following example Figure 1.27, page 44 defines text titles for the X and Y axes and for the plot. It
also shows how plotnumprec alters the number of significant digits in the axis label numbers and the
bounds numbers.

(c1) plotnumprec:4$

(c2) plot(exp(x),x,0,3,"x","exp(x)","Plot of the Exponential Function")$

Plot of the Exponential Function
20.0000

15.0000

exp(x)

5.0000

0.0000 1.0000 2.0000 3.0000

0.0000 < X < 3.000; 1.000 < Y < 20.09 X

Figure 1.27: Number precision control and titles for X and Y axes

Macsyma 2.0 and successors enable you to alter the number of digits used in each label separately after
a plot has been generated, using controls in the Macsyma Front End.

Macsyma 2.0 and successors enable you to edit the axes and axis titles in many ways after generating a plot,
using controls in the Macsyma Front End.

1.4. CHANGING PLOT APPEARANCE 45

ticknum default: 10 Option Variable

Specifies the number of ticks on each axis. The ticks always come at “nice” values of the z or y
variable. “Nice” values are defined to be multiples of k£ 10™ where n is an integer and k is 1, 2 or 5.
Setting ticknum to a negative number causes about abs(ticknum) ticks to be drawn, but plot will
not round the maximum and minimum values on your axes to the nearest tickmark. ticknum can be
a list of two numbers the first referring to the ticks on the z axis and the second to the ticks on the y
axis.

ticknum works in Macsyma 419, but not in Macsyma 2.0, where the Macsyma Front End supplies
interactive controls for the number of major and minor tick marks.

1.4.4 Changing Text Labels in Plots

Macsyma enables you to specify a text title for each plot, axis titles, contour labels, and to control the
display of bounding coordinate values and other features.

1.4.4.1 Plot Titles and Annotations

If the optional arguments to the plotting functions are not any of the recognized keywords such as first or
last, they can be specifications for the z-label, y-label and the title of the plot. If it is (a) an atom, (b) of
the form ’symbol or > (...), (c) of the form ev(...); or concat(...); or label(...);, then the label is
evaluated, otherwise it is used literally.

Note: The evaluation of ’symbl is symbl for all symbl, so if you want to get a label of symbl and symbl
has a value, then use ’symbl. "symbl" also works in most instances. See Section 1.4.4.1, page 45.

If one of these is false, then nothing is printed. Only as many of the three to be unambiguous need be
specified; thus if only a y-label is required then false, y-label would be sufficient. To avoid confusion with
the line-type list, none of these option variables can be a list. See Section 1.3, page 24.

title default: title Option Variable

The value of this option variable can be set to a string, which will appear as the title in any plot drawn
by Macsyma. See also xlabel and ylabel.

label(texty, ..., ‘text,) Special Form

This is a special form of concat for use with plot. It takes any number of arguments and returns an
atom containing the arguments concatenated together. It differs from concat in the following respects:

e It inserts spaces between the items.
e The arguments need not be atoms.
e If an argument is of the form ’symbl, then symbl appears in the result.

e Otherwise label evaluates the argument. If the value differs from the argument, the equation
arg=wvalue appears in the result, otherwise just value.

The label is evaluated inside an errcatch, so if you have an error in the evaluation of your label, an
error message is displayed, but the plot succeeds without a label.

46 CHAPTER 1. PLOTTING AND GRAPHICS

The Case A=15.0 B=2.0 F=30.0

10.0000

Amplitude
1 1

-10.0000

0.0000 0.2500 0.5000 0.7500 1.0000

0.0000 < X <1.000; -15.00 <Y < 15.00

Figure 1.28: Plot with parameter values in the title

Examples

This example Figure 1.28, page 46, produces a plot in which the plot title contains the value of the variable
a. The oscillating function and its envelope appear in different colors on a color monitor
(c1) (a:15.0, b:2.0, £:30.)$
(c2) plot([a*xexp(-b*t),-a*exp(-b*t),a*exp(-b*t)*cos(f*t)],t,0,1,
"Time","Amplitude",concat("The Case ",label(a,b,f)),[0,0,1]1)$
In the optional arguments to replot, use false if you do not want to change the corresponding label. If you
want to remove a label during replot, use none. See Section 1.6.1, page 50.

Macsyma 2.0 and successors enable you to edit the plot title text, title font and title locations after generating
a plot. It also enables you to add a text caption with a comment about the plot.

1.5. ANIMATION 47

1.4.4.2 Contour Labels

labelcontours default: true Option Variable
If this option variable is set to true, then contourplot and contourplot display a legend indicating
the value of z for each contour. See also contours,plotnumprec and .

Macsyma 2.0 and successors enable you to alter the contour labels (but not the number of contours) after
the plot is generated, using the controls in the Graphics | Decorations dialog.

1.4.4.3 Other Text Labels

plotbounds default: true Option Variable

Plots include a box at the bottom of the plot which displays the maximum and minimum of x and y
(and z in 3D plots). Setting plotbounds to false suppresses display of the plot bounds box.

noprint default: false Option Variable

As a default, the two dimensional plotting functions include a line at the bottom of the plot, called
the dataline. The dataline displays the maximum and minimum of z and y. Setting noprint to true
suppresses display of the dataline. In newer versions of Macsyma, this is accomplished by the option
variable plotbounds.

dateplot default: false Option Variable
If dateplot is set to true, the date is given at the top right corner of the plot, in a long form if no title

is specified, or in a shorter form if a title is specified.

Macsyma 2.0 and successors enable you to alter the bounds box and other text labels after the plot is
generated, using the controls in the Macsyma Front End.

1.4.5 Specifying a Graphics Style

plot_style default: normal Option Variable
Name of the default MFE graphics style to apply to a Macsyma graphic in MFE.

See the on-line documentation or the Scientific Notebook Interface Reference Manual or the on-line
documentation for information about graphics styles. See also your release notes for information about
graphics styles in your version of Macsyma.

1.5 Animation

Macsyma 2.0 and successors contain extensive facilities for defining animations of scientific graphics. Ani-
mations are of two types:

e Animation of the shape of the plotted object. This can be most easily accomplished using the command
plot_animate. The color_function can also be animated using plot_animate.

e Animate many plot attributes which are described by floating point values, such as the viewpoint or
color model. These may be animated from the Graphics | Attribute Editor dialog in the Macsyma
Front End.

In order to start animation, open the Graphics | Animation dialog or depress the toolbar button that looks
like a rocket ship.

48 CHAPTER 1. PLOTTING AND GRAPHICS

1.5.1 Defining Animations With the Plot_ Animate Command

The plot_animate command provides a very simple way to animate the movement and change of shape of
plotted objects. You simply wrap it around any static Macsyma plotting command to animate it.

plot_animate(param,lo,hi, 'plot_ command) Special Form

Animates the plot_ command with animation parameter param, which varies between lo and hi values
during the animation. plot- command can any static Macsyma 2D or 3D plot command, where the
parameter param is included in the plotted expression.

The command plot_animate accepts the keyword cyclic, which enables animations to piece together
smoothly the beginning and end of a periodic animation.

Do example(plot_animate) ; for an example.
plotnum_animate default: 10 Option Variable
The number of frames in the animation produced by the plot_animate command.

Ezxample

The following command produces an animated 3D plot. After executing these commands, you can start the
animation by selecting the plot, and clicking on the toolbar button which looks like a rocket ship.
(c1) plot_animate(t,0,2x%pi,plot3d(sin(x)*cos(y)*cos(t),x,-,3,3,y,-3,3),cyclic)$

1.5.2 Defining Animations in the Macsyma Front End

After a plot has been generated in Macsyma 2.0, it can be animated using plotting controls in the Graphics
| Attribute Editor dialog in the Macsyma Front End.

Clicking on the Anim button exposes the animation editing sections of the dialog. Clicking Anim again returns
the dialog to its smaller ”static” configuration. When expanded only animatable attributes are displayed.
Animatable attributes include all Integer, Float, Color, Vertex, and Box (BCube) valued attributes.

Animations are specified as a set of transitions on one or more animatable attributes. All animatable
attributes support the three transition functions described below:

Constant Transitions - These consist of a start value and a duration. Constant transitions can be sequenced
to created step function like variation in an attribute.

Linear Transitions - These have both start and end values. They transition linearly between start and end
values over their duration.

Smooth Transitions - These are similar to linear transitions except the transitions starts out slowly, reaches
a maximum rate at the midpoint, and then slows down again as it reaches the endpoint.

To animate an attribute first select it. Then use the Transitions section to select a transition function
and add it to the attribute’s transition list. After you add the transition select it and use the Duration
thumbwheel to set its duration. Add additional transitions to the list as desired. The Transitions list tracks
the time interval during which the transition will occur.

When you first add or insert a transition its start and end values are set up based on the start and end
values of its temporal "neighbors”. You can change these settings by entering new values in the Animation
Transition Values section.

On the lower left the Camera Settings group is used to set the total time and frame count for the animation.
The time you set in Current Time determines what stage of the animation you see if you press the Preview
key. Make sure that the time you set for Total Time is at least as long as the longest transition list you set
up. Otherwise all the transitions will not be complete at the end of the Total Time interval.

1.5. ANIMATION 49

1.5.3 Playback of Animation Sequences

Once an animation is defined, it can be controlled from the Graphics | Animation dialog. This dialog can
be opened from the Graphics menu which appears when a graphics section is selected, or by clicking on the
toolbar button which looks like a movie camera. This dialog has several types of controls.

e A button for building bitmaps. It is generally best to create bitmaps for each frame in an animated
sequence. This enables the animation to proceed at higher speed, which becomes independent of the
complexity of the image being animated.

A button to play the animation.

A button to pause the animation during playback.

A button to move to the next frame and a button to move to the previous frame in an animation
sequence.

A button to stop an animation.
This Animation dialog also contains controls for modifying the behavior of the animation sequence.

e A thumbwheel control for the number of frames in the animation sequence.

Note: If you wish to change the number of frames in a plot where the shape of the plotted object is
animated, then it is usually best to change the number of frames programmatically using the option
variable plot_animate regenerate the plot using the plot_animate command. Altering the number
of frames from the Graphics | Animation dialog in this situation will generally result in animations
which are not smooth, because the controls in the Macsyma Front End cannot generate new data for
shapes of the plotted object.

A thumbwheel control for total time in the animation.

A thumbwheel control for animation speed. You can alter the number in the control to alter the speed
of the animation.

A checkbox for continuous motion, which makes the animation into an infinitely repeating cycle.

A checkbox for bouncing off the end of the animation (and returning to time zero by running the
animation backwards).

A checkbox for running the animation in reverse.

You can also run an animation by depressing the toolbar button which looks like a rocket ship. This method
of playing back an animation does not give you access to any of the other controls in the Graphics |
Animation dialog.

50 CHAPTER 1. PLOTTING AND GRAPHICS
1.6 Screen Display, Files and Hardcopy

1.6.1 Screen Display and Redisplay

replot(plotname, ’arg:, ..., ’arg,) Special Form

Replots the plot named plotname. Either replot (true); or replot(); will replot the last plot. The
argy, ..., arg, are optional arguments. If any of the optional arguments have been changed since the
plot was saved, the new values of the optional arguments are used.

If the arrays of plotname were destroyed either by a killplots(plotname) ; or by save-ing plotname
and loadfile-ing it into another Macsyma, replot checks to see if plotname was ever saved using the
saveplots command if it was it finds the filename under which it was saved and then attempts a
loadplots (filename) ; (but taking care not to change the current file defaults) and replots plotname if
it was found in the file.

The optional arguments can be any of the optional arguments to the main plotting functions. These
optional arguments are merged in with those supplied to the original plot. The exceptions are first, last
and same, top, bottom, left and right, and dont. See Sections 1.3.3.3, 1.3, and 1.6.1. These optional
arguments do not stick around with the plot. If you want to replot the last plot with some optional

arguments supplied you must use the fully specified form replot(plotname, arg;, ..., arg,);. The
form replot(true, arg;, ..., arg,); will not work because it uses the first optional argument as a
plotname.

There are two additional optional arguments that you can give to replot, but not to the original plotting
function. They are none, to suppress a label and lin, to suppress a transformation. See Sections 1.4.4
and 1.3.2.

Examples Figure 1.29, page 50, shows a sample curve in rectangular coordinates.
(c1) plot(t*cos(3.*t),t,0,19/6%%pi), plotnum:250%

NEFA
I Y

0.0000 2.5000 5.0000 7.5000 10.0000

0.0000 < X < 9.948: -9.428 < Y < 8.384 X

Figure 1.29: Plot of a function in rectangular coordinates

1.6. SCREEN DISPLAY, FILES AND HARDCOPY o1

Now replot the Figure 1.29, page 50, in polar coordinates (see Section 1.3.2.1, page 25) and with equalscale
true;. The resulting plot is Figure 1.30, page 51.

(c2) replot(true,polar), equalscale:true$

oo]\

-5.0000 u

-4.787 <X <9.428 -5.0000 0.0000 5.0000
-6.504 <Y < 7.318

Z =0.0000

Figure 1.30: Replot of the previous plot using polar coordinates

Note: In certain circumstances, the Macsyma Front End computes a three-dimensional coordinate trans-
formation, and replots its projection in the original coordinate plane, if it is two dimensional.

plot_now default: true Option Variable

If a plotting command is given, Macsyma computes the plot data (and, in versions with file-based
graphics, stores it in a file). If plot_now is true, then Macsyma draws the image in a plot window
immediately. If false, Macsyma creates the plot file, but does not display the plot. The plot can be
displayed using replot (or redraw_plot._file in versions with file-based graphics).

dont Keyword
Keyword for: plot, graph, paramplot, contourplot, replot

If dont appears as an optional argument to the plotting functions, then the points are calculated, but
not plotted. This is primarily of use for creating plots that are to be named and used later. dont
is a local option variable, like first and last, and so it is not saved when the plot is named. Thus
plot(exp(x),x,-1,1,dont); replot(); plots something. Setting plot_now to false has the same
effect for all the plotting commands.

1.6.2 Hardcopying Plots

To make a hardcopy of a plot, select the graphics section you wish to plot and

Create a new empty notebook.

52 CHAPTER 1. PLOTTING AND GRAPHICS
Select the notebook section containing the plot you wish to print. Click on the menu command Edit |
Copy Section.
Select the new empty notebook. Click on the menu command Edit | Paste Section.

Click on the menu command File | Print and provide the information requested to print the plot.

You may also wish to review Options for Printing Attributes or Options for Graphical Attributes.

1.6.3 Saving Plots in Files

You can save any graphic produced by Macsyma in a Macsyma notebook file with this procedure.

Create a new empty notebook.

Select the notebook section containing the plot you wish to save in a file. Click on the menu command
Edit | Copy Section.

Select the new empty notebook. Click on the menu command Edit | Paste Section.

Save the new notebook in a file by clicking on the menu command File | Save As, and assigning the file
a name with the filename extension .mfe.

You can read this file back into Macsyma by clicking on the menu command File | Open and selecting the
appropriate file. You can then cut or copy and paste this graphic into any other Macsyma notebook or into
any other Windows document.

Note: In order to copy any section of a Macsyma notebook as a Windows metafile, it is necessary to turn
on the switch Clipboard Force Metafile. This is accomplished by clicking on File | Option Defaults,
selecting the category called Notebook, selecting the notebook attribute Clipboard Force Metafile, then
turning it on. (If this attribute is not turned on, then Macsyma only copies sections of Macsyma notebooks
to other notebooks, and does not create metafiles. Copying sections of Macsyma notebooks is faster if no
metafile is created.)

Note: This area of Macsyma is subject to change. Please consult release notes for your version of Macsyma
for latest information.

The Graphics | Export Dialog enables you to save graphics in four other file formats.

e .BMP files
o .GIF files

o .PCX files
e .RLE files.

1.7. OTHER TOPICS IN GRAPHICS 53
1.7 Other Topics in Graphics

1.7.1 Cleaning Up the Plotting Environment

plotreset() Function

Resets the option variables affecting plotting back to their default values. The option variables relating
to terminal control are not reset.

plot_options default: perspective, ticksize, ticknum, underside, System Variable
plotnum1, plotnumprec, reverse, equalscale,
noprint, plotnum, xaxis, yaxis, contours, xfun,
yfun, crosshatch, labelcontours, dateplot,
ploterror, plotgap, hardcopy, plotnumO, xmin,
Xmax, ymin, ymax, zmin, zmax, window, viewpt,
centerplot, clear, wait
This system variable provides a list of the plotting option variables which are re-initialized by the
plotreset command. The command ev(plot_options); will print out a list containing the values of
the option variable.

1.7.2 Handling Plot Errors

ploterror default: true Option Variable
Governs what happens when plot and most other plotting functions encounter an error in trying to
evaluate a function or expression at a plot point.

e If ploterror is true, the default, then an error occurs.

e If ploterror is a floating-point number, then that number is used as the value of the erroneous
form.

e If ploterror is false, then the value of the erroneous form is set to the value of the option variable
plotundefined. This causes the point to be skipped in the plotting.

1.7.3 Alternate Representations of 3D Plots

Internally, the plots generated by plot3d (with or without the not3d option variable), graph3d, and
contourplot are the same, and it is possible to choose between any of the four representations. Table 1.7
lists the four representations that are directly accessible.

Representation Command Keyword (if any)
hidden-line plot3d
graph3d hide
3D, hidden lines not removed graph3d
plot3d \3d
contourplot contourplot
plot3d contour
not3d plot3d not3d

Table 1.7: Access to Plot Representations

54 CHAPTER 1. PLOTTING AND GRAPHICS

Note: The keyword 3D will also be accepted in all of the following forms: \3d, “3d” or “3D”.

The representation can be changed after the plot has been made by using the function replot. The following
table shows how to specify different representations.

Representation Command

hidden-Line replot(true, hide);

3D replot (true, \3d);
contourplot replot(true, contour);
not3d replot(true, not3d);

Table 1.8: Controlling Representations From replot

Note: There is an interaction between contourplot and not3d, such that when swapping from a not3d
representation to a contourplot, it is necessary to supply an additional optional argument lin. Thus,
for example, replot (true, contour, 1lin);. The true in the call to replot indicates the last plot. See
Section 1.6.1, page 50.

1.7.4 Miscellaneous Plotting Commands

plotmode Option Variable
An option variable which specifies the format of the plot output. The default and other possible values
depend on the machine and (for hardcopy) the output device.
See the Release Notes for your Macsyma for the possible values for your version of Macsyma.
plotbell default: true Option Variable
If this option is true, the bell on your terminal rings when a plot is finished. To disable the bell, set
plotbell to false.

The bell rings if wait is true and if you're plotting on the terminal. See Section 1.3.3.2, page 31. The
plotting function is now waiting for you to type something before it exits and prints the next C-label
on your plot.

This option variable does have any effect in a notebook in Macsyma 2.0 and its successors.

See the Release Notes for your Macsyma for any new information.

Chapter 2

The Macsyma Front End Math
Engine

MFE itself has the ability to calculate, store, graph and view data associated with a notebook. The MFE
math engine is the part of MFE that manages and computes with this data. It is separate and distinct
from both the PDEase and Macsyma math engines. Each notebook has its own set of data and names for
referencing the data. PDEase uses MFE variables to capture and graph its output. Macsyma can access
MFE variables and, amongst other features, can use the MFE math engine to access external numerical
libraries.

2.1 Entering Data into the MFE Math Engine

The basic commands to transfer data from the Macsyma math engine to the MFE math engine and MFE
variables are:

mfe_put(mac_var, mfe_var) Function

Places data from Macsyma into an MFE array.

mac_var Result

scalar Assigns scalar value to mfe_var
list Creates 1D MFE array

matrix Creates 2D MFE array

array Creates corresponding MFE array

string Creates 1D MFE array of characters

Macsyma variables must be integers, floating point numbers, or Macsyma strings. They cannot be
bigfloats, big integers, complex numbers, rational numbers, block matrices, or any other Macsyma
object that does not evaluate to a number or string.

mfe_get(mfe_var {, mac_name}) Function

Places data from the MFE mfe_var into the Macsyma environment. The optional argument mac_name
can be supplied only when getting an MFE array.

55

56 CHAPTER 2. THE MACSYMA FRONT END MATH ENGINE

mfe_var mac_name Result

MFE scalar (ignored) returns a scalar
1D MFE array not given returns a list filled with values from MFE
2D MFE array not given returns a matrix filled with values from MFE
2D MFE array not given returns nested list structure
MFE array given fills array macs_name with data from

and returns the array name mac_name

mfe_eval(command_string {, value flag, mac_name}) Function

Evaluates command_ string in MFE. If value_ flag = true, then the result of the evaluated MFE com-
mand is returned as in mfe_get. If value_ flag = false, then no result of the MFE command is returned
to Macsyma, and mfe_eval returns 'Done.

view_mfe_data(mfe_name0 {,mfe_namel, ...}) Function

The MFE object with name mfe_name0 appears in a DataViewer section in the current notebook.
mfe_namei can refer to either a 1D or 2D array in the MFE environment. view_mfe_data attempts
to provide the most suitable display of the data, depending on the dimensions of the MFE arrays.

By default, the DataViewer uses double precision for floating point numbers in MFE math variables.
If the mfe_namei is single precision, the DataViwer uses e-format to display it. You can enter single
precision values using e-format. The MFE math engine will convert the type of the number as needed.

The DataViewer displays MFE variables or math expressions. You must first move Macsyma Math
Engine data into an MFE variable before you can view it. Similarly, you must import data from a file
into an MFE variable to view it.

If you try to create an DataViewer section, you may be prompted for the name of an MFE vari-
able to view. You can create an empty DataViewer section by Edit | Insert Section and selecting
DataViewer.

If no MFE variables exist, you must create one first. You can create an MFE variable in at least three
ways:

e You can create an MFE variable from a Macsyma Math Engine variable by using the mfe_put com-
mand. See also mfe_put, page 55.

e You can create a new MFE variable by importing data from a file. Use Data | Import to select the
file, and choose the name of the MFE variable. See also page 57.

e You can create a new MFE variable by assigning the data from an existing graphics section. Use
Graphics | Assign Data to Variable.

plot_mfe_data(mfe_name0 {,mfe_namel, ...}) Function

The MFE object with name mfe_name0 appears in a graph in the current notebook. mfe_namei can
refer to either a 1D or 2D array in the MFE environment. plot_mfe_data plots all the MFE arrays
in one plot, regardless of the dimensions of the MFE arrays.

mfe_update_now() Function

Causes MFE to update its math objects before the Macsyma computation continues, after the call to
mfe_update_now in a Macsyma program.

mfe_kill(mfe_name) Function

Removes the MFE object named mfe_name from the MFE environment.

2.2. THE MFE_DATA PACKAGE o7

2.1.1 Import and Export — external data files

You can export an MFE variable to a file by selecting the Menu item Edit — Export. You can choose
CSV format, or fixed field.

Similarly, you can import an external data field in CSV or fixed field format by selecting the Menu item
Edit — Import. You can choose CSV format, or fixed field.

2.2 The mfe_data Package

These commands are preliminary and are subject to change without notice. Refer to the on-line documen-
tation.

See usage (mfe_data) ;.

Do demo(mfe_data) ; for several examples.

2.2.1 Getting Data From the MFE Math Engine

get_data_line(objname, r_or_c, numb) Function

Returns a Macsyma list whose values are taken from column (or row) number numb from the Macsyma
matrix, Macsyma array, or MFE array named objname. r_or_c must be either 'row or ’col.

get_data_line_as_matrix(objname, r_or_c, numb) Function

Returns a Macsyma matrix whose values are taken from column (or row) number numb from the
Macsyma matrix, Macsyma array or MFE array named objname. 7_or_c must be either row or ’col.
This returns a column or row vector.

get_data_as_matrix(objname) Function

Returns a Macsyma matrix whose values are taken from the Macsyma matrix or Macsyma array or
MFE array named objname.

get_data_as_array(objname,arrname) Function

Fills the Macsyma array named arrname with the contents of the Macsyma matrix or Macsyma array
or MFE array named objname. Returns the name arrname.

zero_based_arrays default: false Option Variable
For commands in the mfe_data package, zero_based_ arrays determines whether (Macsyma and MFE)

arrays are referenced with zero-based indexing or 1-based indexing.

zero_ based_ arrays Index for first row/col of array
false 1
true 0

Matrices are always 1-based.

2.2.2 Putting Data into the MFE Math Engine from Macsyma

new_data_object(mfe_name {,numtype, dimi, dim2}) Function

Creates a new MFE object of type args =[type,numl,num?2| and displays it in a DataViewer. If no
number type or size is given, the default is a double float 10 x 10 array.

o8 CHAPTER 2. THE MACSYMA FRONT END MATH ENGINE

put_data_cell(data, objname, rownum {,colnum}) Function
Changes the value of one cell in a 1D or 2D Macsyma matrix or Macsyma array or MFE array.
put_data_1d(dataobj, mfe_name, r_or_c, index_ num) Function

Puts 1D data into a 1D or 2D MFE array with name mfe_name. mfe_name must be the name of an
existing MFE array. The value of 7_or_c must be either 'row or ’col, and its value determines the
acceptable forms of the 1D data object dataobj.

Value of r_or_c Acceptable forms of dataobj
row Macsyma list or row vector
col Macsyma list or matrix

put_data_1d returns the value ’done.

2.2.3 Viewing Data

Chapter 1 describes how to produce plots from Macsyma variables. This section describes how to produce
two- and three-dimensional plots from MFE variables. Please refer to Chapter 1 for more detailed information
about plot options.

2.2.3.1 Making 2 and 3 Dimensional Plots of MFE Data

graph2d_data(objname, r_or_c, coll {, col2}) Function

Graphs column (or row) coll of data object objname on the horizontal axis and columns (or rows)
col2,... of objname on the vertical axis. objname must be a Macsyma matrix, a Macsyma array or
an MFE array. r_or_c, which must be either 'row or ’col, determines whether rows or columns are
extracted from objname.

If objname is a 1-dimensional matrix, Macsyma array or MFE array, then the values are plotted as a
function of the integer array index.

See plot_mfe_data, Section 2.1, page 56.
graph3d_data(mfe_name, r_or_c, coll, col2, col3 {, plotcode}) Function

Makes a scatter plot of the columns (or rows) coll, col2, col3 of the MFE array mfe_name. r_or_c
must be either 'row or ’col, and determines whether rows or columns are extracted from mfe_name. The
optional argument plotcode is a list of integers which controls the line type and plot point symbol, as
for other Macsyma plotting commands. If plotcode is not specified, graph3d_data produces a scatter
plot with no lines connecting the plot points.

plot3d_data(objname {, whereplot, mfe_name}) Function

Plots the values in the Macsyma matrix, Macsyma 2D array or 2D MFE array objname against the
integer indices on the two horizontal axes. If the optional argument whereplot has the value 'macs, then
the plot is generated in Macsyma. If whereplot has the value 'mfe, then mfe_name must be specified,
the plot is generated in MFE, and the values in objname are stored in the MFE array mfe_name.

contourplot_data(objname) Function

Draws a contour plot of the matrix, Macsyma array, or MFE array objname in a Macsyma graphics
section.

2.2. THE MFE_DATA PACKAGE 59

2.2.3.2 Smoothing and Graphing MFE Data

graph_smoothed_data(objname, r_or_c, coll, col2 {,type}) Function

Fits the data in column (or row) col2 of the matrix, Macsyma array, or MFE array objname to the
abscissas in column (row) coll with a cubic spline (default), rational function or polynomial. r_or_c,
which must have one of the values 'row and ’col, determines whether rows or columns of objname are
graphed. If the value of the optional argument type is specified, it must have one of the values "poly,
‘rat, ’spline. The value of type determines the type of smoothing performed.

Index

\3d, 53

xmax1 (system variable), 40
xminl (system variable), 41
ymax1 (system variable), 40
yminl (system variable), 41
zmax1 (system variable), 41
zminl (system variable), 42
3D, 53

3D Graphics, 17

adaparamplot2 (function), 13
adaplot (package), 12
adaplot2 (function), 12

centerplot (option variable), 35
char_graph (function), 14
char_multigraph (function), 15
char_paramplot (function), 14
char_plot (function), 14

character plotting, 13

clear (option variable), 31
color_black (option variable), 40
color_blue (option variable), 39
color_blue_green (option variable), 39
color_cyan (option variable), 39
color_dark_blue (option variable), 39
color_dark_green (option variable), 39
color_dark_red (option variable), 39
color_function (option variable), 38
color_gray (option variable), 39
color_green (option variable), 39
color_magenta (option variable), 39
color_olive (option variable), 39
color_orange (option variable), 39
color_purple (option variable), 39
color_red (option variable), 39
color_white (option variable), 39
color_yellow (option variable), 39
color_yellow_green (option variable), 39
combine_ plots (function), 31
complex_plot3d (function), 20
contour, 53

contourplot (special form), 6
contourplot3d (function), 20
contourplot_data (function), 58

60

contours (option variable), 7
coordinates

polar, 25
curv_tol (option variable), 13

dataline, 47

dateplot (option variable), 47
dont (keyword), 51

dt_factor (option variable), 13
dt_rate (option variable), 13
dt_ratio (option variable), 13

equalscale (option variable), 34
first (keyword), 32

get_data_as_array (function), 57
get_data_as_matrix (function), 57
get_data_line (function), 57
get_data_line_as_matrix (function), 57
graph

linear scaling, 25

logarithmic scaling, 25
graph (special form), 9
graph?2 (special form), 16
graph2d_data (function), 58
graph3d (special form), 21
graph3d_data (function), 58
graph_smoothed_data (function), 59

hardcopy of plots, 51
hide, 53

implicit_plot (function), 8
initperspec (function), 30

keywords for
plot, graph, paramplot, contourplot, replot,

32, 51

plot, graph, paramplot, contourplot, replot,
plot3d, 32

plot3d, 18

label (special form), 45
labelcontours (option variable), 47
last (keyword), 32

INDEX

linlog, 25
loglin, 25
loglog, 25

Macsyma break, 7, 28
merge_plot_files (special form), 33
mfe_eval (function), 56

mfe_get (function), 55

mfe_kill (function), 56

mfe_put (function), 55
mfe_update_now (function), 56

new_data_object (function), 57
noprint (option variable), 47
not3d, 53

not3d (keyword), 18

paramplot (special form), 5
paramplot3d (function), 20
perspective (option variable), 36
plot (special form), 2

plot redisplay, 50

plot2 (special form), 15
plot2_vect (function), 11

plot3d (special form), 18
plot3d_data (function), 58
plot3d._ vect (function), 23
plot_animate (special form), 48
plot_data (special form), 18
plot_mfe_data (function), 56
plot_now (option variable), 51
plot_options (system variable), 53
plot_roll (option variable), 35
plot_size (option variable), 34
plot_style (option variable), 47
plot_tessellation (option variable), 22
plot_vect_head (option variable), 11

plot_vect_head_angle (option variable), 12
plot_vect_head_size (option variable), 12

plot_vect_scale (option variable), 11
plotbell (option variable), 54
plotbounds (option variable), 47
ploterror (option variable), 53
plotheight (option variable), 15
plotmode (option variable), 54
plotnum, 18
plotnum (option variable), 24
plotnumO

use in plot2_vect, 11
plotnum0 (option variable), 25
plotnuml, 18

use in plot2_vect, 11
plotnum1 (option variable), 25
plotnum?2 (option variable), 25

plotnum_animate (option variable), 48

plotnumprec (option variable), 44
plotreset (function), 53
plotsurf (function), 21

polar, 25

polar coordinates, 25
put_data_1d (function), 58
put_data_cell (function), 58

replot (special form), 50

same (keyword), 32
saving plots in files, 52
screen display, 50
screen redisplay, 50

tessellations, 22
ticknum (option variable), 45
title (option variable), 45

view_mfe_data (function), 56
viewpt (option variable), 35

wait (option variable), 31

xfun, 29

xlabel (option variable), 44
xmax (option variable), 40
xmin (option variable), 41

yfun, 29

ylabel (option variable), 44
ymax (option variable), 41
ymin (option variable), 41

zero_based_arrays (option variable), 57

zmax (option variable), 41, 42
zmin (option variable), 42
zmax1 (system variable), 42
zminl (system variable), 42

61

