/* Expression Partitioning tool. Included is an application implementing stage 1 of Moses' SIN symbolic indefinite integration, intfudu. Author: Richard Fateman, January, 2009. Suggestions by B. Willis. Documentation http://www.cs.berkeley.edu/~fateman/papers/partition.pdf */ /* Moving expression arg to end makes matchdeclare simpler */ partition_expression(operator,pred,init,combiner,action,res,E):= block([yes:init,no:init], if not atom(E) and inpart(E,0)=operator then (map(lambda([r], if apply(pred,[r])=false then no:apply(combiner,[r,no]) else yes:apply(combiner,[r,yes])), inargs(E) ), res :: apply(action, [yes,no]), /* result stored as requested */ true))$ inargs(z):=substinpart("[",z,0)$ /* utility like args, but avoids / or - */ ( /* %voi = variable of integration, a global variable wrt these entries */ intablefun(op):= if atom(op) then intable[op] else false, intable[otherwise]:=false, /*backstop for undefined kernels */ intable[log] : lambda([u], [-u+u*log(u),diff(u,%voi)]), intable[sin] : lambda([u], [-cos(u),diff(u,%voi)]), intable[cos] : lambda([u], [sin(u),diff(u,%voi)]), intable[tan] : lambda([u], [log(sec(u)),diff(u,%voi)]), intable[sec] : lambda([u], [log(tan(u)+sec(u)),diff(u,%voi)]), intable[csc] : lambda([u], [log(tan(u/2)),diff(u,%voi)]), intable[cot] : lambda([u], [log(sin(u)),diff(u,%voi)]), intable[atan]: lambda([u], [-(log(u^2+1)-2*u*atan(u))/2,diff(u,%voi)]), intable[acos]: lambda([u], [-sqrt(1-u^2)+u*acos(u),diff(u,%voi)]), intable[asin]: lambda([u], [sqrt(1-u^2)+u*asin(u),diff(u,%voi)]), intable[sinh]: lambda([u], [cosh(u),diff(u,%voi)]), intable[cosh]: lambda([u], [sinh(u),diff(u,%voi)]), intable[tanh]: lambda([u], [log(cosh(u)),diff(u,%voi)]), intable[sech]: lambda([u], [atan(sinh(u)),diff(u,%voi)]), intable[csch]: lambda([u], [log(tanh(u/2)),diff(u,%voi)]), intable[coth]: lambda([u], [log(sinh(u)),diff(u,%voi)]), intable[asinh]: lambda([u], [-sqrt(1-u^2)+u*asinh(u),diff(u,%voi)]), intable[acosh]: lambda([u], [-sqrt(u^2-1)+u*acosh(u),diff(u,%voi)]), intable[atanh]: lambda([u], [log(1-u^2)/2+u*atanh(u),diff(u,%voi)]), intable[acsch]:lambda([u], [u*asinh(u)/abs(u)+u*acsch(u),diff(u,%voi)]), intable[asech]:lambda([u], [u*asech(u)-atan(sqrt(1/u^2-1)),diff(u,%voi)]), intable[acoth]:lambda([u], [log(u^2-1)/2+u*acoth(u),diff(u,%voi)]), intable["^"] : lambda([u,v], if freeof(%voi,u) then [u^v/log(u),diff(v,%voi)] else if freeof(%voi,v) then if (v#-1) then [u^(v+1)/(v+1), diff(u,%voi)] else [log(u),diff(u,%voi)]), /* Rule for integration of 'diff(f(u),u) wrt u for "unknown" f */ /* Need a fancier rule for integration of 'diff(f(u^2),u) wrt u. Maxima does not have notation for diff wrt first argument, though see pdiff share file */ intable[nounify(diff)]:lambda([[u]], if length(u)=3 and u[2]=%voi then [diff(u[1],%voi,u[3]-1),1]), /* We can add rules for more operations like this */ intable[polygamma] :lambda([u,v], if freeof(%voi,u) then [polygamma(u-1,v),diff(v,%voi)]), intable[Ci]: lambda([u], [u*Ci(u)-sin(u),diff(u,%voi)]), intable[Si]: lambda([u], [u*Si(u)-cos(u),diff(u,%voi)]), gradef(Ci(w), cos(w)/w), gradef(Si(w), sin(w)/w), intable[nounify(bessel_j)] :lambda([u,v], if(u=1) then [-bessel_j(0,v),diff(v,%voi)]), intable[nounify(bessel_i)] :lambda([u,v], if(u=1) then [ bessel_i(0,v),diff(v,%voi)]), intable[nounify(bessel_k)] :lambda([u,v], if(u=1) then [-bessel_k(0,v),diff(v,%voi)]), /* Here are Airy functions. */ intable[nounify(airy_ai)]:lambda([u], [-(u*(-3*gamma(1/3)*gamma(5/3)*hgfred([1/3], [2/3, 4/3], u^3/9) + 3^(1/3)*u*gamma(2/3)^2*hgfred([2/3], [4/3, 5/3], u^3/9)))/(9*3^(2/3)*gamma(2/3)*gamma(4/3)*gamma(5/3)),diff(u,%voi)]), /* Here are Legendre polynomials P[n](x). Presumably if n were an explicit integer this symbolism would be removed, so we assume it is of symbolic order n. */ intable[legendre_p] : lambda([n,u], if freeof(n,u) then [(legendre_p(n+1,u)-legendre_(n-1,u))/(2*n+1), diff(u,%voi)]) )$ /*etc */ /* Here's the main integration program */ ( matchdeclare(ss, partition_expression("*",lambda([u],freeof(%voi,u)),[],cons,"[",'ANSss)), defrule(ddr1,ss,ANSss))$ /*intfudu stands for integrate f(u)*du. This is equivalent to Moses' SIN, stage 1 */ intfudu(exp,%voi):= /*integrate exp=f(u)*du wrt %voi*/ block([lists,consts,factors, thefuns, therest, thelist, int, df, result:false], if freeof(%voi,exp) then return (exp*%voi), lists:ddr1(exp), /*partition expression into factors*/ if lists=false then lists:[[1],[exp]], factors:second(lists), for k in factors do if not atom(k) and (thefuns:intablefun(inpart(k,0)))#false and (thelist:apply(thefuns,inargs(k)))#false then( [int,df]:thelist, if freeof(%voi,therest:ratsimp(exp/k/df)) then (result:(therest*int), return())), /*if nothing of form f(u)du worked, then try matching u^1*u'-> u^2/2 */ if result=false then for k in factors do if freeof(%voi,therest:ratsimp(exp/k/diff(k,%voi))) then (result:(therest*k^2/2), return()), return(result))$