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Abstract

Surprisingly, we can speak mathematics to a computer probably more rapidly and accurately than
handwriting. Even better is to speak and use pointing or handwriting. A combination may allow us
to identify and cancel errors in one mode or another. In some cases speaking may be more convenient
than typing, even for rapid typists: many mathematical symbols missing on the keyboard can be easily
spoken. Even without venturing into Greek, handwriting or even typing “fifty million” is probably slower
and more error-prone than speaking.

Pursuing the goal of effectively speaking small pieces of mathematics, we wondered how hard it would
be to speak arbitrarily long sections of mathematics, including nested complex expressions.

We first describe programs for the inverse problem: computer generation of mathematical speech.
In so doing we find that we need to suggest a few speaking conventions to overcome the unfortunately
ambiguous and inconsistent common usages of mathematics.

Then we consider tools and guidelines to make it more plausible for humans to speak full mathematical
formulas so they can be recognized by a computer using a speech recognizer program.

We describe our prototype programs which do somewhat less than we propose, but are effective in
that speech can either be used alone, or used to fill in boxes (superscripts, etc.) or larger pieces, or
for choosing alternatives from plausible symbol recognition from handwriting. We believe the principle
barriers to engineering a more complete program can be overcome, though a driving application may be
essential for refining prototypes into useful programs. This paper is not intended to be the last word on
the subject, but to expose problems and approaches relevant to the task.

1 Introduction

Handwriting mathematics seems natural because it is what we have been taught in school. We find it
natural to view mathematics in typeset form because that too is commonplace and familiar. If asked,
most professional users of mathematics will opine that speaking mathematics is difficult, since the “hard
parts” come to mind. In fact users of math routinely speak small pieces quite comfortably: in fact a paper
introducing new written notation usually specifies how it should be pronounced! These small bits can often
easily be combined to medium-sized sections; we do not hesitate to vocalize “the quadratic formula”1 Given
that speech input to computers is becoming more common as it is better supported by technical advances,
the question arises: is it useful to speak mathematics into the computer? If we could do so, persons with
disabilities in writing or typing, should be able to more easily communicate mathematics to a computer.
Even for non-disabled, there may be advantages for speech in some circumstances; we contend that speech
can be used in three ways: as a primary method, a supportive auxiliary method in a “multimodal” context,
or an error-correction command language.

1Even though most people who nominally know it, speak it in a manner that, because of insufficient grouping, is formally
wrong.
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The reverse operation, namely a computer speaking mathematics, has more of a history. There are
two notable successes, AsTeR [15] and Design Sciences’ MathPlayer [4]. We first discuss this material as
background and then then proceed to our main results where humans speak aloud and the computer listens
to mathematical discourse.

2 Computers speaking math

The program AsTeR [15] is an excellent prototype for speaking mathematics; indeed it seems quite worthy
of use for the reading of TEX mathematics to visually disabled persons2 Nevertheless, there is a problem
related to TEX that cannot be easily overcome in that there is no formal way for AsTeR to be given the
semantics for the material from TEX, because it is not usually encoded in TEX. Semantics must be derived
from some (external) context. Thus f−1 might be f to the power −1 or it might be f inverse, or even, in the
case sin−1, the function named “arcsine”. There may even be homonyms (“sign” and “sin”). If the speech is
generated from a computer algebra system, or encoded in a semantic description (even MathML), there is a
better chance of getting it right. In fact, Design Science, www.dessci.com has a “speak expression” option
that allows Internet Explorer to read math aloud from a MathML expression if the (free) MathPlayer plug-in
is available. Its effectiveness depends on a browser/operating system capability for text-to-speech (TTS).
Given the underlying support, it then feeds locutions like “ begin fraction a+b over c+d end fraction.” It
seems to us plausible that one might do somewhat better by directly speaking from a computer algebra
system (CAS) rather than through a browser. In the CAS case, the system could contain more context
including line labeling schemes, aliasing of symbols to names, or abbreviations (e.g. let r =

√
(x2 + y2)

in an expression). It could also make reasonable and consistent choices as for x−1 vs. 1/x. It might even
describe expressions in a preliminary “outline” to prepare the listener. For example “a fraction with a long
numerator of 25 summands and a denominator which is the product of 5 terms. To hear the terms in the
numerator one at a time, say next. ...”

A back-and-forth interaction between a remote CAS and a local browser speaking MathML via Math-
player could probably simulate this situation fairly well, so a browser cannot be discounted entirely. The
text-to-speech programs can be used as an aid to proofreading: a (sighted, hearing) human need not glance
between two written versions to see if they are the same; a math-to-speech program may also have use as a
proofreading or interactive-feedback assistant for input methods (like handwriting).

Just as a side note; humans are fairly sensitive to oddities in speech. Typical computer-generated speech
is generally easily identified as unnatural. This does not mean it is necessarily difficulty to understand.

2.1 Speaking on the Internet

Stepping back from math specifically, how hard is speech production? Given the state of the art today, it is
possible, even easy, to have a web browser speak (in one of the various available voice of your chosing) the
xml encoding of a speech utterance. It is possible to encode speed, pitch, volume, and other voice character-
istics. How adaptable is this to mathematics? We have experimented with this, and have written a program
suite providing the translation of algebraic expressions given as Lisp prefix data into words. For example (*
r s t) would be spoken as “r times s times t.” More specifically our Lisp-to-speech XML program would
produce this underlying encoding for r · s · t.
"<p><spell>r</spell> times <spell>s</spell> times <spell>t</spell> </p>" Similarly, f(x, y) would
be
"<p><spell>f</spell> of <spell>x</spell> and <spell>y</spell> </p>".

Not all the nuances of AsTeR may be available, but the XML encoding in fact provides considerable
opportunities for speech variation: changes in volume, speed and pitch. We have not seen an additional

2The author is blind; Aster was the name of his seeing-eye dog.
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feature which might be cute: using stereo, proceeding from the left speaker to the right as the expression is
read aloud.

A curiosity that we did not anticipate in our initial design is the extent to which most listeners and
speakers leave out critical information, even when they think they are speaking unambiguously, and how
overbearing a complete and unambiguous rendering sounds when we produce it from our own program. This
become apparent when the program, naturally set up to be unambiguous in its utterances, is given common
middlingly-complex expressions.

The well-known quadratic formula can be written as a Lisp prefix expression as (/ (pm (- b) ((̂- (b̂
2) (* 4 a c)) 1/2)) (* 2 a)) where pm means ±. This can be read in a variety of ways. Here we remove
the <spell> pieces, as well as a change in pitch for the denominator and other minor items, in order to make
the text more perspicuous. In school you might get full credit if you recite it as minus b plus or minus
square root of b squared minus 4 a c divided by 2 a .

Without prior knowledge of this formula how could you know if the 4ac or even the 2a belongs within
the square root? You don’t from this reading. Is the −b in the numerator or outside the fraction? Again
you don’t know. In fact, is the a in the denominator, or is it a multiplier for the whole previous expression?

Our punctilious program insists on bracketing, by inserting “the quantity” and “end” around components
so it can provide non-ambiguous renderings. But for this formula it needs to put in three sets of brackets,
making it seem excessively pedantic. Judicious omission of bracketing on output seems advantageous, and
so our program does not always insert brackets. Instead there is a explicit insertion of tags required for
enunciating brackets. As an example (* (+ a b) c) could be confused with (+ a (* b c)), and so one
first should use a bracket constructor to be spoken by the computer (and to keep the listener on guard).
The example would be (* (bracket (+ a b)) c), and would be pronounced “The quantity a plus b end
times c.” MathPlayer speaks the quadratic formula by talking about fractions, end-square-roots, and yet
leaves out operators like “times”. Here is an ML version of the quadratic, taken from a Design Science
demonstration page:

<p id="MPEqn">
<m:math>
<m:mstyle displaystyle="true">
<m:semantics>
<m:mrow>
<m:mi>x</m:mi><m:mo>=</m:mo><m:mfrac>
<m:mrow>
<m:mo>&#8722;</m:mo><m:mi>b</m:mi><m:mo></m:mo><m:msqrt>
<m:mrow>
<m:msup>
<m:mi>b</m:mi>
<m:mn>2</m:mn> </m:msup>
<m:mo>&#8722;</m:mo><m:mn>4</m:mn><m:mi>a</m:mi><m:mi>c</m:mi> </m:mrow>
</m:msqrt>
</m:mrow>
<m:mrow>
<m:mn>2</m:mn><m:mi>a</m:mi> </m:mrow>
</m:mfrac>
</m:mrow>
<m:annotation encoding="MathType-MTEF">
MathType@MTEF@5@5@+ .... truncated...
</m:semantics>
</m:mstyle>
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</m:math></p>
<p id="MPEqnAlt" style="display:none">[MathML Equation -- requires MathPlayer]</p>

The truncated material is an encoding of the speech version.

2.2 Non-speech approaches to natural math

This is necessarily a brief review. On the output side, in recent years computers have replaced older technology
for mathematical typesetting. Software now supports the whole workflow from the original creation, perhaps
with the aid of a computer algebra system, through interpretation by some typesetting program, to the point
of printing on paper or display on a browser. Most readers of this paper will be aware of such editors (using
keyboard and mouse) and printers or screen displays (using raster graphics).

On the input side, most mathematics programs are heavily keyboard-dependent, with perhaps mouse/menu
assists. Only Maple version 10 (2006) allows limited handwriting input of single symbols.

Yet looking back at research programs, since at least 1965 programs [1] there have been demonstrations
of software which serve as intermediaries for the conversion of (hand)written material into typeset material.
More recently it has become plausible to actually make use of such programs on the much-more powerful
computers of today.

Today’s demonstration programs [19, 13, 3] show that while it is fairly easy to recognize a subset of
simple math symbols and expressions as usually written by hand, there are substantial barriers to usefulness.
These program suffer from a generally unacceptably high error rate except on the simplest tasks. This
is a consequence of understandable difficulties. Trouble distinguishing many pairs: (p vs P, 0 vs O, 5 vs
S, 1 vs l vs i vs — vs [ vs ] etc), means that some demonstration programs may work only by requiring
special gestures, or taking steps such as simply excluding the letters S, l, and O from the vocabulary. Other
confusions are possible with positioning or stroke identification. Thus 1<2 could easily be written so as to
be confused with K 2.

We suggest the following experiment might illustrate some of the difficulties, easily performed by a college
student or teacher.

Walk in to a mathematics or physics classroom at the end of the lecture and see if you can read
all the mathematics on the blackboard.

You probably can’t understand it all. Expecting a computer to understand it, devoid of mathematical
or physical context is unrealistic. Additionally, a computer post-processing of a blackboard has another
handicap compared to the student in the classroom. The computer does not have the benefit of the lecturer’s
simultaneous speech while writing on the board, nor the sequence of writings and erasures. Of course it also
does not have the opportunity to ask clarifying questions.

Other methods for input and editing of math via templates, menus, keyboarding, and other non-
handwriting forms are surveyed by Kajler and Soiffer [9]. A skilled user can generally do quite well with
such systems, but systems can be frustrating to the novice. In some cases they can also be frustrating to the
expert who requires close adherence to some format unanticipated by the system designers. Our proposals
generally would complement existing systems like TEX and TeXmacs, an interactive system inspired by TEX;
some later editing might be needed for small corrections if there is a need to precisely control the typesetting.

2.3 Speaking mathematics

One reviewer of an earlier version of this paper claimed that “the use of dual input (speech and pen) is
not much different than pen and keyboard or pen and palets[sic]”. This reviewer missed two points: that
one cannot type on a keyboard simultaneously with using a mouse. One must losing time moving a hand
to the mouse and then re-establishing a position over the keyboard. Picking up a stylus is harder in this
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respect than grabbing a mouse, requiring more complicated motions. Once picked up, a stylus has quite
a different feel, and much superior for writing. We could solve this problem by learning to type with our
feet, point with our nose, growing a third hand, or using a keyboard with some mouse-substitute as on
laptop computers. Fortunately many people can use a keyboard or pen and simultaneously speak without
any genetic engineering or special training. The second point is that speaking “bold italic capital gamma”
is probably faster than other modes.

Speaking mathematics could be used for a spectrum of uses from educational testing to search in digital
systems. Suitably instrumented, it could be used as a testbed for evaluation of interaction via speech with
web-based services. While this paper emphasizes speech, research has, more generally, been looking at
“multimodal” techniques using speech in combination with handwriting [7, 6].

Before addressing, in the next section, an apparently simple question: “How do we (intuitively) speak
math?” we briefly review in the section some useful speech processing ideas for the uninitiated.

2.3.1 Brief digression on speech processing

There are substantial research efforts on speech and computing. From a relatively naive standpoint, but one
which we think is adequate here, the speech issues seem to be separable into

• Output aids for the visually impaired. The audience may be computer users (programmers, too) who
type using a keyboard but are unable to see text as routinely displayed by a computer. Text-to-Speech
(TTS) makes it possible for a computer to “read aloud” to a blind person, or to speak to a person
who has no other display. The primary target here is a person using a telephone. A truly useful audio
interface for a structured domain like mathematics or a graphical display will require rather more
elaborate design [15, 4] than just reading a text.

• Input aids to the keyboard-typing impaired. The user may suffer from some temporary or permanent
disability. Automatic Speech Recognition (ASR) makes it possible for a user to “speak” words and
phrases, constituting dictation of content or commands to the computer. Generally the user is able to
see a display for feedback, but not always. A user of such a system might be at a telephone speaking
commands to a computer. (If a handset is separate from a keypad, simple numeric input from a sighted
person might best be provided through the keypad. Alphabetic input is trickier, as is input from a
one-piece cellular phone.)

• “Multimodal” assistance, for example for the task of correction (proofreading) of material that may
have been entererd into the computer by some error-prone method. The first method might be doc-
ument image analysis, handwriting, or speech. Both TTS and ASR may be used. Proofreading data
entry, for example of tables of numbers, by having them read back by the computer seems quite
straightforward with today’s technology. Even reading math formulas out loud to see if they have been
typed (or typeset) could be an application.

There are notable distinctions in whether one has a system trained on a single voice or must work with all
speakers (harder), and whether the vocabulary and grammar is simple or large (harder). Generally the most
accurate recognition comes with single-user small vocabulary and grammar. Least accurate is multiple-user
large vocabulary.

2.3.2 The trivial non-solutions

One solution for “speaking mathematics” that immediately presents itself as unambiguous is to merely spell
expressions as though you were typing them—character by character— on a single line. All the disambigua-
tion must be done prior to spelling. In this way the problem has been reduced to that of the previously
“solved” problem, namely the parsing of a programming language that is typed into a computer, and all
that is needed is a mapping of sounds to keyboard elements. If the encoding language is TEX, then the
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appearance of almost any mathematical notation can be provided, on almost any computer system, thanks
to the continuing work on maintaining TEX. If the programming language is the painfully-verbose MathML,
simulating a keyboard by voice would be very time-consuming. Even with the much more concise TEX,
entering β would require saying something like “dollar backslash b e t a dollar” or once you realize how
close certain sounds are (a, eight) or (b, d, p) or (s, f), you might use a “military alphabet” for spelling.
(In practice a military3 spelling option uses more phonemes but is nearly error-free. It is not too difficult to
learn.) Thus for a higher accuracy, you might learn to say “dollar backslash bravo echo tango able dollar”.
Of course it would be easier to say “beta”!

(We note in passing that the usual programming language notations, such as Fortran, while adequate
for specifying “arithmetic” are grossly inadequate notationally for serious math, and we cannot seriously
consider “speaking Fortran” as a substitute for math4. We also note that the interpretation of TEX as
math can be ambiguous, but at least it is as good as mathematicians usually see; a spoken version will not
necessarily be semantically unambiguous either!)

3 Developing an intuitive speech model

First we discuss speaking numbers, which is surprisingly tricky. Then non-numeric symbolism follows.

3.1 Reading numbers aloud

At the base of most of applied mathematics we need to be able to read numbers. It may surprise you that
the reading (and hence the speaking) of numbers is rife with special cases and ambiguity. At the risk of
belaboring the trivial yet non-obvious, we include the following observations.

The TTS (Text To Speech) program from Microsoft which we use has some interesting features for reading
numbers aloud. We review its behavior not only for amusement, but for illustrating these issues. After all,
if we hope to have the computer listen to us speak numbers, perhaps we should attempt to understand the
rules that TTS uses for pronouncing numbers (starting from text) as guidelines.

The following examples (from Microsoft speech SDK 5.1) suggest that sometimes this provides a plausible
guideline, but we have no access to the complete rule-set for TTS, and so cannot be definite about how TTS
speak numbers given to it as ascii text.

Here are some examples. We’ve marked with a (*) those that seem open to debate.

• 123 is one hundred twenty-three.

• 123.123 is one hundred twenty-three point one two three

• 1,000.00 is one thousand.(*)

• 1,000.000 is one thousand point zero zero zero.

• 3.1415929 is three point one four one five nine two six

• 3.14.15929 is three point fourteen point fifteen thousand nine hundred twenty-six. (*)

• 3.14.1592 is March fourteenth, fifteen ninety-two. (Note the use of ordinal 14th).(*) The program
knows that the nearby “number” 3.32.1592 is an invalid date, and thus spells it out. It does not know
that September has only 30 days, much less the rules about leap years. In fact it is not possible to
speak this into the standard dictation grammar, which will produce a sequence of two numbers, 3.14
and 0.1592. But see the related date fractions below.

3NATO uses Alpha Bravo Charlie Delta Echo Foxtrot Golf Hotel India Juliet Kilo Lima Mike November Oscar Papa Quebec
Romeo Sierra Tango Uniform Victor Whiskey Xray Yankee Zulu.

4Of course, speaking Fortran qua Fortran, or using speech as source input in any programming language is a possibility,
with many of its own difficulties not necessarily related to math.
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• 1/10 is one tenth.

• 9/10 is nine tenths.

• 10/11 is ten over eleven.

• 14/100 is fourteen hundredths.

• 14/10000 is fourteen over ten thousand.

• 14/100000 is fourteen slash ten oh oh oh oh. (*)

• 14/1000000 is fourteen slash one oh oh oh oh oh oh. (*)

• 14/100000000000000 is fourteen slash one zero zero ... zero.

• 14/ 100000000000000 is fourteen slash ten trillion.

• 3/100 and 300 sound almost the same: “three hundredths” versus “three hundred.”

• 2-2 as well as 2-2-2 is two to/two two.

• 1-3, as well as 1-2-3, is one to/two three.

• 1-2-9 is one two nine, but 1-2-10 is January second, ten.

• 40/500 and 45/100 are indistinguishable. (The second can only be spoken as 45 slash 100 or 45 over
100. forty-five hundredths yields 40/500.)

• 3/14/1592 which might appear to be (3/14) divided by 1592, is not. It is March 14, 1592.

• 0.0 is zero point zero.

• 0.00 is just zero.

• 1,500,000 is 1 point 5 million.

Integers up to ”999999999999999” (999 trillion and change) are spoken, but above that are spelled out
digit by digit. There are different rules for integers appearing in denominators.

Numbers that do not have commas set out “correctly” are spelled out. Thus 5,10.0 is five comma ten
point zero.

Floating point numbers such as “5.00d0” are handled as separate components, namely “5.00” or five, and
“d0” (dee zero). -1/2 is dash one slash two.

Who would have thought it was so complicated? Of course just reading off the digits and punctuation
would be unambiguous, but who wants to speak like a cheap robot5.

5Mr. Data on Startrek isn’t programmed to speak contractions!
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3.2 How humans should speak numbers to computers

The TTS rules are too complicated. Would a subset of the rules be adequate? Which utterances are
acceptable? Do you want to use numbers like “three and a quarter” or “one point five million.” Our advice
is to use easily-parsed “full” natural numbers including properly indicated steps like “one hundred twenty
three thousand”. An alternative is a string of single digits. Full numbers may be combined with decimal
points (“.” pronounced “point”) or for fractions, the virgule (“/” pronounced “slash” or “over”). We also
permit “oh” for zero. How important is it to recognize words like “million”? The purely digit-list prescription
is easy to program but saying a number like 3 million, saying all digits, is painful: it has an excessive number
of zeros to pronounce and recognize accurately.

There are other problems if numbers occur adjacent without intervening punctuation. This can happen
with single digits perhaps more often: “The single-digit primes are 2, 3, 5, and 7” does not mean “The
single-digit primes are 235 and 7.” Thus the commas must be enunciated, or the speaker must force the
recognizer to accept the phrase in pieces. “US paper currency includes fifty, one-hundred and five-hundred
dollar denominations” could be read as “5100 and 500 dollar.”

We tried several approaches.

• A pattern-matching heuristic program we have written is perfectly happy with numbers constructed
like “one hundred twenty-three thousand four hundred fifty-six point seven eight” for 123,456.78. We
recommend “one slash two” for 1/2, since generalizations of fractions are tricky. Being written in
Common Lisp, it our program has essentially no limits on the number of digits in a number.

• For most uses, we expect that the Microsoft published cmnrules grammar6 for various kinds of num-
bers including natural numbers, fractions, floating-point, could be used. Much to our relief this can
be included rather painlessly in a speech recognition program by specifying (in an SASDK/ SALT
application that can, for example, be run with a browswer plug-in), a listen tag.
<item> <ruleref uri="cmnrules.grxml#number"/>
<tag> $._value = $$._value </tag> </item>

It would be even better for our use if the SASDK allowed for multiple return values for a speech
recognition task (that is, with ranked alternates); at the moment this is only possible for the default
Microsoft grammar, a default suitable for typical business applications, but which is unsuitable for
mathematics.

• The principal defect in cmnrules from our exact mathematics perspective is that it is limited to numbers
less than (1015) and fractions are converted to decimal numbers of limited precision. This is an artifact
of using the arithmetic in the underlying J++ scripting language which is the default (and at the
time of writing of this paper, sole) programming technology in the Microsoft grammar implementation
of the W3C recommendations for XML speech grammar. We have constructed a modification of the
grammar to maintain exact ratios for numbers like 1/3, where numerator and denominator can only
be represented exactly by strings. This is passed on to lisp for further evaluation. Thus the string “six
quintillion plus one” is parsed to “(+ (* 6 (expt 10 18)) 1)” which is exactly evaluable in Lisp. (There
is a disappointment at a different level in the grammar XML processing, in that true context-free
grammars are not acceptable.)

• A third possibility, also easily implemented by reference to cmnrules is to use lists of digits for numbers.
As illustrated in examples above, this is occasionally in conflict with the other common usage rules,
but could easily be used instead of, or in preference to, the more general usage. In fact the digit-list
convention is used in conjunction with other parts of the grammar for decimal fractions. Consider
“seventeen hundred point oh four five”. To the right of the point we speak in digit lists.

6We found, reported and corrected two bugs in this. June, 2004.
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Who would have anticipated such complications for numbers? It is much easier to write a demonstration
program that works only for single digits, but would that be sufficiently useful?

3.3 Non-numeric tokens

In our experiments to date, starting with a short list, dissimilar words can be recognized very accurately.
Given a larger word list, especially if context (e.g. grammar) does not play a role, the recognition can be
more error-prone. Given that our list of mathematical notation includes the presence of easily-confused short
words, we have a choice.

• Satisfaction with relative poor initial accuracy, relying on rapid correction.

• Resolution of ambiguity based on context. Given our formula context, we prefer “eight equals two
times four” to the identical phonemes in “ate equals to times for”. Unfortunately “Pick a number from
one to ten” and “Pick a number from 1, 2, 10.” are rather close. Sometimes the context may be quite
small “Capital a” is a plausible sequence, while “Capital 8” is less. If the recognizer is supplied with
a grammar for complete formula utterances, or a grammar for phrases, this can be helpful context.

• Removing some ambiguity at the source: rename or provide synonymns for all letters via a military
alphabet. We choose names one that do not conflict with other math tokens such as Greek letters.
Thus (adam, ..., david, ...) rather than (alpha, ..., delta, ...).

Other token considerations:
The well-used spoken tokens include not only letters of the Roman alphabet (optionally modified with

“bold,” “roman,” “italic,” “capital”, “upper-case”, etc), but other alphabets as well. Symbols taken from
sources include the TEX typesetting repertoire, computer algebra systems such as Mathematica, and selected
parts of Unicode. Even among the common names, there are ambiguities. Consider the tokens for “sign”
and “sin” which are equally plausible in many contexts.

Words for spaces are handy as well, such as “quadspace”.
Typically these tokens can be separated into operators and operands, but we cannot depend on such

classifications for rigid parsing.
It is also quite likely that macro-expressions defined verbally will be useful for the serious speaker. Thus

“let big Adam equal script capital bold adam sub Greek nu” allows an abbreviation 7. Clearly this could
be made as elaborate as any macro language, although here we propose simple constant non-parametric
substitutions.

3.4 Caution on complete forms

Imagine how annoying it would be if, as you were typing at a computer keyboard, every one of your pauses
were treated as an end-of-sentence marker and the computer immediately made an observation that your
sentence was incomplete, or if it appeared to be complete, it immediately whisked it off and processed it.
We must refrain from insisting that math be spoken all in one breath, or else x + y + z would be impossible:
x+ y, being complete, would be gobbled up first. We can signal explicitly by a mouse click8 or alternatively,
the computer will just wait, and proceed after a short pause when you are presumed to be finished speaking
for the moment. In such circumstances it cannot be too authoritarian about preventing what you say next
to be appended to, or somehow modify, the previous utterance9.

7Using arbitrary words, e.g. “let doodad equal...” requires that “doodah” be in our speech grammar’s wordlist.
8We can signal the end of a phrase by a word marker such as “OK”, but the program will wait for a pause following the

“OK”.
9(What’s your favorite color? Blue. No, yellow; http://www.sacred-texts.com/neu/mphg/mphg.htm)
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3.5 Expressions

In this section we describe variations for speaking a prototypical expression that would seem to be at first
glance non-linear in appearance. We omit the “OK” needed at the end of each expression:

a + b

c + d
.

This can be linearized in various ways. In TEX it is spelled out as $\frac{a+b}{c+d}$...
Or spelling it out we could say, “dollar, backslash eff arr ay see open brace, ay plus bee close ...”. In a

military alphabet ... foxtrot romeo adam charlie ....
We assume here that “close” is adequate to match the previous still-open bracket, and we can save quite

a few syllables if we do not have to say “close parenthesis” or “right parenthesis”.
In future examples in this paper we won’t use spelling, even though it may be inevitable for peculiar

words.
Instead of spelling TEX we can spell a linearized form (a+b)/(c+d), which is shorter, unambigous, but

still uncomfortable. Instead of a dollar sign we use “begin math” and “end math”. Instead of targeting TEX
we are targeting a typical programming language (perhaps a computer algebra system, or a “natural” math
input system [16, 14]. )

begin math ( a + b ) / ( c + d ) end math.

This requires saying open/close four times. To preview our proposal in this regard, in this paper we suggest
that the expression above be spoken this way:

begin math
a+b quantity
over
quantity c+d
end math.

or perhaps

begin math
adam + bravo quantity
over
quantity charlie + david
OK

(We will refrain from using the military alphabet subsequently because it is a distraction; however, in
our limited experiments, an otherwise annoying level of erroneous recognition of letters can be effectively
remedied this way.)

Grouping based on the embedded key words quantity, over and end can be done by some simple transfor-
mations on the stream of tokens. We start by implicitly enclosing every begin/end math expression with a
default (· · · ( and ) · · ·). The word “quantity” immediately after an operator (defined below), can be changed
to the insertion of a “(”. “Quantity” before an operator, is equivalent to “)”. If the speaker says “quantity”
between two operands (which are presumably going to be multiplied together by a “silent times”) then we
propose the same result as “quantity times quantity”. This may not be the speaker’s intention, so some
extra feedback or warning may be advisable.

The extra prefix “(” and suffix “)” are appended only as needed to balance the brackets. Operators are
not necessarily unique. That is, “over” and “divided-by” are synonyms. We include

• infix such as plus, times, over, slash, divided-by, raised-to, to-the-power, space, quadspace
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• prefix such as sum, product, function of (e.g. sine of), bold, italic, roman, upper, lower, big, capital,
script, Greek

• suffix such as factorial, squared, cubed, prime, double prime,

• overhead, which in TEX constitute prefix such as hat, bar. In common math speech, these would
generally be voiced as suffix operations. x̂ in TeX is $\hat{x}$ but probably pronounced x hat.

• matchfix such as left/right square brackets, left/right angle brackets, open, close (paren, bracket, square
bracket) These matchfix operators can come in many sizes like big or big big, and presumably must
be matched in size.

There are large tables of additional operators in The TEXbook, and similar references, each attempting to
be encyclopedic; see also the menus in Mathematica.

Typical operands are essentially everything else, including syntactic components like symbols, numbers,
and (recursively) subexpressions.

Given these rules, our spoken expression is transformed to text as

(a+b)
/
(c+d)

3.6 Math on a line

It seems at first that any math expression that fits on a single line without up/down excursions would not be
problematical, since it has an “obvious” order in which to read characters10. It seems that difficulties could
only occur if the speaker leaves out characters necessary for grouping, or declines to pronounce the brackets.
Unfortunately, leaving out such characters is entirely conventional, even when the result is ambiguous, as
shown by later examples.

Simple Examples:

Display Spoken
ab sinx a b sine of x
a + b

c + d a + b over c + d
a+b

c + d a + b quantity over c + d
a + b

c+d a + b over quantity c + d

This next set of examples is insufficient to tell us how to deal with extra cases that require groupings “in
the middle”.

Most of what we have said up to this point does not get much of a rise out of most readers who may
have been only mildly surprised by some of the difficulties encountered. Not having tried to program speech
recognizers for math, this is reasonable all around.

This next proposal is more controversial: We believe we may have to add only one additional linguistic
marker, all, or alternatively, end or close. In fact, all three terms, all, end, and close are synonymous [to the
computer]. This would work with the term “quantity” previously used. Let us argue in favor of this.

The term “all” or its alternatives essentially jumps out a level.

Display Spoken
a + b

c+d + e a + b over quantity c + d all + e
a + b

c+d + e a + b over quantity c + d all times e

10Actually a linear sequence is possibly ambiguous in a larger sense of conveying mathematics. 1/2π sometimes means π/2
and sometimes 1/(2× π). But this is not a speech problem.
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We can also use “all” without “quantity”

Display Spoken
(a + b)/c + d a + b all over quantity c + d

Consider this: a + b
c+d × e

f + g. We could try grouping this by pauses: a + pause b over quantity c
+ d pause times e over f pause + g. Raman’s AsTeR program [15] can use such speech cues for output,
but speakers, and the programs listening to them may not be so capable of such small distinctions. And
sometimes one would need several pauses at the same place. Nevertheless, in combination with a geometric
handwriting interface and feedback, perhaps this could work.

Display Spoken
a + b

c+d ×
e
f + g a + quantity b over quantity c + d all times e over f + g

(a + b
c+d )× e

f + g a + b over quantity c + d all all times e over f + g

This last expression is peculiar in requiring “all all”, but we see no especially intuitive shorthand around
this occasional need. No one said that reading mathematics, especially deeply-nested mathematics, was
going to be simple!

Let us return to the quadratic formula. We can say it “The quantity minus b plus or minus the square-root
of the quantity b squared minus 4 a c end all over the quantity 2 a end.”

4 Speaking Integrals and Sums

The integral [from x=a to b] of f(x)+g(x) d x has the advantage of the closing “d x”, and so in most (not
all) traditional notations we can try to read or listen, anticipating that somewhere ahead we will find the
“d”.

The
∑

f(i) construction doesn’t have any close, so
∑

fg + h is ambiguous. We could just leave it that
way and say that our job is over when the speech is changed to text, but can we fix it with a modest effort?
It is unlikely to mean (

∑
f)× g + h but could be (

∑
f × g) + h or

∑
(f × g + h). These could be spoken,

respectively as
sum of f all times g + h;
sum of f times g all + h;
sum of f times g+h all.
Of these, the last seems a strain, but only because there is no operator after the h. If this is truly the end
of the expression, the “all” could be left out! The others seem fairly natural, and perhaps more natural if
we allow “f times g” to be simply “f g”.

The advantage of a multimodal input model is that the computer system can display what has been
recognized so far. The longest delay is likely to be the pause while the computer waits to determine the end
of the utterance. The translation and typesetting should be quite rapid by comparison. Thus the feedback
of the choice made by the system may provide a valuable learning experience in these less common forms.

5 Additional Examples

We promised some additional examples to fill out the description.
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Display Spoken
a0 + x(a1 + x(a2 + · · ·)) a sub 0 + x times quantity a sub 1 +

x times quantity a sub 2 + dot dot dot
or — x quantity a sub 2 + dot dot dot

((a3x + a2)x + a1)x + a0 a sub 3 x + a sub 2 quantity times x +
a sub 1 quantity times x s+ a sub 0

a(n−1)2 + 1 a sub quantity n minus 1 all squared all + 1
a2

n − a2
n−1 “a sub n squared minus quantity

a sub quantity n minus 1 all all squared
an − a2

n−1 quantity a sub n minus a sub quantity n minus 1 all squared
(an − an−1)2 a sub n minus a sub quantity n minus 1 all all squared
x3 x to the third (note ordinal 3rd)

x to the third power
x to the power 3
x raised to the power 3
x cubed

For convenience in the next few examples we will just say “x ↑ 3” for x3.

Display Spoken
x34ez x ↑ 34 e ↑ z

x ↑ 34 times e ↑ z
xn+1ez x ↑ quantity n + 1 all times e ↑ z”
x1+n2+k+rez x ↑ quantity 1 + n ↑ quantity 2 + k all + r

all times e ↑ z
xn

ym + 4 x ↑ n over y ↑ m + 4
f(x) + g(y, z) + ri,j + h(si, j) f of x + g of y comma z all + r sub i comma j

+ h of quantity s sub i all comma j

The next section presents a small controversy as to how to bracket argument lists of functions. Consider
either form sinx or sin(x) can be spoken “sine of x” or “sine x”. The comparable “anonymous” functional
application form, assuming there is a function named p, could be written px or p(x). Either of these can be
“p of x”, but only the first of these, px can plausibly be spoken as “p x”. And in that case it might be the
product of two items. What gives?

Here is one proposal:
There is no special meaning for “of” in “sine of ... ” or any function known to be a univalent function.

If the single argument is compound it must be introduced by “open” or “quantity” Thus sin x is simply “sine
x” but sin(2x) is “sine of quantity 2 x [close]”.

If the function is not well known, then there is a significance to the “of”. px should be pronounced “p
of x” and probably should be written p(x). Saying “p x” is hazardous. It looks like a multiplication. This
is not a prohibition; spoken math as well as written math can be ambiguous! “p of x + 1” means p(x) + 1.
“p of quantity x + 1 close + 2” means p(x + 1) + 2.
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Display Spoken
a sinx a sine of x

a sine x
a sinx + y a sine of x + y

a sine x + y
a sin(x+y)

2 + 1 a sine of quantity x + y all quantity over 2+1
a sin x+y

2 + 1 a sine of quantity x + y quantity over 2 all + 1
sinx + cos y sine of x + cos of y
sinx + cos y sine x + cos y
sin(x cos y) sine quantity x + cos y [unusual]
f(x, y) + 1 f of quantity x comma y all + 1 [bad]

Here is an alternative proposal:: The word “of” has special significance and always carries with it an
implicit “open”. Thus “p of x + 1” means p(x + 1), and “p of x + 1 close + 2” means p(x + 1) + 2.

The alternative here allows a distinction between “sine of x” which is sin(x)and “sin x” which is sinx,
but that may be too subtle for users/ speakers.

Display Spoken
a sinx a sine of x [implicit close]

a sine x
a sinx + y a sine of x all + y
a sin(x+y)

2 + 1 a sine of x + y all quantity over 2 all + 1
a sin x+y

2 + 1 a sine of x + y quantity over 2 close + 1
sinx + cos y sine of x all + cos of y all
sinx + cos y sine x + cos y
sin(x cos y) sine of x + cos y close [unusual]
f(x, y) + 1 f of x comma y all + 1 [better]

6 Extensions

You may not be entirely comfortable with the limited vocabulary, and prefer other words and phrases. These
should also be allowed, certainly to the extent that they do not interfere with the existing mechanisms.

Other locutions such as “the fraction a + b divided by c” are easily accomodated. The word “fraction”
has exactly the same meaning as “quantity”, and the phrase “divided by” means the same as “over”.

We might plausibly say, and parse, (a + bc)(d + ef) + 1 as “the product of a + b times c and d + e times
f all +1” as an alternative to “a + b c quantity times quantity d + e f all +1.”

There are other common locutions such as “d squared by d x squared of f of x” for d2

dx2 f(x). A phrase
such as “the second derivative of f of x with respect to x” could be worked into a parser.

Here are some example additional phrases. Consider y′′+a2y = 0 spoken as “ y double prime + a squared
y equals 0”. Thus “prime”, “double prime”, and “triple prime” seem like “prime candidate” for additions.

To show the flexibility or perversity of notation, here is an expression approximating original notation
from Hoare logic [8] describing the semantics of while loops. It looks like this:

P ∧ b {S} P

P {while b do S}P ∧ ¬b

Note that adjacent symbols here are not multiplied but in the form A{B}C indicates a kind of temporal
ordering, proceeding from left to right. The curly braces have specific meanings (separating predicates from
program sections), and the horizontal line means something like “implies” and does not have any relationship
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with division. We can nevertheless speak it as “ cap p wedge b { cap s } cap p quantity over quantity cap p
{ roman while b roman do cap s} cap p wedge neg b”. We will have to say open/close curly brace; we would
have a higher accuracy if we used “Bravo” and “Papa” for the letters b and p respectively.

Any programming structure for the recognition of math must be extensible in two directions:

• Allowing new spoken tokens to be introduced to the speech grammar, and

• Allowing new phrases to be parsed, at least in a rudimentary fashion.

Thus one might need to add the words “Poisson bracket” and appropriate pronunciation to the speech engine
and then also introduce a grammar rule to allow the “Poisson bracket of x and y” to be typeset in its usual
notation (x, y), or perhaps come up with some (almost any!) more perspicuous form.

The spoken form as we have specified it does not have any precedence rules of its own, and perhaps
surprisingly tends to just pass along ambiguities: That is, you can often speak or typeset an expression
without complete concern for its meaning. For example, a = b∨c could denote one of the Boolean expressions
(a = b) ∨ c, or a = (b ∨ c), or could be a programming language assignment expression, or something else.
Even as we use the expressions to convey different meanings to the reader in the previous sentence, we feel
compelled to point out that it requires some kind of external interpretion to distinguish those expressions.
When computer typesetting was more of a novelty, it provided the unfortunate illusion that a formula
undergoing typesetting gains authority; as is obvious to the modern reader, typesetting does not mean
correct or even defined.

6.1 A disappointment

It would appear that the speech grammar XML formalism provided by the W3C organization and its con-
forming implementation by Microsoft would naturally provide a framework for context-free grammar (CFG)
parsing. In fact, Microsoft uses a file-extension “.cfg” for compiled grammars. Sadly, the grammars are
not permitted to be context-free, but only finite-state. This means that a grammar that allows for nested
subexpressions, (using “quantity” and “end” or equivalently open and close parentheses) cannot be described
completely in the given speech grammar. This throws us back to a more primitive stage in which we can
use the Microsoft grammar for recognizing tokens (numbers, symbols), but cannot actually depend on it for
parsing. It is true that with some effort one can write a grammar that looks like it will work for expressions,
but only if they are of finite depth. Thus one could come up with a grammar that allowed no parentheses,
or some fixed depth. This requires essentially duplicating the grammar for each nested depth. W3C permits
but does not require a context free grammar. We do not know if the Microsoft implementation will exceed
its current capabilities.

More recently (Sept, 2006) we have begun experimentation with the free open-source Java implementation
of Sphinx, Sphinx-4 [17]. This has simplified some issues, but has not been adequately incorporated into the
current prototypes.

7 Comparisons

The only comparison we have found to an existing commercial computer program, Mathtalk [11] is an attempt
to provide a facility for humans to speak math to a computer. The on-line demonstrations suggest that the
method used is rather sluggish, requiring pauses before and after each operation to wait for recognition.
It is not clear how to correct any mistakes. The engineering is quite limiting: Mathtalk requires referring
to letters by military names (e.g. f becomes “function foxtrot” and limn−>∞ is “limit November goes to
infinity”.) It is unclear how much of the limitations are inherent in the design or in the lower-level support
from their perhaps primitive speech tool.

15



8 Status of spoken math recognition

We have written a rudimentary translator from strings of some spoken symbols into strings again, but
of more conventional symbols, essentially replacing words like “quantity” and “all” by parentheses, and
inserting some parentheses in other places as appropriate. We can also parse numbers from spoken words
( twenty one hundred becomes 2100). Since we anticipate that words and symbols will be misrecognized
or missed entirely, we cannot just walk away from the task when the speaker halts. There is a feedback
step in which the computer attempts to display—to the extent possible—what has been recognized or not.
This feedback is described in a separate paper on the display of incomplete expressions [6]. This feedback
is based on transforming a string of tokens into TEX and typesetting an approximation to what has been
spoken, with placeholders for parts that were not recognized. It may seem odd to a programming-language
trained reader that one can truthfully declare complete speech recognition success upon nicely typesetting
something “symbolic” as a mere string of words. Yet it cannot be the recognizer’s fault if the human speaker
has uttered partial or complete nonsense posing as mathematics. Given some partial display, it may be
plausible for the speaker to abandon the original utterance and instead patch what the computer heard.
If an unmatched open parenthesis is spoken, the matching one will be displayed, and need not be spoken.
However, the insides may need to be filled in.

As of June, 2004, student Kevin Lin and R. Fateman connected a speech recognizer with a simple gram-
mar to a prototype mathematics editing system (SKEME), which allows the user to speak simple tokens or
expressions instead of typing. The tokens may be compounded as in “script capital A” and they may also
be concatenated with simple operators as in “a plus b”. The locations for the insertion of spoken or written
symbols is governed by cursor or attention point which is positioned with a mouse. The mechanism used
(Microsoft Speech SDK5.1) does not provide alternate (less confident) speech recognition results, and so is
overly fragile. Another group of students using a similar design produced a more robust yet still “demoware”
system called Math Speak and Write, which can be accessed at
http://www.cs.berkeley.edu/~fateman/msw/msw.html.

We continue to explore a more effective speech grammar definition permitting alternative recognitions,
and variations on user-interface issues, especially for correcting errors in conjunction with handwriting input
so that the such methods have adequate appeal for users to try these novel interfaces. The Sphinx-4 re-
engineering of the project may provide a further bonus. Also in 2006, undergraduate students (principally
Sherman Lee), have shown how to link the math recognizer to virtually any Windows program via the
clipboard. That is, a spoken (or handwritten + spoken + typed) formula from MSW can be inserted into
Powerpoint, Word, Excel, etc. There is an additional barrier to overcome, in that a mere textual version of
a formula does not have interoperability with the objects produced by using (say) the expression templates
available in Microsoft’s Equation 3.0. Lee’s program produces text similar to the input for TEX.

9 Summary and Conclusion

This paper reports on work in progress on primarily on design and describes partial implementations (which
are available from the author). It does not include human-factors experiments. While such exercises may be
useful in the future, we are not convinced that the substantial effort to mount such experiments would be
worthwhile just yet: most of our observations, based on our implementations, have led us unambiguously in
particular design directions for improvement. It is yet time to seek the reactions of a class of naive users who
might very well concentrate on trivial implementation issues rather than design; we believe that the effort, at
the outset, of training of speech recognition (and associated handwriting) on a person-by-person basis would
turn away all but the most highly motivated persons. In a future system which is largely “pre-trained” such
problems may be reduced. At this point we would rather not delay the presentation of this material for
others to consider.
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We are still experimenting with the prospects of multimodal input of mathematics. We see clear benefits
of speech when saying “bold script capital R” or for distinguishing among the large number of symbols
and collections of strokes that look essentially similar when written (recall 1<2 and K2 as one example
[13]). If speech can also be used for accurately conveying larger multi-token arrangements as indicated here,
that represents a possible benefit. Speaking is “hands free” so that it can complement either a stylus or
keyboard-form of input11.

While we do not expect speaking to be a “unimodal” mode of choice for very long expressions in a single
gulp, we believe that in combination with pointing, speech can “fill in the boxes” which would be pointed-to
and otherwise constructed or corrected via templates in an interactive input system. We have also written
program modules to implement handwriting correction in which a token is displayed along with alternatives.
By saying “no. alternate 2” the token is replaced by another, in this case, the second-ranked one.

We hope to encourage others to pursue this approach as well, since it requires substantial resources to
raise “demonstration” programs or prototypes to the level of general usefulness; identification of a critical
(and funded) application would be key.
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11 Appendix: Ambiguity, Syntax and Semantics

Humans tend to write ambiguous mathematics, expecting that the context, imposed by the human reader,
will disambiguate.

For example if e1 and e2 are expressions, how do we parse arguments to functions like sin and cos? Does
sin e1e2 mean

1. (sin e1)× e2 or

2. sin(e1 × e2)?

Please choose one and then examine the well-known equation displayed below.

sin 2z = 2 cos z sin z

This is a formula typeset exactly as given in a standard reference (4.3.24 Abramowitz and Stegun [2]). You
might read it out loud. Now note that on the left, e1 = 2, e2 = z uses convention 2. On the right, e1 = z, e2 =
sin z uses convention 1. Two different parsing conventions are used in the same equation. This is not unusual.
Our point here is that linearizing the token stream is actually not sufficient to guarantee unambiguous syntax.
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(Additional rules about the precedence of invisible multiplication between numbers and symbols can solve
this particular problem, but there are others in which the writer and the typesetter conspire to confuse even
the skilled reader.) For an amusing account of ambiguity in classical mechanics see the introduction to an
on-line mechanics book by Sussman and Wisdom [18] http://mitpress.mit.edu/SICM/book-Z-H-5.html.

On a semantic note, there are at least two proposals for a semantic encoding of mathematics, the most
prominent of which is (the semantic component of) MathML [12]. On the face of it, writing a new paper
in which one is using some speech or handwriting or keyboarding to produce a totally new notation makes
it logically impossible to properly encode it with respect to its (up to this moment undefined) semantics.
A kind of meta-language relating both new notation and the new semantics to that of existing notions is
required. This meta-language too may have similar limitations, rather like explaining colors to a sightless
person.

Where does this lead us? We are personally more inclined to first look for mappings of mathematical
notations to some operational semantics such as computations in a given computer algebra system. Such a
system generally imposes limits but within its realm of discourse is at least definite. Beyond that level, we may
be forced to deal with a largely syntactic or geometric appearance of mathematics or aural representation!

For many purposes, including the obvious application of typesetting for consumption by mathematicians
at a future time, this operational semantics is an additional boon, and can be combined with older material
or material currently produced in a conventional manner. This traditional material has been limited to
mathematical syntax encoded as typeset material, plus natural language commentary. Most current computer
algebra system provide some kind of documentary framework or notebook which can handle such conventional
material. The issue is how much further we can push in the semantics direction.
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