Reliable,

Memory Speed Storage for Cluster
Computing Frameworks

Haoyuan Li
Ali Ghodsi
Matei Zaharia
Scott Shenker
lon Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-135
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-135.html

June 16, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research is supported in part by NSF CISE Expeditions Award CCF-
1139158, LBNL Award 7076018, and DARPA XData Award FA8750-12-2-
0331, and gifts from Amazon Web Services, Google, SAP, The Thomas
and Stacey Siebel Foundation, Apple, Inc., Cisco, Cloudera, EMC,
Ericsson, Facebook, GameOnTalis, Guavus, HP, Huawei, Intel, Microsoft,
NetApp, Pivotal, Splunk, Virdata, VMware, WANdisco and Yahoo!.

Reliable, Memory Speed Storage
for Cluster Computing Frameworks

Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, lon Stoica
University of California, Berkeley

Abstract

Tachyon is a distributed file system enabling reliable
data sharing at memory speed across cluster computing
frameworks. While caching today improves read work-
loads, writes are either network or disk bound, as repli-
cation is used for fault-tolerance. Tachyon eliminates this
bottleneck by pushing lineage, a well-known technique
borrowed from application frameworks, into the storage
layer. The key challenge in making a long-lived lineage-
based storage system is timely data recovery in case of
failures. Tachyon addresses this issue by introducing a
checkpointing algorithm that guarantees bounded recov-
ery cost and resource allocation strategies for recompu-
tation under common resource schedulers. Our evalua-
tion shows that Tachyon outperforms in-memory HDFS
by 110x for writes. It also improves the end-to-end la-
tency of a realistic workflow by 4x. Tachyon is open
source and is deployed at multiple companies.

1 Introduction

Over the past few years, there have been tremendous ef-
forts to improve the speed and sophistication of large-
scale data-parallel processing systems. Practitioners and
researchers have built a wide array of programming
frameworks [29, 30, 31, 37, 46, 47] and storage sys-
tems [13, 14, 22,23, 34] tailored to a variety of workloads.
As the performance of many of these systems is I/O
bound, traditional means of improving their speed is to
cache data into memory [8, 11]. While caching can
dramatically improve read performance, unfortunately, it
does not help much with write performance. This is be-
cause these highly parallel systems need to provide fault-
tolerance, and the way they achieve it is by replicating the
data written across nodes. Even replicating the data in
memory can lead to a significant drop in the write perfor-
mance, as both the latency and throughput of the network
are typically much worse than that of local memory.
Slow writes can significantly hurt the performance of
job pipelines, where one job consumes the output of an-

other. These pipelines are regularly produced by work-
flow managers such as Oozie [6] and Luigi [9], e.g., to
perform data extraction with MapReduce, then execute a
SQL query, then run a machine learning algorithm on the
query’s result. Furthermore, many high-level program-
ming interfaces [2, 5, 40], such as Pig [33] and Flume-
Java [16], compile programs into multiple MapReduce
jobs that run sequentially. In all these cases, data is repli-
cated across the network in-between each of the steps.

To improve write performance, we present Tachyon, an
in-memory storage system that achieves high throughput
writes and reads, without compromising fault-tolerance.
Tachyon circumvents the throughput limitations of repli-
cation by leveraging the concept of lineage, where a lost
output is recovered by re-executing the operations (tasks)
that created the output. As a result, lineage provides fault-
tolerance without the need for replicating the data.

While the concept of lineage has been used before in
the context of computing frameworks like Spark and Nec-
tar [24, 46], Tachyon is the first system to push lineage
into the storage layer for performance gains. This raises
several new challenges that do not exist in previous sys-
tems, which have so far focused on recomputing the lost
outputs within a single job and/or a single computing
framework.

The first challenge is bounding the recomputation cost
for a long-running storage system. This challenge does
not exist for a single job, such as a MapReduce or Spark
job, as in this case, the recomputation time is trivially
bounded by the job’s execution time. In contrast, Tachyon
runs indefinitely, which means that the recomputation
time can be unbounded. Previous frameworks that sup-
port long running jobs, such as Spark Streaming [47],
circumvent this challenge by using periodic checkpoint-
ing. However, in doing so, they leverage the semantics
of their programming model to decide when and what to
checkpoint. Unfortunately, using the same techniques in
Tachyon is difficult, as the storage layer is agnostic to the
semantics of the jobs running on the data (e.g., when out-
puts will be reused), and job execution characteristics can

vary widely.

The second challenge is how to allocate resources for
recomputations. For example, if jobs have priorities,
Tachyon must, on the one hand, make sure that recom-
putation tasks get adequate resources (even if the cluster
is fully utilized), and on the other hand, Tachyon must
ensure that recomputation tasks do not severely impact
the performance of currently running jobs with possibly
higher priorities.

Tachyon bounds data recomputation cost, thus address-
ing the first challenge, by continuously checkpointing files
asynchronously in the background. To this end, we pro-
pose a novel algorithm, called the Edge algorithm, that re-
quires no knowledge of the job’s semantics and provides
an upper bound on the recomputation cost regardless of
the access pattern of the workload.

To address the second challenge, Tachyon provides re-
source allocation schemes that respect job priorities un-
der two common cluster allocation models: strict prior-
ity and weighted fair sharing [27, 45]. For example, in
a cluster using a strict priority scheduler, if a missing
input is requested by a low priority job, the recomputa-
tion minimizes its impact on high priority jobs. However,
if the same input is later requested by a higher priority
job, Tachyon automatically increases the amount of re-
sources allocated for recomputation to avoid priority in-
version [28].

We have implemented Tachyon with a general lineage-
specification API that can capture computations in many
of today’s popular data-parallel computing models, e.g.,
MapReduce and SQL. We also ported the Hadoop and
Spark frameworks to run on top of it. The project is open
source, has more than 40 contributors from over 10 insti-
tutions, and is deployed at multiple companies.

Our evaluation shows that on average, Tachyon'
achieves 110x higher write throughput than in-memory
HDFS [3]. In a realistic industry workflow, Tachyon im-
proves end-to-end latency by 4x compared to in-memory
HDFS. In addition, because many files in computing clus-
ters are temporary files that get deleted before they are
checkpointed, Tachyon can reduce replication-caused net-
work traffic by up to 50%. Finally, based on traces from
Facebook and Bing, Tachyon would consume no more
than 1.6% of cluster resources for recomputation.

More importantly, due to the inherent bandwidth limita-
tions of replication, a lineage-based recovery model might
be the only way to make cluster storage systems match
the speed of in-memory computations in the future. This

I'This paper focus on in-memory Tachyon deployment. However,
Tachyon can also speed up SSD- and disk-based systems if the aggregate
local I/0 bandwidth is higher than the network bandwidth.

Media Capacity Bandwith
HDD (x12) | 12-36 TB 0.2-2 GB/sec
SDD (x4) 1-4TB 1-4 GB/sec
Network N/A 1.25 GB/sec
Memory 128-512 GB 10-100 GB/sec

Table 1: Typical datacenter node setting [7].

work aims to address some of the leading challenges in
making such a system possible.

2 Background

This section describes our target workload and provides
background on existing solutions and the lineage concept.
Section 8 describes related work in greater detail.

2.1 Target Workload

We have designed Tachyon for a target environment based
on today’s big data workloads:

e Immutable data: Data is immutable once written,
since dominant underlying storage systems, such as
HDFS [3], only support the append operation.

e Deterministic jobs: Many frameworks, such as
MapReduce [20] and Spark [46], use recomputation
for fault tolerance within a job and require user code to
be deterministic. We provide lineage-based recovery
under the same assumption. Nondeterministic frame-
works can still store data in Tachyon using replication.

e Locality based scheduling: Many computing frame-
works [20, 46] schedule jobs based on locality to min-
imize network transfers, so reads can be data-local.

e Program size vs. data size: In big data processing, the
same operation is repeatedly applied on massive data.
Therefore, replicating programs is much less expen-
sive than replicating data.

e All data vs. working set: Even though the whole data
set is large and has to be stored on disks, the working
set of many applications fits in memory [11, 46].

2.2 Existing Solutions

In-memory computation frameworks — such as Spark and
Piccolo [37], as well as caching in storage systems — have
greatly sped up the performance of individual jobs. How-
ever, sharing (writing) data reliably among different jobs
often becomes a bottleneck.

The write throughput is limited by disk (or SSD) and
network bandwidths in existing storage solutions, such
as HDFS [3], FDS [13], Cassandra [1], HBase [4], and
RAMCloud [34]. All these systems use media with much
lower bandwidth than memory (Table 1).

The fundamental issue is that in order to be fault-
tolerant, these systems replicate data across the network
and write at least one copy onto non-volatile media to
allow writes to survive datacenter-wide failures, such as
power outages. Because of these limitations and the ad-
vancement of in-memory computation frameworks [29,
30, 37, 46], inter-job data sharing cost often dominates
pipeline’s end-to-end latencies for big data workloads.
While some jobs’ outputs are much smaller than their in-
puts, a recent trace from Cloudera showed that, on aver-
age, 34% of jobs (weighted by execution time) across five
customers had outputs that were at least as large as their
inputs [17]. In an in-memory computing cluster, these
jobs would be write throughput bound.

Hardware advancement is unlikely to solve the issue.
Memory bandwidth is one to three orders of magnitude
higher than the aggregate disk bandwidth on a node. The
bandwidth gap between memory and disk is becoming
larger because of the different increasing rates. The emer-
gence of SSDs has little impact on this since its major
advantage over disk is random access latency, but not se-
quential I/O bandwidth, which is what most data-intensive
workloads need. Furthermore, throughput increases in
network indicate that over-the-network memory replica-
tion might be feasible. However, sustaining datacenter
power outages requires at least one disk copy for the
system to be fault-tolerant. Hence, in order to provide
high throughput, storage systems have to achieve fault-
tolerance without replication.

2.3 Lineage

Lineage has been used in various areas, such as scien-
tific computing [15] and databases [18]. Applications
include confidence computation, view maintenance, and
data quality control, etc.

Recently, the concept has been successfully applied
in several computation frameworks, e.g., Spark, MapRe-
duce, and Dryad. These frameworks track data depen-
dencies within a job, and recompute when a task fails.
However, when different jobs, possibly written in differ-
ent frameworks, share data, the data needs to be written
to a storage system. Nectar [24] also uses lineage for a
specific framework (DryadLINQ) with the goal of saving
space and avoid computing results that have already been
computed by previous queries.

Due to the characteristics outlined in Section 2.1, we
see the use of lineage as an exciting opportunity for pro-
viding similar recovery, not just within jobs/frameworks,
but also across them, through a distributed storage system.
However, recomputation-based recovery comes with a set
of challenges when applied at the storage system level,
which the remainder of this paper is devoted to address-

| Standby Master

\I
| :

Q ZooKeeper i [standby | |
Quonam v+ =222 / sl
T
s] |

[meme]

Workflow
Manager

:'gtandby Master !

' | Standby /;

N
N
N
R

Figure 1: Tachyon Architecture.

ing.
3 Design Overview

This section overviews the design of Tachyon, while the
following two sections (§4 & §5) focus on the two main
challenges that a storage system incorporating lineage
faces: bounding recovery cost and allocating resources for
recomputation.

3.1 System Architecture

Tachyon consists of two layers: lineage and persistence.
The lineage layer tracks the sequence of jobs that have
created a particular data output. The persistence layer per-
sists data onto storage. This is mainly used to do asyn-
chronous checkpoints. The details of the persistence layer
are similar to many other storage systems. Since the per-
sistence layer is common to many storage systems, we
focus in this paper on asynchronous checkpointing (Sec-
tion 4).

Tachyon employs a standard master-slave architecture
similar to HDFS and GFS (see Figure 1). In the remainder
of this section we discuss the unique aspects of Tachyon.

In addition to managing metadata, the master also con-
tains a workflow manager. The role of this manager is to
track lineage information, compute checkpoint order (§4),
and interact with a cluster resource manager to allocate
resources for recomputation (§5).

Each worker runs a daemon that manages local re-
sources, and periodically reports the status to the mas-
ter. In addition, each worker uses a RAMdisk for storing
memory-mapped files. A user application can bypass the
daemon and read directly from RAMdisk. This way, an
application colocated with data will read the data at mem-
ory speeds, while avoiding any extra data copying.

3.2 An Example

To illustrate how Tachyon works, consider the following
example. Assume job P reads file set A and writes file set
B. Before P produces the output, it submits its lineage in-
formation L to Tachyon. This information describes how

Spark Job File
MapReduce Job —>
File Spark Job

Figure 2: Multiple frameworks lineage graph example.

Return Signature
Global Unique createD.ependency(1nputF11es,. output-
. Files, binaryPrograms, executionCon-
Lineage Id .
figuration, dependencyType)
Dependency Info | getDependency(lineageld)

Table 2: Submit and Retrieve Lineage API

to run P (e.g., comand line arguments, configuration pa-
rameters) to generate B from A. Tachyon records L reli-
ably using the persistence layer. L guarantees that if B is
lost, Tachyon can recompute it by (partially) re-executing
P. As a result, leveraging the lineage, P can write a sin-
gle copy of B to memory without compromising fault-
tolerance. Figure 2 shows a more complex lineage exam-
ple.

Recomputation based recovery assumes that input files
are immutable (or versioned, c.f,, §9) and that the execu-
tions of the jobs are deterministic. While these assump-
tions are not true of all applications, they apply to a large
fraction of datacenter workloads (c.f,, §2.1), which are
deterministic applications (often in a high-level language
such as SQL where lineage is simple to capture).

3.3 API Summary

Tachyon is an append-only file system, similar to HDFS,
that supports standard file operations, such as create,
open, read, write, close, and delete. In addition, Tachyon
provides an API to capture the lineage across different
jobs and frameworks. Table 2 lists the lineage API?, and
Section 6.1 describes this API in detail.

3.4 Lineage Overhead

In terms of storage overhead, job binaries represent by far
the largest component of the lineage information. How-
ever, according to Microsoft data [24], a typical data cen-
ter runs 1, 000 jobs daily on average, and it takes up to 1
TB to store the uncompressed binaries of all jobs executed
over a one year interval. This overhead is negligible even
for a small sized data center.

Furthermore, Tachyon can garbage collect the lineage

2A user can choose to use Tachyon as a traditional file system if
he/she does not use the lineage API.

information. In particular, Tachyon can delete a lineage
record after checkpointing (c.f., §4) its output files. This
will dramatically reduce the overall size of the lineage in-
formation. In addition, in production environments, the
same binary program is often executed many times, e.g.,
periodic jobs, with different parameters. In this case, only
one copy of the program needs to be stored.

3.5 Data Eviction

Tachyon works best when the workload’s working set fits
in memory. In this context, one natural question is what
is the eviction policy when the memory fills up. Our an-
swer to this question is influenced by the following char-
acteristics identified by previous works [17, 38] for data
intensive applications:

e Access Frequency: File access often follows a Zipf-
like distribution (see [17, Figure 2]).

e Access Temporal Locality: 75% of the re-accesses
take place within 6 hours (see [17, Figure 5]).

Based on these characteristics, we use LRU as a default
policy. However, since LRU may not work well in all
scenarios, Tachyon also allows plugging in other eviction
policies. Finally, as we describe in Section 4, Tachyon
stores all but the largest files in memory. The rest are
stored directly to the persistence layer.

3.6 Master Fault-Tolerance

As shown in Figure 1, Tachyon uses a “passive standby”
approach to ensure master fault-tolerance. The master
logs every operation synchronously to the persistence
layer. When the master fails, a new master is selected
from the standby nodes. The new master recovers the state
by simply reading the log. Note that since the metadata
size is orders of magnitude smaller than the output data
size, the overhead of storing and replicating it is negligi-
ble.

3.7 Handling Environment Changes

One category of problems Tachyon must deal with is
changes in the cluster’s runtime environment. How can
we rely on re-executing binaries to recompute files if, for
example, the version of the framework that an application
depends on changes, or the OS version changes?

One observation we make here is that although files’
dependencies may go back in time forever, checkpoint-
ing allows us to place a bound on how far back we ever
have to go to recompute data. Thus, before an environ-
ment change, we can ensure recomputability by switching
the system into a “synchronous mode”, where (a) all cur-
rently unreplicated files are checkpointed and (b) all new
data is saved synchronously. Once the current data is all

replicated, the update can proceed and this mode can be
disabled.

For more efficient handling of this case, it might also be
interesting to capture a computation’s environment using
a VM image [25]. We have, however, not yet explored
this option.

3.8 Discussion

There are several commonly asked questions when we
promoted our open source project in the past:

Question 1: Why not just use computation frameworks,
such as Spark, that already incorporate lineage? Many
data pipelines consist of multiple jobs. The frameworks
only know the lineage of tasks within a job. There is
no way to automatically reconstruct the output of a pre-
vious job in case of failures. Worse yet, different jobs in
the same pipeline can be written in different frameworks,
which renders a solution that would extend lineage across
multiple jobs in the same framework useless.

Question 2: Aren’t immutable data and deterministic pro-
gram requirements too stringent? As discussed in Sec-
tion 2.1, existing cluster frameworks, such as MapReduce,
Spark, and Dryad, satisfy these requirements, and they
leverage them to provide fault-recovery and straggler mit-
igation.

Question 3: With one copy in memory, how can Tachyon
mitigate hot spots? While Tachyon leverages lineage to
avoid data replication, it uses client-side caching to miti-
gate hot spot. That is, if a file is not available on the local
machine, it is read from a remote machine and cached lo-
cally in Tachyon.

Question 4: Isn’t Tachyon’s read/write throughput
bounded by the network since a cluster computation appli-
cation does I/O remotely? In our targeted workloads (Sec-
tion 2.1), computation frameworks schedule tasks based
on data locality to minimize remote I/O.

Question 5: Is Tachyon’s lineage API too complicated
for average programmers? Only framework programmers
need to understand Tachyon’s lineage API. Tachyon does
not place extra burden on application programmers. As
long as a framework, e.g. Spark, integrates with Tachyon,
applications on top of the framework take advantage of
lineage based fault-tolerance transparently.

4 Checkpointing

This section outlines the checkpoint algorithm used by
Tachyon to bound the amount of time it takes to retrieve
a file that is lost due to failures®. By a file we refer to a

31n this section, we assume recomputation has the same resource as
the first time computation. In Section 5, we address the recomputation
resource allocation issue.

distributed file, e.g., all output of a MapReduce/Spark job.
Unlike other frameworks, such as MapReduce and Spark,
whose jobs are relatively short-lived, Tachyon runs con-
tinuously. Thus, the lineage that accumulates can be sub-
stantial, requiring long recomputation time in the absence
of checkpoints. Therefore, checkpointing is crucial for
the performance of Tachyon. Note that long-lived stream-
ing systems, such as Spark Streaming [47], leverage their
knowledge of job semantics to decide what and when to
checkpoint. Tachyon has to checkpoint in absence of such
detailed semantic knowledge.

The key insight behind our checkpointing approach
in Tachyon is that lineage enables us to asynchronously
checkpoint in the background, without stalling writes,
which can proceed at memory-speed. This is unlike other
storage systems that do not have lineage information, e.g.,
key-value stores, which synchronously checkpoint, re-
turning to the application that invoked the write only once
data has been persisted to stable storage. Tachyon’ back-
ground checkpointing is done in a low priority process to
avoid interference with existing jobs. Whether the fore-
ground job can progress at memory-speed naturally re-
quires that its working set can fit in memory (see Sec-
tion 3).

An ideal checkpointing algorithm would provide the
following:

1. Bounded Recomputation Time. Lineage chains can
grow very long in a long-running system like Tachyon,
therefore the checkpointing algorithm should provide
a bound on how long it takes to recompute data in the
case of failures. Note that bounding the recomputation
time also bounds the computational resources used for
recomputations.

2. Checkpointing Hot files. Some files are much more
popular than others. For example, the same file,
which represents a small dimension table in a data-
warehouse, is repeatedly read by all mappers to do a
map-side join with a fact table [11].

3. Avoid Checkpointing Temporary Files. Big data work-
loads generate a lot of temporary data. From our con-
tacts at Facebook, nowadays, more than 70% data is
deleted within a day, without even counting shuffle
data. Figure 3a illustrates how long temporary data
exists in a cluster at Facebook®. An ideal algorithm
would avoid checkpointing much of this data.

We consider the following straw man to motivate our
algorithm: asynchronously checkpoint every file in the
order that it is created. Consider a lineage chain, where

4The workload was collected from a 3,000 machine MapReduce
cluster at Facebook, during a week in October 2010.

file A; is used to generate A5, which is used to generate
Az, A4, and so on. By the time Ag is being generated,
perhaps only A; and A, have been checkpointed to stable
storage. If a failure occurs, then A3 through Ag have to be
recomputed. The longer the chain, the longer the recom-
putation time. Thus, spreading out checkpoints through-
out the chain would make recomputations faster.

4.1 Edge Algorithm

Based on the above characteristics, we have designed
a simple algorithm, called Edge, which builds on three
ideas. First, Edge checkpoints the edge (leaves) of the
lineage graph (hence the name). Second, it incorporates
priorities, favoring checkpointing high-priority files over
low-priority ones. Finally, the algorithm only caches
datasets that can fit in memory to avoid synchronous
checkpointing, which would slow down writes to disk
speed. We discuss each of these ideas in detail:

Checkpointing Leaves. The Edge algorithm models
the relationship of files with a DAG, where the vertices
are files, and there is an edge from a file A to a file B
if B was generated by a job that read A. The algorithm
checkpoints the latest data by checkpointing the leaves of
the DAG. This lets us satisfy the requirement of bounded
recovery time (explained in Section 4.2).

Figure 4 illustrates how the Edge algorithm works. At
the beginning, there are only two jobs running in the clus-
ter, generating files A; and B;. The algorithm check-
points both of them. After they have been checkpointed,
files As, B4, Bs, and Bg become leaves. After check-
pointing these, files Ag, By become leaves.

To see the advantage of Edge checkpointing, consider
the pipeline only containing A; to Ag in the above exam-
ple. If a failure occurs when Ag is being checkpointed,
Tachyon only needs to recompute from A, through Ag to
get the final result. As previously mentioned, checkpoint-
ing the earliest files, instead of the edge, would require a
longer recomputation chain.

This type of pipeline is common in industry. For exam-
ple, continuously monitoring applications generate hourly
reports based on minutely reports, daily reports based on
hourly reports, and so on.

Checkpointing Hot Files. The above idea of check-
pointing the latest data is augmented to first checkpoint
high priority files. Tachyon assigns priorities based on the
number of times a file has been read. Similar to the LFU
policy for eviction in caches, this ensures that frequently
accessed files are checkpointed first. This covers the case
when the DAG has a vertex that is repeatedly read leading
to new vertices being created, i.e., a high degree vertex.

Access Count 1 3 5 10
62% 86% 93% 95%

Percentage

Table 3: File Access Frequency at Yahoo

0.8 a

0.6 @ 1200

CDF
S
s
g

0.4 s 800

0.2 E 1000

T 102 10° 10" 10° ol o
Data Existence Duration (sec) oo h Tina"
(a) Estimated temporary data (b) Data generation rates at
span including shuffle data five minutes granularity

Figure 3: A 3,000 nodes MapReduce cluster at Facebook

These vertices will be assigned a proportionally high pri-
ority and will thus be checkpointed, making recovery fast.
Edge checkpointing has to balance between check-
pointing leaves, which guarantee recomputation bounds,
and checkpointing hot files, which are important for cer-
tain iterative workloads. Here, we leverage the fact that
most big data workloads have a Zipf-distributed popular-
ity (this has been observed by many others [11, 17]). Ta-
ble 3 shows what percentage of the files are accessed less
than (or equal) than some number of times in a 3,000-
node MapReduce cluster at Yahoo in January 2014. Based
on this, we consider a file high-priority if it has an ac-
cess count higher than 2. For this workload, 86% of the
checkpointed files are leaves, whereas the rest are non-
leaf files. Hence, in most cases bounds can be provided.
The number can naturally be reconfigured for other work-
loads. Thus, files that are accessed more than twice get
precedence in checkpointing compared to leaves.

A replication-based filesystem has to replicate every
file, even temporary data used between jobs. This is
because failures could render such data as unavailable.
Tachyon avoids checkpointing much of the temporary
files created by frameworks. This is because checkpoint-
ing later data first (leaves) or hot files, allows frameworks
or users to delete temporary data before it gets check-
pointed.

Dealing with Large Data Sets. As observed previously,
working sets are Zipf-distributed [17, Figure 2]. We can
therefore store in memory all but the very largest datasets,
which we avoid storing in memory altogether. For exam-
ple, the distribution of input sizes of MapReduce jobs at
Facebook is heavy-tailed [10, Figure 3a]. Furthermore,
96% of active jobs respectively can have their entire data
simultaneously fit in the corresponding clusters’ mem-

Figure 4: Edge Checkpoint Example. Each node repre-
sents a file. Solid nodes denote checkpointed files, while
dotted nodes denote uncheckpointed files.

ory [10]. The Tachyon master is thus configured to syn-
chronously write datasets above the defined threshold to
disk. In addition, Figure 3b shows that file requests in the
aforementioned Facebook cluster is highly bursty. During
bursts, Edge checkpointing might checkpoint leafs that
are far apart in the DAG. As soon as the bursts finish,
Edge checkpointing starts checkpointing the rest of the
non-leaf files. Thus, most of the time most of the files
in memory have been checkpointed and can be evicted
from memory if room is needed (see Section 3). If the
memory fills with files that have not been checkpointed,
Tachyon checkpoints them synchronously to avoid having
to recompute long lineage chains. In summary, all but the
largest working sets are stored in memory and most data
has time to be checkpointed due to the bursty behavior of
frameworks. Thus, evictions of uncheckpointed files are
rare.

4.2 Bounded Recovery Time

Checkpointing the edge of the DAG lets us derive a bound
on the recomputation time. The key takeaway of the
bound is that recovery of any file takes on the order of
time that it takes reading or generating an edge. Infor-
mally, it is independent of the depth of the lineage DAG.
Recall that the algorithm repeatedly checkpoints the
edge of the graph. We refer to the time it takes to check-
point a particular edge ¢ of the DAG as W;. Similarly,
we refer to the time it takes to generate an edge ¢ from its
ancestors as ;. We now have the following bound.

Theorem 1 Edge checkpointing ensures that any file can
be recovered in 3xM, for M = max;{T;}, T, =
max(W;, G;).

Proof Sketch Consider requesting a file f that had been
fully generated but is no longer available. If f is check-
pointed, it can be read in time less than W; < 3M, prov-
ing the bound. If f is not checkpointed, then consider the

edge [that was last fully checkpointed before f was gen-
erated. Assume checkpointing of [started at time ¢. Then
at time t + 1; + M the computation had progressed to
the point that f had been fully generated. This is because
otherwise, due to Edge checkpointing, [would not be the
last fully checkpointed edge, but some other edge that was
generated later but before f was generated. Hence, [can
be read in time 1} < M, and in the next 27; < 2M time
the rest of the lineage can be computed until f has been
fully generated.

This shows that recomputations are independent of the
“depth” of the DAG. This assumes that the caching be-
havior is the same during the recomputation, which is true
when working sets fit in memory (c.f., Section 4.1).

The above bound does not apply to priority checkpoint-
ing. However, we can easily incorporate priorities by al-
ternating between checkpointing the edge c fraction of the
time and checkpointing high-priority data 1—c of the time.

Corollary 2 Edge checkpointing, where c fraction of the
time is spent checkpointing the edge, ensures that any file
can be recovered in 3XCM , for M = max;{T;}, T, =
max(Wi, Gz)

Thus, configuring ¢ = 0.5 checkpoints the edge half of
the time, doubling the bound of Theorem 1. These bounds
can be used to provide SLOs to applications.

In practice, priorities can improve the recomputation
cost. In the evaluation(§7), we illustrate actual recompu-
tation times in practice edge caching.

5 Resource Allocation

Although the Edge algorithm provides a bound on recom-
putation cost, Tachyon needs a resource allocation strat-
egy to schedule jobs to recompute data in a timely man-
ner. In addition, Tachyon must respect existing resource
allocation policies in the cluster, such as fair sharing or
priority.

In many cases, there will be free resources for recom-
putation, because most datacenters are only 30-50% uti-
lized. However, care must be taken when a cluster is full.
Consider a cluster fully occupied by three jobs, Ji, Js,
and J3, with increasing importance (e.g., from research,
testing, and production). There are two lost files, F; and
F, requiring recomputation jobs R; and Ry. Jo requests
F; only. How should Tachyon schedule recomputations?

One possible solution is to statically assign part of the
cluster to Tachyon, e.g., allocate 25% of the resources on
the cluster for recomputation. However, this approach
limits the cluster’s utilization when there are no recom-
putation jobs. In addition, the problem is complicated be-
cause many factors can impact the design. For example, in

J1(P4) Jz(?z) J3(P3) J41(P4) "2‘.P2) J_3(P3)
Ry(P,) Ry(P3)
(a) (b)

Figure 5: Resource Allocation Strategy for Priority Based
Scheduler.

the above case, how should Tachyon adjust Rs’s priority
if I3 is later requested by the higher priority job J3?
To guide our design, we identify three goals:

1. Priority compatibility: If jobs have priorities, recom-
putation jobs should follow them. For example, if a
file is requested by a low priority job, the recompu-
tation should have minimal impact on higher priority
jobs. Butif the file is later requested by a high priority
job, the recovery job’s importance should increase.

2. Resource sharing: 1f there are no recomputation jobs,
the whole cluster should be used for normal work.

3. Avoid cascading recomputation: When a failure oc-
curs, more than one file may be lost at the same time.
Recomputing them without considering data depen-
dencies may cause recursive job launching.

We start by presenting resource allocation strategies
that meet the first two goals for common cluster schedul-
ing policies. Then, we discuss how to achieve the last
goal, which is orthogonal to the scheduling policy.

5.1 Resource Allocation Strategy

The resource allocation strategy depends on the schedul-
ing policy of the cluster Tachyon runs on. We present
solutions for priority and weighted fair sharing, the most
common policies in systems like Hadoop and Dryad
[45, 27].

Priority Based Scheduler In a priority scheduler, using
the same example above, jobs J1, J2, and J3 have priori-
ties Py, P», and Ps respectively, where P, < Py, < Ps.

Our solution gives all recomputation jobs the lowest
priority by default, so they have minimal impact on other
jobs. However, this may cause priority inversion. For ex-
ample, because file F5’s recomputation job R5 has a lower
priority than Js, it is possible that J is occupying the
whole cluster when it requests F». In this case, Ry cannot
get resources, and J5 blocks on it.

We solve this by priority inheritance. When J; requests
F;, Tachyon increases Ry’s priority to be Ps. If F5 is later
read by J3, Tachyon further increases its priority. Fig-
ure 5a and 5b show jobs’ priorities before and after Js

requests Fb.

Fair Sharing Based Scheduler In a hierarchical fair
sharing scheduler, jobs Jy, Js, and Js3 have shares Wy,
Ws, and W3 respectively. The minimal share unit is 1.

In our solution, Tachyon has a default weight, Wx (as
the minimal share unit 1), shared by all recomputation
jobs. When a failure occurs, all lost files are recomputed
by jobs with a equal share under Wx. In our example,
both R; and R are launched immediately with share 1 in
Whg.

When a job requires lost data, part of the requesting
job’s share®, is moved to the recomputation job. In our
example, when Js requests F5, Jo has share (1 — a) under
W, and R, share a under W5. When J3 requests F5 later,
J3 has share 1 —a under W3 and Rs has share a under Ws.
When R; finishes, J> and J3 resumes all of their previous
shares, W5 and W3 respectively. Figure 6 illustrates.

This solution fulfills our goals, in particular, priority
compatibility and resource sharing. When no jobs are re-
questing a lost file, the maximum share for all recompu-
tation jobs is bounded. In our example, it is Wx /(W +
Wo + W35 + Wg). When a job requests a missing file, the
share of the corresponding recomputation job is increased.
Since the increased share comes from the requesting job,
there is no performance impact on other normal jobs.

5.2 Recomputation Order

Recomputing a file might require recomputing other files
first, such as when a node fails and loses multiple files
at the same time. While the programs could recursively
make callbacks to the workflow manager to recompute
missing files, this would have poor performance. For in-
stance, if the jobs are non-preemptable, computation slots
are occupied, waiting for other recursively invoked files
to be reconstructed. If the jobs are preemptable, computa-
tion before loading lost data is wasted. For these reasons,
the workflow manager determines in advance the order of
the files that need to be recomputed and schedules them.
To determine the files that need to be recomputed, the
workflow manager uses a logical directed acyclic graph
(DAG) for each file that needs to be reconstructed. Each
node in the DAG represents a file. The parents of a child
node in the DAG denote the files that the child depends
on. That is, for a wide dependency a node has an edge to
all files it was derived from, whereas for a narrow depen-
dency it has a single edge to the file that it was derived
from. This DAG is a subgraph of the DAG in Section 4.1.
To build the graph, the workflow manager does a depth-
first search (DFS) of nodes representing targeted files.

5a could be a fixed portion of the job’s share, e.g., 20%

Figure 6: Resource Allocation Strategy for Fair Sharing Based Scheduler.

The DFS stops whenever it encounters a node that is al-
ready available in storage. The nodes visited by the DFS
must be recomputed. The nodes that have no lost parents
in the DAG can be recomputed first in parallel. The rest
of nodes can be recomputed when all of their children be-
come available. The workflow manager calls the resource
manager and executes these tasks to ensure the recompu-
tation of all missing data.

6 Implementation

This section describes the detailed information needed to
construct a lineage and Tachyon’s integration with the
eco-system.

6.1 Lineage Metadata

Ordered input files list: Because files’ names could be
changed, each file is identified by a unique immutable file
ID in the ordered list to ensure that the application’s po-
tential future recomputations read the same files in the
same order as its first time execution.

Ordered output files list: This list shares the same in-
sights as the input files list.

Binary program for recomputation: Tachyon launches
this program to regenerate files when necessary. There
are various approaches to implement a file recomputation
program. One naive way is to write a specific program for
each application. However, this significantly burdens ap-
plication programmers. Another solution is to write a sin-
gle wrapper program which understands both Tachyon’s
lineage information and the application’s logic. Though
this may not be feasible for all programs, it works for ap-
plications written in a particular framework. Each frame-
work can implement a wrapper to allow applications writ-
ten in the framework to use Tachyon transparently. There-
fore, no burden will be placed on application program-
mers.

Program configuration: Program configurations can be
dramatically different in various jobs and frameworks. We
address this by having Tachyon forego any attempt to
understand these configurations. Tachyon simply views
them as byte arrays, and leaves the work to program

wrappers to understand. Based on our experience, it is
fairly straightforward for each framework’s wrapper pro-
gram to understand its own configuration. For example,
in Hadoop, configurations are kept in HadoopConf, while
Spark stores these in SparkEnv. Therefore, their wrap-
per programs can serialize them into byte arrays during
lineage submission, and deserialize them during recom-
putation.

Dependency type: We use wide and narrow dependen-
cies for efficient recovery(c.f,, §5). Narrow dependencies
represent programs that do operations, e.g., filter and map,
where each output file only requires one input file. Wide
dependencies represent programs that do operations, e.g.,
shuffle and join, where each output file requires more than
one input file. This works similarly to Spark [46].

When a program written in a framework runs, before it
writes files, it provides the aforementioned information to
Tachyon. Then, when the program writes files, Tachyon
recognizes the files contained in the lineage. Therefore,
the program can write files to memory only, and Tachyon
relies on the lineage to achieve fault tolerance. If any file
gets lost, and needs to be recomputed, Tachyon launches
the binary program, a wrapper under a framework invok-
ing user application’s logic, which is stored in the cor-
responding lineage instance, and provides the lineage in-
formation as well as lost files list to the recomputation
program to regenerate the data.

6.2 Integration with the eco-system

We have implemented patches for existing frameworks
to work with Tachyon: 300 Lines-of-Code (LoC) for
Spark [46] and 200 LoC for MapReduce [3]. In addi-
tion, in case of a failure, recomputation can be done at
file level. For example, if a MapReduce job produces 10
files and if only one file gets lost, Tachyon can launch the
corresponding job to only recompute the single lost file.
Applications on top of integrated frameworks take advan-
tage of the linage transparently, and application program-
mers do not need to know the lineage concept.

1400 Read Throughput
“Tachyon Read
1200 | =NMemHDFS Read

1000 ‘MemHDFS Short Circuit Read
800 **HDFS Cache Short Circuit R€ad

600 ~

Write Throughput
“Tachyon Write

o
o
S

Y
o
o

“#MemHDFS Write

Theoretical Replicatis

(2 copies) Base: rite /
Ve /’:J_._,-—— . —
L ——— 0
30 0

w
=]
=]

BN
e o
e o
2
=]
S

Throughput (GB/Sec)
Throughput (GB/Sec)

o
~
=]
S

[30

10 20 10 20
Number of Machines Number of Machines

Figure 7: Tachyon and MemHDFS throughput compari-
son. On average, Tachyon outperforms MemHDFS 110x
for write throughput, and 2x for read throughput.

7 Evaluation

We evaluated Tachyon through a series of raw bench-
marks and experiments based on real-world workloads.

Unless otherwise noted, our experiments ran on an
Amazon EC2 cluster with 10 Gbps Ethernet. Each node
had 32 cores, 244GB RAM, and 240GB of SSD. We used
the latest versions of Hadoop (2.3.0) and Spark (0.9).

We compare Tachyon with an in-memory installa-
tion of Hadoop’s HDFS (over RAMEFS), which we dub
MemHDFS. MemHDFS still replicates data across the
network for writes but eliminates the slowdown from disk.

In summary, our results show the following:

e Tachyon can write data 110x faster than MemHDFS.

e Tachyon speeds up a realistic multi-job workflow by
4x over MemHDEFS. In case of failure, it recovers
around one minute and still finishes 3.8x faster.

e The Edge algorithm outperforms any fixed check-
pointing interval.

e Recomputation would consume less than 1.6% of
cluster resources in traces from Facebook and Bing.

e Analysis shows that Tachyon can reduce replication-
caused network traffic up by to 50%.

e Tachyon helps existing in-memory frameworks like
Spark improve latency by moving storage off-heap.

e Tachyon recovers from master failure within 1 second.

7.1 Raw Performance

We first compare Tachyon’s write and read throughputs
with MemHDFS. In each experiment, we ran 32 processes
on each cluster node to write/read 1GB each, equivalent
to 32GB per node. Both Tachyon and MemHDFS scaled
linearly with number of nodes. Figure 7 shows our results.

For writes, Tachyon achieves 15GB/sec/node. Despite
using 10Gbps Ethernet, MemHDEFS write throughput is
0.14GB/sec/node, with a network bottleneck due to 3-
way replication for fault tolerance. We also show the

MemHDFS =
Tachyon (w/ failure)
Tachyon (wo/ failure) i
0 20 40 60 80
Minutes

Figure 8: Performance comparison for realistic workflow.
Each number is the average of three runs. The workflow
ran 4x faster on Tachyon than on MemHDFS. In case of
node failure, applications recovers in Tachyon around one
minute and still finishes 3.8x faster.

theoretical maximum performance for replication on this
hardware: using only two copies of each block, the limit
is 0.5GB/sec/node. On average, Tachyon outperforms
MemHDEFS by 110x, and the theoretical replication-based
write limit by 30x.

For reads, Tachyon achieves 38GB/sec/node. We opti-
mized HDFS read performance using two of its most re-
cent features, HDFS caching and short-circuit reads. With
these features, MemHDEFS achieves 17 GB/sec/node. The
reason Tachyon performs better is that the HDFS API still
requires an extra memory copy due to Java I/O streams.

Note that Tachyon’s read throughput was higher than
write. This happens simply because memory hardware is
generally optimized to leave more bandwidth for reads.

7.2 Realistic Workflow

In this experiment, we test how Tachyon performs with
a realistic workload. The workflow is modeled after jobs
run at a leading video analytics company during one hour.
It contains periodic extract, transform and load (ETL) and
metric reporting jobs. Many companies run similar work-
flows.

The experiments ran on a 30-node EC2 cluster. The
whole workflow contains 240 jobs in 20 batches (8 Spark
jobs and 4 MapReduce jobs per batch). Each batch of
jobs read 1 TB and produced 500 GB. We used the Spark
Grep job to emulate ETL applications, and MapReduce
Word Count to emulate metric analysis applications. For
each batch of, we ran two Grep applications to pre-process
the data. Then we ran Word Count to read the cleaned
data and compute the final results. After getting the final
results, the cleaned data was deleted.

We measured the end-to-end latency of the workflow
running on Tachyon or MemHDFS. To simulate the real
scenario, we started the workload as soon as raw data
had been written to the system, in both Tachyon and
MemHDEFS tests. For the Tachyon setting, we also mea-
sured how long the workflow took with a node failure.

10

&

Figure 9: Edge and fixed interval checkpoint recovery per-
formance comparison.

Figure 8 shows the workflow’s performance on
Tachyon and MemHDFS. The pipeline ran in 16.6 min-
utes on Tachyon and 67 minutes on HDFS. The speedup
is around 4x. When a failure happens in Tachyon, the
workflow took 1 more minute, still finishing 3.8x faster
than MemHDFS.

With Tachyon, the main overhead was serialization and
de-serialization since we used the Hadoop TextInputFor-
mat. With a more efficient serialization format, the per-
formance gap is larger.

7.3 Edge Checkpointing Algorithm

We evaluate the Edge algorithm by comparing it with
fixed-interval checkpointing. We simulate an iterative
workflow with 100 jobs, whose execution time follows a
Gaussian distribution with a mean of 10 seconds per job.
The output of each job in the workflow requires a fixed
time of 15 seconds to checkpoint. During the workflow,
one node fails at a random time.

Figure 9 compares the average recovery time of this
workflow under Edge checkpointing with various fixed
checkpoint intervals. We see that Edge always outper-
forms any fixed checkpoint interval. When too small an
interval picked, checkpointing cannot keep up with pro-
gram progress and starts lagging behind.® If the interval
is too large, then the recovery time will suffer as the last
checkpoint is too far back in time. Furthermore, even if
an optimal average checkpoint interval is picked, it can
perform worse than the Edge algorithm, which inherently
varies its interval to always match the progress of the com-
putation and can take into account the fact that different
jobs in our workflow take different amounts of time.

We also simulated other variations of this workload,
e.g., more than one lineage chain or different average job
execution times at different phases in one chain. These

OThat is, the system is still busy checkpointing data from far in the
past when a failure happens later in the lineage graph.

11

« 35

% g 30 <=1000 Nodes
% 3 422000 Nodes
2§25 ©-3000 Nodes
g 20 | >+4000 Nodes

o E15 5000 Nodes
]

8510 =
c Qo

SE 5 e e
2o T

128 256 384 512 640

768 896
Memory Size Per Machine (GB)

Figure 10: Theoretically, recomputation consumes up to
30% of a cluster’s resource in the worst case.

simulations have a similar result, with the gap between
Edge algorithm and the best fixed interval being larger in
more variable workloads.

7.4 Impact of Recomputation on Other
Jobs

In this experiment, we show that recomputating lost data
does not noticeably impact other users’ jobs that do not
depend on the lost data. The experiment has two users,
each running a Spark ETL pipeline. We ran the test three
times, and report the average. Without a node failure, both
users’ pipelines executed in 85 seconds on average (stan-
dard deviation: 3s). With a failure, the unimpacted users’s
execution time was 86s (std.dev. 3.5s) and the impacted
user’s time was 114s (std.dev. 5.5s).

7.5 Recomputation Resource Consumption

Since Tachyon relies on lineage information to recompute
missing data, it is critical to know how many resources
will be spent on recomputation, given that failures hap-
pen every day in large clusters. In this section, we calcu-
late the amount of resources spent recovering using both a
mathematical model and traces from Facebook and Bing.

‘We make our analysis using the following assumptions:

e Mean time to failure (MTTF) for each machine is 3
years. If a cluster contains 1000 nodes, on average,
there is one node failure per day.

e Sustainable checkpoint throughput is 200MB/s/node.

e Resource consumption is measured in machine-hours.

e In this analysis, we assume Tachyon only uses the
coarse-gained recomputation at the job level to com-
pute worst case, even though it supports fine-grained
recomputation at task level.

Worst-case analysis In the worst case, when a node
fails, its memory contains only un-checkpointed data.
This requires tasks that generate output faster than
200MB/sec: otherwise, data can be checkpointed in time.
If a machine has 128GB memory, it requires 655 seconds

Facebook Workload Analysis

Trace Summary

Memory Size Per Machine (GB)

Bing Workload Analysis

6
L 08 5
g 1000 Nod § ., [~1000 Nodes
Facebook | Bing | % gos ;2000 Ngd:: — % §1.4 182000 Nodes —
-3 -_—
1 |1-10 [8s5% 43% | 3 B0 ~3000Nodes — g §'2 3000 Nodes —
£ 906 22000 Nodes E [1 7000 Nodes —
2 |11-50 |4% 8% 5 507 5000 Nodes 5 S0 5000 Nodes —
»E > % o6 — i
3 |51-150 | 8% 2% | %03 g5o¢ ﬁ/
S £0.2 = g g0
4 | 151-500 | 2% 2% | S50 . e = — —_ = —
g = e =
0 08
5 |>50 | 1% 2%
128 256 384 512 640 768 896 1024 128 256 384 512 640 768 896 1024

Memory Size Per Machine (GB)

Figure 11: Using the trace from Facebook and Bing, recomputation consumes to up 0.9% and 1.6% of the resource in

the worst case respectively.

(128GB / 200MB/sec) to recompute the lost data. Even
if this data is recovered serially, and of all the other ma-
chines are blocked waiting on the data during this pro-
cess (e.g., they were running a highly parallel job that de-
pended on it), recomputation takes 0.7% (655 seconds /
24 hours) of the cluster’s running time on a 1000-node
cluster (with one failure per day). This cost scales lin-
early with the cluster size and memory size, as shown in
Figure 10. For a cluster with 5000 nodes, each with 1TB
memory, the upper bound on recomputation cost is 30%
of the cluster resources, which is still small compared to
the typical speedup from Tachyon.

Real traces Inreal workloads, the recomputation cost is
much lower than in the worst-case setting above, because
individual jobs rarely consume the entire cluster, so a node
failure may not block all other nodes. (Another reason is
that data blocks on a failed machine can often be recom-
puted in parallel, but we do not quantify this here.) Fig-
ure 11 estimates these costs based on job size traces from
Facebook and Bing (from Table 2 in [11]), performing a
similar computation as above with the active job sizes in
these clusters. With the same 5000-node cluster, recom-
putation consumes only up to 0.9% and 1.6% of resources
at Facebook and Bing respectively. Given most clusters
are only 30-50% utilized, this overhead is negligible.

7.6 Network Traffic Reduction

Data replication from the filesystem consumes almost
half the cross-rack traffic in data-intensive clusters [19].
Because Tachyon checkpoints data asynchronously some
time after it was written, it can avoid replicating short-
lived files altogether if they are deleted before Tachyon
checkpoints them, and thus reduce this traffic.

We analyze Tachyon’s bandwidth savings via simula-
tions with the following parameters:

e Let T be the ratio between the time it takes to check-
point a job’s output and the time to execute it. This

12

depends on how IO-bound the application is. For
example, we measured a Spark Grep program us-
ing Hadoop Text Input format, which resulted in T =
4.5, i.e., the job runs 4.5x faster than replicating data
across network. With a more efficient binary format,
T will be larger.

Let X be the percent of jobs that output permanent
data. For example, 60% (X = 60) of generated data
got deleted within 16 minutes at Facebook (Fig. 3a).
Let Y be the percentage of jobs that read output of
previous jobs. If Y is 100, the lineage is a chain. If Y
is 0, the depth of the lineage is 1. At a leading Internet
messaging company, Y is 84%.

Based on this information, we set X as 60 and Y as
84. We simulated 1000 jobs using Edge checkpointing.
Depending on T, the percent of network traffic saved over
replication ranges from 40% at T =4 to 50% at T > 10.

7.7 Overhead in Single Job

When running a single job instead of a pipeline, we found
that Tachyon imposes minimal overhead, and can improve
performance over current in-memory frameworks by re-
ducing garbage collection overheads. We use Spark as
an example, running a Word Count job on one worker
node. Spark can natively cache data either as deserial-
ized Java objects or as serialized byte arrays, which are
more compact but create more processing overhead. We
compare these modes with caching in Tachyon. For small
data sizes, execution times are similar. When the data
grows, however, Tachyon storage is faster than Spark’s na-
tive modes because it avoids Java memory management.’
These results show that Tachyon can be a drop-in alterna-
tive for current in-memory frameworks.

7 Although Tachyon is written in Java, it stores data in a Linux
RAMEFS.

7.8

Tachyon utilizes hot failovers to achieve fast master re-
covery. We tested recovery for an instance with 1 to 5
million files, and found that the failover node resumed
the master’s role after acquiring leadership within 0.5 sec-
onds, with a standard deviation of 0.1 second. This perfor-
mance is possible because the failover constantly updates
its file metadata based on the log of the current master.

8 Related Work

Storage Systems Distributed file systems [14, 39, 42],
e.g., GFS [23] and FDS [13], and key/value stores [1, 12,
22], e.g., RAMCloud [34] and HBase [4], replicate data to
different nodes for fault-tolerance. Their write through-
put is bottlenecked by network bandwidth. FDS uses a
fast network to achieve higher throughput. Despite the
higher cost of building FDS, its throughput is still far from
memory throughput. Our key contribution with respect to
this work is leveraging the lineage concept in the storage
layer to eschew replication and instead store a single in-
memory copy of files.

Computation Frameworks Spark [46] uses lineage in-
formation within a single job or shell, all running inside
a single JVM. Different queries in Spark cannot share
datasets (RDD) in a reliable and high-throughput fashion,
because Spark is a computation engine, rather than a stor-
age system. Our integration with Spark substantially im-
proves existing industry workflows of Spark jobs, as they
can share datasets reliably through Tachyon. Moreover,
Spark can benefit from the asynchronous checkpointing
in Tachyon, which enables high-throughput write.

Other frameworks, such as MapReduce [20] and
Dryad [26], also trace task lineage within a job. However,
as execution engines, they do not trace relations among
files, and therefore can not provide high throughput data
sharing among different jobs. Like Spark, they can also
integrate with Tachyon to improve the efficiency of data
sharing among different jobs or frameworks.

Caching Systems Like Tachyon, Nectar [24] also uses the
concept of lineage, but it does so only for a specific pro-
gramming framework (DryadLINQ [44]), and in the con-
text of a traditional, replicated file system. Nectar is a data
reuse system for DryadLINQ queries whose goals are to
save space and to avoid redundant computations. The for-
mer goal is achieved by deleting largely unused files and
rerunning the jobs that created them when needed. How-
ever, no time bound is provided to retrieve deleted data.
The latter goal is achieved by identifying pieces of code
that are common in different programs and reusing previ-
ously computed files. Nectar achieves this by heavily rest-
ing on the SQL like DryadLINQ query semantics—in par-

Master Fault Tolerance

13

ticular, it needs to analyze LINQ code to determine when
results may be reused—and stores data in a replicated on-
disk file system rather than attempting to speed up data
access. In contrast, Tachyon’s goal is to provide data shar-
ing across different frameworks with memory speed and
bounded recovery time.

Lineage Based Storage Systems and Databases Previ-
ous file systems [32] and databases [18] also use lineage
information, which is called provenance in their contexts.
Unlike Tachyon, their goals are to provide data security,
verification, etc. Tachyon is the first system to push lin-
eage into storage layer to improve performance, which en-
tails a different set of challenges.

Checkpoint Research Checkpointing has been a rich re-
search area. Much of the research was on using check-
points to minimize the re-execution cost when failures
happen during long jobs. For instance, much focus was on
optimal checkpoint intervals [41, 43], as well as reducing
the per-checkpoint overhead [21, 35, 36]. Unlike previous
work, which uses synchronous checkpoints, Tachyon does
checkpointing asynchronously in the background, which
is enabled by using lineage information to recompute any
missing data if a checkpoint fails to finish.

9 Limitations and Future Work

Tachyon aims to improve the performance for its targeted
workloads(§2.1), and the evaluations show promising re-
sults. Although many big data clusters are running our tar-
geted workloads, we realize that there are cases in which
Tachyon provides limited improvement, e.g., CPU or net-
work intensive jobs. In addition, there are also challenges
that future work needs to address:

Mutable data: This is challenging as lineage cannot gen-
erally be efficiently stored for fine-grained random-access
updates. However, there are several directions, such as
exploiting deterministic updates and batch updates.
Multi-tenancy: Memory fair sharing is an important re-
search direction for Tachyon. Policies like LRU/LFU
might provide good overall performance at the expense
of providing isolation guarantees to individual users.
Hierarchical storage: Though memory capacity grows
exponentially each year, it is still comparatively expen-
sive to its alternatives. One early adopter of Tachyon sug-
gested that besides utilizing the memory layer, Tachyon
should also leverage NVRAM and SSDs. In the future,
we will investigate how to support hierarchical storage in
Tachyon.

10 Conclusion

As ever more datacenter workloads start to be in memory,
write throughput becomes a major bottleneck for applica-

tions. Therefore, we believe that lineage-based recovery
might be the only way to speed up cluster storage systems
to achieve memory throughput. We proposed Tachyon, a
storage system that incorporates lineage to speed up the
significant part of the workload consisting of determinis-
tic batch jobs. We identify and address some of the key
challenges in making Tachyon practical. Our evaluations
show that Tachyon provides promising speedups over ex-
isting storage alternatives. Tachyon is open source with
contributions from more than 40 individuals and over 10
companies.

11 Acknowledgements

This research is supported in part by NSF CISE Expedi-
tions Award CCF-1139158, LBNL Award 7076018, and
DARPA XData Award FA8750-12-2-0331, and gifts from
Amazon Web Services, Google, SAP, The Thomas and
Stacey Siebel Foundation, Apple, Inc., Cisco, Cloudera,
EMC, Ericsson, Facebook, GameOnTalis, Guavus, HP,
Huawei, Intel, Microsoft, NetApp, Pivotal, Splunk, Vir-
data, VMware, WANdisco and Yahoo!.

References
[1] Apache Cassandra. http://cassandra.apache.org/.
[2] Apache Crunch. http://crunch.apache.org/.
[3] Apache Hadoop. http://hadoop.apache.org/.
[4] Apache HBase. http://hbase.apache.org/.
[5] Apache Mahout. http://mahout.apache.org/.
[6] Apache Oozie. http://incubator.apache.org/oozie/.
[7] Dell. http://www.dell.com/us/business/p/servers.
[8] GridGain. http://www.gridgain.com/products/.
[9] Luigi. https://github.com/spotify/luigi.

[10] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
L. Stoica. Disk-Locality in Datacenter Computing
Considered Irrelevant. In USENIX HotOS 2011.

[11] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.
PACMan: Coordinated Memory Caching for Paral-

lel Jobs. In NSDI 2012.

[12] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. Fawn: A fast
array of wimpy nodes. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems

Principles, pages 1-14. ACM, 2009.

14

[13] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann,
J. Howell, and Y. Suzue. Flat Datacenter Storage.
In OSDI 2012.

[14] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,

J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and V. Yush-

prakh. Megastore: Providing scalable, highly avail-

able storage for interactive services. In CIDR, vol-

ume 11, pages 223-234, 2011.

[15] R. Bose and J. Frew. Lineage Retrieval for Scien-

tic Data Processing: A Survey. In ACM Computing

Surveys 2005.

[16] C. Chambers et al. FlumeJava: easy, efficient data-
parallel pipelines. In PLDI 2010.
[17] Y. Chen, S. Alspaugh, and R. Katz. Interactive an-
alytical processing in big data systems: A cross-
industry study of mapreduce workloads. Proceed-
ings of the VLDB Endowment, 5(12):1802-1813,
2012.
[18] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance
in Databases: Why, How, and Where. In Founda-
tions and Trends in Databases 2007.
[19] M. Chowdhury, S. Kandula, and I. Stoica. Lever-
aging endpoint flexibility in data-intensive clusters.
In Proceedings of the ACM SIGCOMM 2013 confer-
ence on SIGCOMM, pages 231-242. ACM, 2013.
[20] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI 2004.

[21] E. Elnozahy, D. Johnson, and W. Zwaenepoel. The
Performance of Consistent Checkpointing. In 7/th
Symposium on Reliable Distributed Systems 1994.

[22] R. Escriva, B. Wong, and E. G. Sirer. Hyper-

dex: A distributed, searchable key-value store.

ACM SIGCOMM Computer Communication Re-

view, 42(4):25-36, 2012.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung. The

Google File System. In Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems

Principles, 2003.

[24] P. K. Gunda, L. Ravindranath, C. A. Thekkath,

Y. Yu, and L. Zhuang. Nectar: Automatic Manage-

ment of Data and Computation in Data Centers. In

OSDI 2010.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

P. J. Guo and D. Engler. CDE: Using system call in-
terposition to automatically create portable software
packages. In Proceedings of the 2011 USENIX An-
nual Technical Conference, pages 247-252, 2011.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. ACM SIGOPS Op-
erating Systems Review, 41(3):59-72, 2007.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair schedul-
ing for distributed computing clusters. In SOSP,
November 2009.

D. Locke, L. Sha, R. Rajikumar, J. Lehoczky, and
G. Burns. Priority inversion and its control: An ex-
perimental investigation. In ACM SIGAda Ada Let-
ters, volume 8, pages 39—42. ACM, 1988.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
graphlab: a framework for machine learning and
data mining in the cloud. Proceedings of the VLDB
Endowment, 5(8):716-727, 2012.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehn-
ert, I. Horn, N. Leiser, and G. Czajkowski. Pregel:
a system for large-scale graph processing. In Pro-
ceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135-146.
ACM, 2010.

S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: interactive analysis of web-scale datasets.
Proceedings of the VLDB Endowment, 3(1-2):330-
339, 2010.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun,
and M. L. Seltzer. Provenance-aware storage sys-
tems. In USENIX Annual Technical Conference,
General Track, pages 43-56, 20006.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD ’08, pages 1099-1110.

J. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazieres, S. Mi-
tra, A. Narayanan, D. Ongaro, G. Parulkar, et al.
The case for ramcloud. Communications of the
ACM, 54(7):121-130, 2011.

15

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

J. Plank. An Overview of Checkpointing in Unipro-
cessor and Distributed Systems, Focusing on Imple-
mentation and Performance. In Technical Report,
University of Tennessee, 1997.

J. S. Plank and W. R. Elwasif. Experimental as-
sessment of workstation failures and their impact on
checkpointing systems. In 28th International Sym-
posium on Fault-Tolerant Computing, 1997.

R. Power and J. Li. Piccolo: Building Fast, Dis-
tributed Programs with Partitioned Tables. In Pro-
ceedings of the 9th USENIX conference on Operat-
ing systems design and implementation, pages 293—
306. USENIX Association, 2010.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz,
and M. A. Kozuch. Heterogeneity and dynamicity of
clouds at scale: Google trace analysis. In Proceed-
ings of the Third ACM Symposium on Cloud Com-
puting. ACM, 2012.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1-10. IEEE, 2010.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive
a petabyte scale data warehouse using hadoop. In
Data Engineering (ICDE), 2010 IEEE 26th Interna-
tional Conference on, pages 996—1005. IEEE, 2010.

N. H. Vaidya. Impact of Checkpoint Latency on
Overhead Ratio of a Checkpointing Scheme. In
IEEE Trans. Computers 1997.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D.
Long, and C. Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings
of the 7th symposium on Operating systems design
and implementation, pages 307-320. USENIX As-
sociation, 2006.

J. W. Young. A first order approximation to the opti-
mum checkpoint interval. Commun. ACM, 17:530—
531, Sept 1974.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlings-
son, P. K. Gunda, and J. Currey. Dryadling: a system
for general-purpose distributed data-parallel com-
puting using a high-level language. In Proceedings
of the 8th USENIX conference on Operating systems
design and implementation, pages 1-14. USENIX
Association, 2008.

[45]

[46]

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Delay scheduling: A
simple technique for achieving locality and fairness
in cluster scheduling. In EuroSys 10, 2010.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Com-
puting. In Proceedings of the 9th USENIX confer-

16

[47]

ence on Networked Systems Design and Implemen-
tation. USENIX Association, 2012.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker,
and I. Stoica. Discretized streams: Fault-tolerant
streaming computation at scale. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 423—438. ACM, 2013.

	Introduction
	Background
	Target Workload
	Existing Solutions
	Lineage

	Design Overview
	System Architecture
	An Example
	API Summary
	Lineage Overhead
	Data Eviction
	Master Fault-Tolerance
	Handling Environment Changes
	Discussion

	Checkpointing
	Edge Algorithm
	Bounded Recovery Time

	Resource Allocation
	Resource Allocation Strategy
	Recomputation Order

	Implementation
	Lineage Metadata
	Integration with the eco-system

	Evaluation
	Raw Performance
	Realistic Workflow
	Edge Checkpointing Algorithm
	Impact of Recomputation on Other Jobs
	Recomputation Resource Consumption
	Network Traffic Reduction
	Overhead in Single Job
	Master Fault Tolerance

	Related Work
	Limitations and Future Work
	Conclusion
	Acknowledgements

