
CS 98/198, Fall 2003 Turning in Programs Electronically P. N. Hilfinger

To set up your account, execute

source ~ctest/bin/setup

in all shells that you are using. (This is for those of you using the C-shell. Others will have
to examine this file and do the equivalent for their shells.)

Put each complete C solution into a file N.c, each complete C++ solution into a file
N.cc, each complete Java program into a file N.java, and each complete Python program
into a file N.py, where N is the number of the problem. Each program must reside entirely
in a single file. In Java, the class containing the main program for problem N must be
named PN . Each C/C++ file should start with the line

#include "contest.h"

and must contain no other #include directives, except as indicated below. Upon comple-
tion, each C/C++ program must terminate by calling exit(0) and each Java program
must terminate with System.exit(0). Python programs should also be sure to exit with
a normal (0) return code.

When you have a solution to problem number N that you wish to submit, use the
command

submit N

from the directory containing N.c, N.cc, N.java, or N.py. Before actually submitting
your program, submit will first compile it and run it on one sample input file. No submis-
sion that is sent after the end of the contest will count. You should be aware that submit
takes some time before it actually sends a program. In an emergency, you can use

submit -f N

which submits problem N without any checks.
All tests will use the compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

./N < test-input-file > test-output-file 2> junk-file

which sends normal output to test-output-file and error output to junk-file. The output
from running each input file is then compared with a standard output file, or tested by a
program in cases where the output is not unique. In this comparison, leading and trailing
blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. It will do no good
to argue about how trivially your program’s output differs from what is expected; you’d
be arguing with a program. Make sure that the last line of output ends with a newline.

1



Turning in Programs Electronically 2

Your program must not send any output to stderr; that is, the temporary file junk-file

must be empty at the end of execution. Each test is subject to a time limit of about
45 seconds (unless otherwise stated). You will (eventually) be advised by mail whether
your submissions pass.

The command contest-gcc N , where N is the number of a problem, is available to
you for developing and testing your solutions. For C and C++ programs, it is equivalent
to

gcc -Wall -o N -O -g -Iour-includes N.* -lstdc++ -lm

For Java programs, it is equivalent to

javac -g N N.java

followed by a command that creates an executable file called N that runs the command

java PN

when executed (so that it makes the execution of Java programs look the same as execution
of C/C++ programs). For Python programs, it simply copies N.py into a file N with an
appropriate ”#!” line at the beginning (it’s harmless if you already have one) and marks
the file executable. The our-includes directory contains contest.h for C/C++, which also
supplies the standard header files. The files in ~ctest/submission-tests/N , where N is
a problem number, contain the input files and standard output files that submit uses for
its simple tests.

All input will be placed in stdin (regardless of the what the problem statements, gen-
erally taken from assorted contests, might say). You may assume that the input conforms
to any restrictions in the problem statement; you need not check the input for correctness.
Consequently, you are free to use scanf to read in numbers and strings and gets to read
in lines.

Terminology. The term free-form input indicates that input numbers, words, or tokens
are separated from each other by arbitrary whitespace characters. By standard C/UNIX
convention, a whitespace character is a space, tab, return, newline, formfeed, or vertical
tab character. A word or token, accordingly, is a sequence of non-whitespace characters
delimited on each side by either whitespace or the beginning or end of the input file.


