
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 25  

Review"

April 27, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 25.2!4/27! Ion Stoica CS162 ©UCB Spring 2011!

New CS162"
•  Gateway system class to give students a broad view

on how todayʼs systems and services!
– Better prepare students to design and develop such

services!

•  Teach students how to develop large projects in teams!

•  Enable department to create a new core OS class
(which will be offered in Spring 2012)!

– Will use a real OS for projects (likely Android)!

•  Enable other system classes (for which cs 162 will be
prerequisite) to go deeper in their specific material and
have more sophisticated projects !

Lec 25.3!4/27! Ion Stoica CS162 ©UCB Spring 2011!

New vs. Old CS162"
•  Curriculum: 70% overlap!

− File systems, queueing theory, slightly fewer lectures on
concurrency, caching, and distributed systems!

+ More networking, database transactions, p2p, and cloud
computing!

•  Different project: emphasize on how a system works end-to-end
rather than focusing on implementing OS concepts in Nachos!

•  What if you want to do an OS project?!
– CS 163 (?) in Spring 2012!
– CS 262 graduate System class (youʼll need instructor approval)!
– CS295 Cloud computing Seminar (youʼll need my approval)!

Lec 25.4!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Example: Accessing Amazon"

•  Complex interaction of multiple components in multiple
administrative domains!

Datacenter!

Load!
balancer!

Ad Server!

DNS !
Servers!

User !
Account!
DB!

DNS!
request!

create!
result!
page! Product!

DB!

Page 2

Lec 25.5!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Universal Resource Locator (URL)"
protocol://host-name:port/directory-path/resource!
•  This is what you enter in the browser!!

•  Example: !
http://www.amazon.com = http://www.amazon.com:80/index.html!
– protocol = http !
– host-name = www.amazon.com !

» Name of an Amazonʼs web server!
– port = 80 (default HTTP port)!
– directory-path = “” !

»  Path relative to web directory at server (e.g., public_html)!
– resource = index.html (default file)!

» Contains HTML home page of Amazon !

Lec 25.6!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Domain Name Service (DNS) Resolution"
•  Resolve www.amazon.com to the IP address of an

Amazon HTTP server!

Datacenter!

Load!
balancer!

Ad Server!

DNS !
Servers!

User !
Account!
DB!

DNS!
request!

create!
result!
page! Product!

DB!

Lec 25.7!4/27! Ion Stoica CS162 ©UCB Spring 2011!

DNS Resolution"
•  Resolve www.amazon.com to the IP address of an

Amazon HTTP server!
•  How does client know DNS server!

– Client configured with the address of the local DNS
server !

DNS request: www.amazon.com DNS!
server!

DNS response:72.21.211.176

Lec 25.8!4/27! Ion Stoica CS162 ©UCB Spring 2011!

How Does Client Communicates
with DNS Server?"

•  A: Via transport protocol (e.g., UDP)!

•  Transport protocol in a nutshell:!
– Allow two application end-points to communicate

»  Each application identified by a port number on the machine it runs
– Multiplexes/demultiplexes packets from/to different processes

using port numbers
– Can provide reliability, flow control, congestion control

•  Two main transport protocols in the Internet
– User datagram protocol (UDP): just provide multiplexing/

demultiplexing, no reliability
– Transport Control Protocol (TCP): provide reliability, flow

control, congestion control

Page 3

Lec 25.9!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Internet

Transport Layer (contʼd)"
•  DNS server runs at a specific port number, i.e., 53

– Most popular DNS server: BIND (Berkeley Internet
Name Domain)

– Assume client (browser) port number 1234

Transport"

Firefox
(port 1234)

BIND
(port 53)

Transport

DNS Req

DNS Req 1234 53

DNS Req

DNS Req 1234 53

Lec 25.10!4/27! Ion Stoica CS162 ©UCB Spring 2011!

How does UDP packets Get to
Destination? 

•  A: Via network layer, i.e., Internet Protocol (IP)!

•  Implements datagram packet switching
– Enable two end-hosts to exchange packets

»  Each end-host is identified by an IP address
»  Each packets contains destination IP address
»  Independently routes each packet to its destination

– Best effort service
» No deliver guarantees
» No in-order delivery guarantees

Lec 25.11!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Network (IP) Layer (contʼd)"
•  Assume DNS server runs on machine 128.15.11.12

– Client configured with DNS server IP address
•  Client runs on machine 16.25.31.10

Transport"

BIND
(port 53)

Transport
DNS Req

DNS Req 1234 53

16.25.31.10

128.15.11.12

Network

Network DNS Req 1234 53 16.25.31.10 128.15.11.12

DNS Req 1234 53 16.25.31.10 128.15.11.12

DNS Req

DNS Req 1234 53

Firefox
(port 1234)

Lec 25.12!4/27! Ion Stoica CS162 ©UCB Spring 2011!

IP Packet Routing"

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

•  Each packet is individually routed!

Page 4

Lec 25.13!4/27! Ion Stoica CS162 ©UCB Spring 2011!

IP Packet Routing"

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

•  Each packet is individually routed!

Lec 25.14!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Packet Forwarding"

•  Packets are first stored before being forwarded!
– Why?!

incoming links outgoing links Router

Memory

Lec 25.15!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Packet Forwarding Timing"

•  The queue has Q bits when packet arrives  packet
has to wait for the queue to drain before being
transmitted!

P bits!

time!

P/R!
T!

Q bits!

Queueing delay = Q/R!

Capacity = R bps!
Propagation delay = T sec!

Lec 25.16!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Packet Forwarding Timing"

Packet 1

Sender Receiver
Router1 Router 2

propagation
delay between
Host 1 and
Node 1

Page 5

Lec 25.17!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Packet Forwarding Timing"

Packet 1

Packet 1

Packet 1 processing
delay of
Packet 1 at
Node 2

Sender Receiver
Router1 Router 2

propagation
delay between
Host 1 and
Node 1

transmission
time of Packet 1
at Host 1

Lec 25.18!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Packet Forwarding Timing"

Packet 1

Packet 2

Packet 3

Packet 1

Packet 2

Packet 3

Packet 1

Packet 2

Packet 3

processing
delay of
Packet 1 at
Node 2

Sender Receiver
Router 1 Router 2

propagation
delay between
Host 1 and
Node 1

transmission
time of Packet 1
at Host 1

Lec 25.19!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Packet Forwarding Timing: Packets
of Different Lengths"

Sender" Receiver"

10 Mbps" 5 Mbps" 100 Mbps" 10 Mbps"

time"
Lec 25.20!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Datalink Layer"

Transport"

Firefox
(port 1234) DNS Req

DNS Req 1234 53

IP address: 16.25.31.10
Datalink address: 111

Network

Network

DNS Req 1234 53 16.25.31.10 128.15.11.12

DNS Req 1234 53 16.25.31.10 128.15.11.12

Datalink

Datalink

DNS Req 1234 53 16.25.31.10 128.15.11.12 111 222

DNS Req 1234 53 16.25.31.10 128.15.11.12 111 222

Datalink address: 222

•  Enable nodes (e.g., hosts, routers) connected by same link to
exchange packets (frames) with each other!

– Every node/interface has a datalink layer address (e.g., 6 bytes)!
– No need to route packets, as each node on same link receives

packets from everyone else on that link (e.g., WiFi, Ethernet)!

Page 6

Lec 25.21!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Datalink Layer"
•  Enable nodes (e.g., hosts, routers) connected by same link to

exchange packets (frames) with each other!
– Every node/interface has a datalink layer address (e.g., 6 bytes)!
– Network layer picks the next router for the packet towards

destination based on its destination IP address!

Network DNS Req 1234 53 16.25.31.10 128.15.11.12

Datalink DNS Req 1234 53 16.25.31.10 128.15.11.12 222 333

Datalink address: 333

Network DNS Req 1234 53 16.25.31.10 128.15.11.12

Datalink DNS Req 1234 53 16.25.31.10 128.15.11.12 222 333

Datalink address: 222

Lec 25.22!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Physical Layer"

•  Move bits of information between two systems
connected by a physical link!

•  Specifies how bits are represented (encoded), such as
voltage level, bit duration, etc !

•  Examples: coaxial cable, optical fiber links;
transmitters, receivers !

Lec 25.23!4/27! Ion Stoica CS162 ©UCB Spring 2011!

The Internet Hourglass"

Data Link"
Physical"

Applications"

The Hourglass Model"

Waist!

There is just one network-layer protocol, IP!
The “narrow waist” facilitates interoperability!

SMTP! HTTP! NTP!DNS!

TCP! UDP!

IP!

Ethernet! SONET! 802.11!

Transport"

Fiber!Copper! Radio!

Transport"

Network"

Datalink"

Physical"

Application"

Lec 25.24!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Implications of Hourglass & Layering"

Single Internet-layer module (IP):!

•  Allows arbitrary networks to interoperate!
– Any network technology that supports IP can exchange

packets!

•  Allows applications to function on all networks!
– Applications that can run on IP can use any network

technology!

•  Supports simultaneous innovations above and below IP!
– But changing IP itself, i.e., IPv6, very involved!

Page 7

Lec 25.25!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Application Layer: DNS Resolution"
•  Resolve www.amazon.com to the IP address of an

Amazon HTTP server!
•  How does client know DNS server!

– Client configured with the address of the local DNS
server !

DNS request: www.amazon.com DNS!
server!

DNS response:72.21.211.176

Lec 25.26!4/27! Ion Stoica CS162 ©UCB Spring 2011!

DNS: Separating Naming and Addressing"
•  Names are easier to remember!

– www.amazon.com vs. 72.21.211.176!
•  Addresses can change underneath!

– Move www.amazon.com to 76.21.211.150!
– E.g., renumbering when changing providers!

•  Name could map to multiple IP addresses!
– www.amazon.com to multiple replicas of the Web site!
– Enables!

»  Load-balancing!
» Reducing latency by picking nearby servers!
»  Tailoring content based on requesterʼs location/identity!

•  Multiple names for the same address!
– E.g., aliases like www.amazon.com and amazon.com !

Lec 25.27!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Domain Name System (DNS)"
•  Properties of DNS!

– Hierarchical name space divided into zones!
– Zones distributed over collection of DNS servers!

•  Hierarchy of DNS servers!
– Root (hardwired into other servers)!
– Top-level domain (TLD) servers!
– Authoritative DNS servers!

•  Performing the translations!
– Local DNS servers!
– Resolver software!

Lec 25.28!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Distributed Hierarchical Database"

com! edu! org! ac! uk! zw! arpa!

unnamed root

berkeley!

west! eecs!

foo! cory!

ac!

cam!

usr!

in-!
addr!

generic domains! country domains!

cory.eecs.berkeley.edu! usr.cam.ac.uk!

Top-Level Domains (TLDs)!

Page 8

Lec 25.29!4/27! Ion Stoica CS162 ©UCB Spring 2011!

requesting host
my.eecs.berkeley.edu

(128.32.38.143)"
www.amazon.com

(72.21.211.176)

root DNS server

local DNS server
cronus.cs.berkeley.edu!

(128.32.38.21)!

1

2
3

4
5

6

authoritative DNS server
dns.amazon.com

7 8

TLD DNS server
 .com

Example"

Host at
my.eecs.berkeley.edu
wants IP address for
www.amazon.com!

Lec 25.30!4/27! Ion Stoica CS162 ©UCB Spring 2011!

HTTP (HyperText Transport Protocol)"

Datacenter!

Load!
balancer!

Ad Server!

DNS !
Servers!

User !
Account!
DB!

DNS!
request!

create!
result!
page! Product!

DB!

Lec 25.31!4/27! Ion Stoica CS162 ©UCB Spring 2011!

HTTP Request"
•  After resolving DNS request for www.amazon.com to

72.21.211.176 client sends an http GET request to the
web server!

•  Web server returns HTML file for home page!
Web Server!

GET /index.html HTTP/1.1

72.21.211.176"
(port 80) HTTP/1.1 200 OK !

Date: Mon, 23 May 2005 22:38:34 GMT !
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux) !
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT !
Content-Length: 540 !
Content-Type: text/html; charset=UTF-8!
<html>!
…!
</html> !

Lec 25.32!4/27! Ion Stoica CS162 ©UCB Spring 2011!

HTTP Request"
•  After resolving DNS request for www.amazon.com

client sends an http GET request to the web server!
•  Web server returns HTML file for home page!
•  Client renders the page!

– Need to GET other resources referred in the page!
GET /index.html HTTP/1.1

Web Server!

72.21.211.176"
(port 80) HTTP/1.1 200 OK !

Date: Mon, 23 May 2005 22:38:34 GMT !
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux) !
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT !
Content-Length: 540 !
Content-Type: text/html; charset=UTF-8!
<html>!
…!
</html> !

Page 9

Lec 25.33!4/27! Ion Stoica CS162 ©UCB Spring 2011!

HTTP over TCP"
•  HTTP runs over TCP not UDP!

– Why?!

•  TCP: stream oriented protocol!
– Sender sends a stream of bytes, not packets (e.g., no

need to tell TCP how much you send)!
– Receiver reads a stream of bytes!

•  Provides reliability, flow control, congestion control!
– Flow control: avoid the sender from overwhelming the

receiver!
– Congestion control: avoid the sender from

overwhelming the network !

Lec 25.34!4/27! Ion Stoica CS162 ©UCB Spring 2011!

TCP Open Connection: 3-Way
Handshaking"

•  Goal: agree on a set of parameters: the start
sequence number for each side!

– Starting sequence numbers are random!

Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

Active  
Open"

Passive  
Open"

connect()" listen()"

accept()"

allocate  
buffer space"

Lec 25.35!4/27! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control & Reliability"

•  Sliding window protocol at byte (not packet) level!
– Receiver tells sender how many more bytes it can receive

without overflowing its buffer (i.e., AdvertisedWindow)!

•  Reliability!
– The ack(nowledgement) contains sequence number N of

next byte the receiver expects, i.e., receiver has received
all bytes in sequence up to and including N-1!

– Go-back-N: TCP Tahoe, Reno, New Reno!
– Selective acknowledgement: TCP Sack!

•  We didnʼt learn about congestion control (two lectures in
ee122) !

Lec 25.36!4/27! Ion Stoica CS162 ©UCB Spring 2011!

How do You Secure your Credit Card?"

•  Use a secure protocol, e.g., HTTPS!

•  Need to ensure three properties:!
– Confidentiality: an adversary cannot snoop the traffic!
– Server authentication: make sure you indeed talk with

Amazon!
–  Integrity: an adversary cannot modify the message!

» Used for improving authentication performance!

•  Cryptography based solution:!
– General premise: there is a key, possession of which

allows decoding, but without which decoding is infeasible!
»  Thus, key must be kept secret and not guessable!

Page 10

Lec 25.37!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Administrivia"
•  Final:!

– Friday, May 13, 8-11, 2060 VLSB (this room!) !
– Closed book, two page of hand-written notes (both sides)!

•  Topics:!
– 30% first part!
– 70% second part!

•  Review session: Wednesday, May 5, 6-8pm, 306 Soda Hall!

•  Office hours:!
– Wednesday, May 4, 3-4pm!

•  Example questions for final already on-line!
– Weʼll add a few more!

Lec 25.38!4/27! Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Lec 25.39!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Symmetric Keys "

•  Sender and receiver use the same key for encryption
and decryption!

•  Examples: AES128, DES, 3DES!

Internet!Encrypt with!
secret key!

Decrypt with!
secret key!

Plaintext (m)! m!

Ciphertext!

Lec 25.40!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Public Key / Asymmetric Encryption"
•  Sender uses receiverʼs public key!

– Advertised to everyone!
•  Receiver uses complementary private key!

– Must be kept secret!
•  Example: RSA!

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Page 11

Lec 25.41!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Symmetric vs. Asymmetric
Cryptography "

•  Symmetric cryptography!
+ Low overhead, fast!
– Need a secret channel to distribute key!

•  Asymmetric cryptography!
+ No need for secret channel; public key known by

everyone!
+ Provable secure!
– Slow, large keys (e.g., 1024 bytes) !

Lec 25.42!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Integrity"
•  Basic building block for integrity: hashing!

– Associate hash with byte-stream, receiver verifies match!
»  Assures data hasnʼt been modified, either accidentally - or

maliciously!

•  Approach: !
-  Sender computes a digest of message m, i.e., H(m)!

» H() is a publicly known hash function!
-  Send digest (d = H(m)) to receiver in a secure way, e.g.,!

» Using another physical channel!
» Using encryption (e.g., Asymmetric Key) !

-  Upon receiving m and d, receiver re-computes H(m) to see
whether result agrees with d!

-  Examples: MD5, SHA1!

Lec 25.43!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Operation of Hashing for Integrity"

Internet!Digest!
H(m)!

plaintext (m)!

digest!

Digest!
H(m)!

=!

digestʼ!

NO!
corrupted msg! m!

Lec 25.44!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Digital Certificates"

Alice, KAlice_pub!

Certificate!
Authority!

{Alice, KAlice_pub} !

(offline) identity verification!

E({Alice, KAlice_pub}, KVerisign_private)!
Digital certificate!

D(E({Alice, KAlice_pub}, KVerisign_private), KVerisign_public) = !{Alice, KAlice_pub} !

•  How do you know KAlice_pub is indeed Aliceʼs public key?!
•  Main idea: trusted authority signing binding between Alice and

its private key!

Bob!

Page 12

Lec 25.45!4/27! Ion Stoica CS162 ©UCB Spring 2011!

HTTPS!

•  What happens when you click on
https://www.amazon.com?!

•  https = “Use HTTP over SSL/TLS”!
– SSL = Secure Socket Layer!
– TSL = Transport Layer Security!

»  Successor to SSL!
– Provides security layer (authentication, encryption) on

top of TCP!
»  Fairly transparent to applications!

Lec 25.46!4/27! Ion Stoica CS162 ©UCB Spring 2011!

HTTPS Connection (SSL/TLS), conʼt"
•  Browser (client) connects via

TCP to Amazonʼs HTTPS
server!

•  Client sends over list of
crypto protocols it supports!

•  Server picks protocols to use
for this session!

•  Server sends over its
certificate!

•  (all of this is in the clear)!

Browser! Amazon!

Hello. I support!
(TLS+RSA+AES128+SHA1) or!

(SSL+RSA+3DES+MD5)

or …!
Letʼs use!

TLS+RSA

+AES128+SHA1"

Hereʼs my cert"

~1 KB of data"

Lec 25.47!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Inside the Serverʼs Certificate"
•  Name associated with cert (e.g., Amazon)!
•  Amazonʼs RSA public key!
•  A bunch of auxiliary info (physical address, type of cert,

expiration time)!
•  Name of certificateʼs signatory (who signed it)!
•  A public-key signature of a hash (MD5) of all this!

– Constructed using the signatoryʼs private RSA key, i.e.,!
– Cert = E(HMD5(KApublic, www.amazon.com, …), KSprivate)!

»  KApublic: Amazonʼs public key!
»  KSprivate: signatory (certificate authority) public key !

•  …!

Lec 25.48!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Validating Amazonʼs Identity"
•  How does the browser authenticate certifcate signatory?!

– Certificates of few certificate authorities (e.g., Verisign) are
hardwired into the browser!

•  If it canʼt find the cert, then warns the user that site has not
been verified!

– And may ask whether to continue!
– Note, can still proceed, just without authentication!

•  Browser uses public key in signatoryʼs cert to decrypt
signature!

– Compares with its own MD5 hash of Amazonʼs cert!
•  Assuming signature matches, now have high confidence

itʼs indeed Amazon …!
– … assuming signatory is trustworthy!

Page 13

Lec 25.49!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Certificate Validation"
•  You (browser) want to make sure that KApublic is indeed

the public key of www.amazon.com !

E(HMD5(KApublic, www.amazon.com, …), KSprivate), !
www.amazon.com, KApublic, KSpublic, …!

HMD5(KApublic, www.amazon.com, …)!

E(HMD5(…), KSpublic))!
(recall, KSpublic hardwired)!

=!

Yes!

Validation successful!

Validation failed!
No!

HMD5(KApublic, www.amazon.com, …)!

HMD5(…)!

Certificate!

Lec 25.50!4/27! Ion Stoica CS162 ©UCB Spring 2011!

HTTPS Connection (SSL/TLS), conʼt"

•  Browser constructs a random
session (symmetric) key K!

•  Browser encrypts K using
Amazonʼs public key!

•  Browser sends E(K, KApublic)
to server!

•  Browser displays!
•  All subsequent

communication encrypted w/
symmetric cipher (e.g.,
AES128) using key K!

–  E.g., client can authenticate
using a password!

Browser! Amazon!

Hereʼs my cert"

~1 KB of data"

E(K, KApublic)!
K"

K"

E(password …, K)!

E(response …, K)!

Agreed!

Lec 25.51!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Two Key Concepts"
•  Statistical Multiplexing!

•  Name Resolution!

Lec 25.52!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Statistical Multiplexing"

•  Key to increase resource utilization!
•  Run multiple jobs whose peak demands exceed system

capacity!
– Main idea: this is fine as long as their demands are not

correlated, i.e., they donʼt peak at the same time!!
•  Widely used concept:!

– Networking: aggregate of max flow rates exceeds link capacity!
– Memory: all programs on a computer are unlikely to fit all in

memory at the same time!
– Cloud services: not provisioned for every customerʼs workload

peaking at the same time!
– Roads: not designed for all cars going in the same direction at

same time!
– Banks: do not assume everyone withdraw all their money at

same time !
– …!

Page 14

Lec 25.53!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Example: One Flow"

peak=6"

avg=2"

peak / avg = 3"

Lec 25.54!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Example: Two Flows"

agg_peak=7"

agg_avg=3.75"

agg_peak / agg_avg = 7/3.75 = 1.86"
(agg_avg = average of aggregate bandwidth)"
(agg_peak=maximum value of aggregate bandwidth)"

Lec 25.55!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Example: 50 Flows"

agg_peak=135"
agg_avg=105.25"

agg_peak / agg_avg = 7/3.75 = 135/105.25 = 1.28"

Lec 25.56!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Statistical Multiplexing (contʼd)"

•  As number of flows increases, agg_peak/agg_avg
decreases!

– For 1000 flows, peak/avg = 2125/2009=1.057!
•  Q: What does this mean?!
•  A: Multiplexing a large enough number of flows

“eliminates” burstiness!
– Use average bandwidth to provision capacity, instead of

peak bandwidth!
– E.g., For 1000 flows!

»  Average of aggregate bandwidth = 2,000!
»  Sum of bandwidth peaks = 6,000 !

Page 15

Lec 25.57!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Lookup/Directory Services"
•  Resolve a name/identifier to a machine!

•  Name/identifier can represent!
– Machine name!
– Service name!
– Data/file name!
– …!

•  Challenges!
– Scale!
– Availability!
– Dynamic updates: how fast is an update propagated?!

Lec 25.58!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Examples: Lookup/Directory Services"
•  Domain Name System: map a DNS name to a server!

•  Service Directory: map a service to !

•  P2P systems!
– Napster!
– Gnutella!
– Chord!

Lec 25.59!4/27! Ion Stoica CS162 ©UCB Spring 2011!

DNS Properties"
•  Scale: hundreds of millions of machines!

– Hierarchy !
– Caching!

•  Availability: !
– Root replication!
– Caching!

•  Dynamic updates: slow!
– Fundamental trade-off between caching and fast

updates!

Lec 25.60!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Service Discovery: RPC Binding"
•  How does client know which machine to send RPC to?!

– Need to translate name of remote service into network endpoint
(e.g., host:port)!

– Binding/resolution: convert user-visible service to an endpoint!
»  Static: fixed at compile time!
» Dynamic: performed at runtime!

•  Dynamic Binding!
– Most RPC systems use dynamic binding via name service!
– Why dynamic binding?!

»  Access control: check who is permitted to access service!
»  Fail-over: If server fails, use a different one!

Page 16

Lec 25.61!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Example of RPC Binding"
•  Distributed Computing Environment (DCE) framework!

•  DCE daemon: !
– Allow local services to record their services locally!
– Resolve service name to local end-point (i.e., port) !

•  Directory machine: resolve service name to DCE daemon
(host:portʼ) on machine running the service !

Lec 25.62!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Properties"
•  Scale: tens to thousands!

– Single directory server “good enough” for most cases!

•  Availability: high, using packup!
– Backup directory service!

»  Stand-by: has same state as primary directory service!
» Cold: reconstruct the state in case of failure!

•  Dynamic updates: fast !

Lec 25.63!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Peer-to-Peer Systems"

•  Files/songs/videos stored across peers!
•  Problem: given a name or ID find the machine storing

a copy of the file/vide/song with that name/ID!

A
B

C

D

E
F

E?

Lec 25.64!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Napster"

•  Assume a centralized index system that maps files (songs)
to machines that are alive!

•  How to find a file (song)!
– Query the index system  return a machine that stores the

required file!
»  Ideally this is the closest/least-loaded machine!

–  ftp the file!

Page 17

Lec 25.65!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Napster: Example"

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

A m1
B m2
C m3
D m4
E m5
F m6

E?
m5

E? E

Lec 25.66!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Napster Properties"
•  Scalability: medimum (tens of thousands of machines)!

– Centralized directory “good enough”!
– May need to partition/replicate directory server for higher

scalability!

•  Lookup: very fast!

•  Availability: high, using backup!
– Backup directory server!

•  Dynamic updates: fast!
– Once directory server learns about an update in the

system (e.g., node leaving, joining, new file being
created, deleted) every other node in the system will be
aware of update!

Lec 25.67!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Gnutella"

•  Distribute file location!

•  Idea: broadcast the request!

•  How to find a file? Flood!
– Send request to all neighbors!
– Neighbors recursively multicast the request!
– Eventually a machine that has the file receives the request, and it

sends back the answer!

Lec 25.68!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Gnutella: Example"

•  Assume: m1ʼs neighbors are m2 and m3; m3ʼs
neighbors are m4 and m5;…!

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

Page 18

Lec 25.69!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Gnutella Properties"
•  Scale: hard to scale to large networks due to flooding!

– To alleviate this problem, each request has a TTL!

•  Lookup: slow!
– Flooding network can slow everyone down!
– With TTL does not guarantee than an existing file is

found!

•  Availability: very high!
– As long as nodes remain connected any number of

nodes can fail!

•  Dynamic updates: very fast!
– Updates are not propagated; need only to be done

locally (e.g., a new file being created or deleted)!
Lec 25.70!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Chord Lookup Service"

•  Associate to each node and item a unique id/key in an
uni-dimensional space 0..2m-1!

– Partition this space across N machines!
– Each id is mapped to the node with the smallest largest ID

(consistent hashing)!

•  Properties !
– Routing table size O(log(N)) , where N is the total number

of nodes!
– Guarantees that a file is found in O(log(N)) steps!

Lec 25.71!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Identifier to Node Mapping Example
(Consistent hashing)"

•  Node 8 maps [5,8]!
•  Node 15 maps [9,15]!
•  Node 20 maps [16, 20]!
•  …!
•  Node 4 maps [59, 4]!

•  Each node maintains a
pointer to its successor!

4

20

32 35

8

15

44

58

Lec 25.72!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Achieving Efficiency: finger tables"

80 + 20"
80 + 21"

80 + 22"
80 + 23"

80 + 24"

80 + 25"
(80 + 26) mod 27 = 16"

0
Say m=7

ith entry at peer with id n is first peer with id >=

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

45 80

20
112

96

Page 19

Lec 25.73!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Properties"
•  Scale: high (tens to hundreds of thousands machines)!

– Each node needs to know about O(log N) nodes!
– Lookup takes O(log N) messages!

•  Lookup: fast!
–  log(N) hops!

•  Availability: high!
–  If each node maintains O(log N) successors, ring can

survive with high probability to half of nodes
independently failing!

•  Dynamic updates: fast!
– No caching !

Lec 25.74!4/27! Ion Stoica CS162 ©UCB Spring 2011!

Not Cover in This Review"
•  Nothing before midterm!
•  Networking!

– Reliability!
– Flow control!
– E2E argument!

•  Database!
•  Most of RPC!
•  Chord protocol!

•  More on May 5, 6-8pm, 306 Soda Hall!

