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Some definitions…

� Availability: probability the system operates correctly at 
any given moment

� Reliability: ability to run correctly for a long interval of time

� Safety: failure to operate correctly does not lead to 
catastrophic failures

� Maintainability: ability to “easily” repair a failed system
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… and Some More Definitions 
(Failure Models)

� Crash failure: a server halts, but works correctly until it 
halts

� Omission failure: a server fails to respond to a request

� Timing failure: a server response exceeds specified time 
interval

� Response failure: server’s response is incorrect

� Arbitrary (Byzantine) failure: server produces arbitrary 
response at arbitrary times 
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Masking Failures: Redundancy

� How many failures can this design tolerate?

5

Example: Open Shortest Path First (OSPF) 
over Broadcast Networks

1) Each node sends an route advertisements to multicast group 
DR-rtrs
- Both designated router (DR) and backup designated router (BDR) 

subscribe to this group

2) DR floods route advertisements back to all routers 
- Send to all-rtrs multicast group to which all nodes subscribe

DR BDR

DR BDR

6

Agreement in Faulty Systems

� Many things can go wrong…

� Communication 
- Message transmission can be unreliable

- Time taken to deliver a message is unbounded

- Adversary can intercept messages

� Processes
- Can fail or team up to produce wrong results

� Agreement very hard, sometime impossible, to achieve! 
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Two-Army Problem 

� “Two blue armies need to simultaneously attack the white army to win; 
otherwise they will be defeated. The blue army can communicate only 
across the area controlled by the white army which can intercept the 
messengers.”

� What is the solution?
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Byzantine Agreement 
[Lamport et al. (1982)]

� Goal:
- Each process learn the true values sent by correct processes

� Assumptions:
- Every message that is sent is delivered correctly

- The receiver knows who sent the message

- Message delivery time is bounded
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Byzantine Agreement Result

� In a system with m faulty processes agreement can be 
achieved only if there are 2m+1 functioning correctly

� Note: This result only guarantees that each process 
receives the true values sent by correct processors, but it 
does not identify the correct processes! 
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Byzantine General Problem: Example

� Phase 1: Generals announce their troop strengths to each 
other

P1 P2

P3 P4

1

1
1
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Byzantine General Problem: Example

� Phase 1: Generals announce their troop strengths to each 
other
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P3 P4
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Byzantine General Problem: Example

� Phase 1: Generals announce their troop strengths to each 
other

P1 P2

P3 P4
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Byzantine General Problem: Example

� Phase 2: Each general construct a vector with all troops

4x21

P4P3P2P1 P1 P2

P3 P4
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z

4y21
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4z21

P4P3P2P1
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Byzantine General Problem: Example

� Phase 3: Generals send their vectors to each other and 
compute majority voting

4y21

dcba

4z21
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P3 P4
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Reliable Group Communication

� Reliable multicast: all nonfaulty processes which do not 
join/leave during communication receive the message

� Atomic multicast: all messages are delivered in the same 
order to all processes
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Reliable multicast: (N)ACK Implosion

� (Positive) acknowledgements
- Ack every n received packets

- What happens for multicast?
� Negative acknowledgements

- Only ack when data is lost

- Assume packet 2 is lost

SS

R1R1

R2R2

R3R3

123
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Reliable multicast: (N)ACK Implosion

� When a packet is lost all receivers in the sub-tree 
originated at the link where the packet is lost send 
NACKs

SS

R1R1

R2R2

R3R3

3

3
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2?

2?

2?
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Scalable Reliable Multicast (SRM)
[Floyd et al ’95]

� Receivers use timers to send NACKS and retransmissions
- Randomized: prevent implosion
- Uses latency estimates

• Short timer → cause duplicates when there is reordering
• Long timer → causes excess delay

� Any node retransmits
- Sender can use its bandwidth more efficiently
- Overall group throughput is higher

� Duplicate NACK/retransmission suppression
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Inter-node Latency Estimation

� Every node estimates latency to 
every other node 

� Uses session reports
- Assume symmetric latency

- What happens when group 
becomes very large?

AA BB

t1

t2

d 
d

dA,B = (t2 – t1 – d)/2
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� Chosen from the uniform distribution on

- A – node that lost the packet
- S – source
- C1, C2 – constants
- dS,A – latency between source (S) and A
- i – iteration of repair request tries seen

� Algorithm
- Detect loss → set timer
- Receive request for same data → cancel timer, set new timer
- Timer expires → send repair request

Repair Request Timer Randomization

])(,[2 ,21,1 ASAS
i dCCdC +
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Timer Randomization

� Repair timer similar
- Every node that receives repair request sets repair timer
- Latency estimate is between node and node requesting repair

- Use following formula:

• D1, D2 – constants
• dR,A – latency between node requesting repair (R) and A

� Timer properties – minimize probability of duplicate packets
- Reduce likelihood of implosion (duplicates still possible)

- Reduce delay to repair

])(,[2 ,21,1 ARAR
i dDDdD +
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Chain Topology

� C1 = D1 = 1, C2 = D2 = 0
� All link distances are 1 

L2L2 L1L1 R1R1 R2R2 R3R3

source

data out
of order

data/repair
request repair

request TO
repair TO

request

repair
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Star Topology

� C1 = D1 = 0,
� Tradeoff between (1) number of requests 

and (2) time to receive the repair
� C2 <= 1

- E(# of requests) = g –1
� C2 > 1

- E(# of requests) = 1 + (g-2)/C2 

- E(time until first timer expires) = 2C2/g
�

- E(# of requests) = 
- E(time until first timer expires) =

N1N1

N2N2

N3N3 N4N4

NgNg

source

gC =2

g
g/1
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Bounded Degree Tree

� Use both
- Deterministic suppression (chain topology)

- Probabilistic suppression (star topology)
� Large C2/C1

�
fewer duplicate requests, but larger 

repair time
� Large C1

�
fewer duplicate requests 

� Small C1

�
smaller repair time
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Adaptive Timers

� C and D parameters depends on topology and congestion 
�

choose adaptively
� After sending a request: 

- Decrease start of request timer interval
� Before each new request timer is set:

- If requests sent in previous rounds, and any dup requests were from 
further away:

• Decrease request timer interval

- Else if average dup requests high:

• Increase request timer interval

- Else if average dup requests low and average request delay too high:

• Decrease request timer interval
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Atomic Multicast

� All messages are delivered in the same order to “all”
processes

� Group view: the set of processes known by  the sender 
when it multicast the message

� Virtual synchronous multicast: a message multicast to a 
group view G is delivered to all nonfaulty processes in G

- If sender fails after sending the message, the message may be 
delivered to no one
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Virtual Synchronous Multicast
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Virtual Synchrony Implementation 
[Birman et al., 1991]

� The logical organization of a distributed system to 
distinguish between message receipt and message 
delivery
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Virtual Synchrony Implementation: 
[Birman et al., 1991]

� Only stable messages are delivered

� Stable message: a message received by all processes in 
the message’s group view

� Assumptions (can be ensured by using TCP): 
- Point-to-point communication is reliable

- Point-to-point communication ensures FIFO-ordering
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Virtual Synchrony Implementation: Example

� Gi = {P1, P2, P3, P4, P5}
� P5 fails
� P1 detects that P5 has 

failed
� P1 send a “view change”

message to every process 
in  Gi+1 = {P1, P2, P3, P4}

P1

P2 P3

P4

P5

change view
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Virtual Synchrony Implementation: Example

� Every process 
- Send each unstable message m 

from Gi to members in Gi+1

- Marks m as being stable

- Send a flush message to mark that 
all unstable messages have been 
sent

P1

P2 P3

P4

P5

unstable message

flush 
message
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Virtual Synchrony Implementation: Example

� Every process 
- After receiving a flush message 

from any process in Gi+1 installs Gi+1

P1

P2 P3

P4

P5
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Message Ordering

� FIFO-order: messages from the same process are 
delivered in the same order they were sent

� Causal-order: potential causality between different 
messages is preserved

� Total-order: all processes receive messages in the same 
order

� Total ordering does not imply causality or FIFO!
� Atomicity is orthogonal to ordering
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Message Ordering and Atomicity 

YesCausal-ordered deliveryCausal atomic multicast

YesFIFO-ordered deliveryFIFO atomic multicast

YesNoneAtomic multicast

NoCausal-ordered deliveryCausal multicast

NoFIFO-ordered deliveryFIFO multicast

NoNoneReliable multicast

Total-ordered Delivery?Basic Message OrderingMulticast


