CS 194: Distributed Systems
Processresilience, Reliable Group
Communication

Scott Shenker and |on Stoica
Computer Science Divison
Department of Electrica Engineering and Computer Sciences
Universty of California, Berkeley
Berkeley, CA 94720-1776

Some definitions...

Availability: probability the system operates correctly at
any given moment

Reliability: ability to run correctly for a long interval of time

Safety: failure to operate correctly does not lead to
catastrophic failures

» Maintainability: ability to “easily” repair a failed system

. and Some More Definitions
(Failure Models)

Crash failure: a server halts, but works correctly until it
halts

Omission failure: a server fails to respond to a request

Timing failure: a server response exceeds specified time
interval

Response failure: server's response is incorrect

Arbitrary (Byzantine) failure: server produces arbitrary
response at arbitrary times

Masking Failures: Redundancy

B
@

— ¥

Al s

A2 V2
>

®)
= How many failures can this design tolerate?

Example: Open Shortest Path First (OSPF)
over Broadcast Networks

1)

2)

Each node sends an route advertisements to multicast group
DR-rtrs

- Both designated router (DR) and backup designated router (BDR)
subscribe to this group

A ik |

DR floods route advertisements back to all routers
- Send to all-rtrs multicast group to which all nodes subscribe

B Sl b

Agreement in Faulty Systems

= Many things can go wrong...

= Communication
- Message transmission can be unreliable
- Time taken to deliver a message is unbounded
- Adversary can intercept messages

= Processes
- Can fail or team up to produce wrong results

= Agreement very hard, sometime impossible, to achieve!

Page 1

Two-Army Problem

= “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only
across the area controlled by the white army which can intercept the
messengers.”

= What is the solution?

Byzantine Agreement
[Lamport et al. (1982)]

= Goal:
- Each process learn the true values sent by correct processes

= Assumptions:
- Every message that is sent is delivered correctly
- The receiver knows who sent the message
- Message delivery time is bounded

Byzantine Agreement Result

= In a system with mfaulty processes agreement can be
achieved only if there are 2m+ 1 functioning correctly

= Note: This result only guarantees that each process
receives the true values sent by correct processors, but it
does not identify the correct processes!

Byzantine General Problem: Example

= Phase 1: Generals announce their troop strengths to each
other

:

10

Byzantine General Problem: Example

= Phase 1: Generals announce their troop strengths to each
other

@D ®

11

Byzantine General Problem: Example

= Phase 1: Generals announce their troop strengths to each
other

)

12

Page 2

Byzantine General Problem: Example

= Phase 2: Each general construct a vector with all troops

13

Byzantine General Problem: Example

= Phase 3: Generals send their vectors to each other and
compute majority voting

Reliable Group Communication

= Reliable multicast: all nonfaulty processes which do not
join/leave during communication receive the message

= Atomic multicast: all messages are delivered in the same
order to all processes

P1|P2|P3| P4
Pal1 2]y |4 p3le | 1 h
p3afa b |c|d P 1T 2 ;
P41 1 2 z 4 >
€ 2 2 4 (a b, cd) @ 274
(e f.g,h)
(h,i,j, k) P1 | P2| P3| P4
@ Pl 1 2| x 4
P2l 12|y | 4
P3lh [il
@ 2, 2, 4 14
Reliable multicast: (N)ACK Implosion
= (Positive) acknowledgements
- Ack every n received packets
- What happens for multicast?
= Negative acknowledgements
- Only ack when data is lost
- Assume packet 2 is lost
16

15
Reliable multicast: (N)ACK Implosion
= When a packet is lost all receivers in the sub-tree
originated at the link where the packet is lost send
NACKs
17

Scalable Reliable Multicast (SRM)
[Floyd et al '95]

= Receivers use timers to send NACKS and retransmissions
- Randomized: prevent implosion
- Uses latency estimates
« Short timer - cause duplicates when there is reordering
« Long timer — causes excess delay
= Any node retransmits
- Sender can use its bandwidth more efficiently
- Overall group throughput is higher
= Duplicate NACK/retransmission suppression

18

Page 3

Inter-node Latency Estimation

= Every node estimates latency to
every other node ®7
= Uses session reports 4
- Assume symmetric latency

- What happens when group
becomes very large?

}d
t

19

Repair Request Timer Randomization

= Chosen from the uniform distribution on

2[Cdg 4, (C, +C,)ds]
- A—node that lost the packet
- S—source
- C,, C,— constants
- dg, —latency between source (S) and A
- i —iteration of repair request tries seen
= Algorithm
- Detect loss - set timer
- Receive request for same data — cancel timer, set new timer
- Timer expires — send repair request

20

Timer Randomization

= Repair timer similar
- Every node that receives repair request sets repair timer
- Latency estimate is between node and node requesting repair
- Use following formula:

2I[D1dR,A’ (D1 + DZ)dR,A]
« D,, D, - constants
* dg,—latency between node requesting repair (R) and A
= Timer properties — minimize probability of duplicate packets
- Reduce likelihood of implosion (duplicates still possible)
- Reduce delay to repair

21

Chain Topology

. C1: D1:11c2: D2:O
= All link distances are 1

source

@ —OXxXE—E—

Star Topology

C,=D; =0,
Tradeoff between (1) number of requests
and (2) time to receive the repair

C,<=1)
- E(# of requests) = g-1
C,>1 @&

- E(# of requests) = 1 + (g-2)/C,
- E(time until first timer expires) = 2C,/g

C,=\g ©,
of requests) = JE

E
E(time until first timer expires) = 1/4/g

(
(

23

data out
of order
— data/repair
request —— request repair
repair request TO
e repair TO
22
Bounded Degree Tree
Use both

- Deterministic suppression (chain topology)
- Probabilistic suppression (star topology)
Large C,/C, > fewer duplicate requests, but larger
repair time
Large C, > fewer duplicate requests
Small C, = smaller repair time

24

Page 4

Adaptive Timers

= Cand D parameters depends on topology and congestion >
choose adaptively
= After sending a request:
- Decrease start of request timer interval
= Before each new request timer is set:

- If requests sent in previous rounds, and any dup requests were from
further away:

« Decrease request timer interval

- Else if average dup requests high:
« Increase request timer interval

- Else if average dup requests low and average request delay too high:
« Decrease request timer interval

25

Atomic Multicast

= All messages are delivered in the same order to “all”
processes

= Group view: the set of processes known by the sender
when it multicast the message

= Virtual synchronous multicast: a message multicast to a
group view G is delivered to all nonfaulty processes in G

- If sender fails after sending the message, the message may be
delivered to no one

26

Virtual Synchronous Multicast

Reliable multicast by multiple

P1 joins the group point-to-point messages P3 crashes P3 rejoins

Il

P1 -

P2

Y

G = {P1,P2,P3,P4}
Time —»

P3

P4

'G = {P1,P2,P3,P4} G = {P1,P2,P4}

Partial multicast
from P3 is discarded

27

Virtual Synchrony Implementation
[Birman et al., 1991]

A Application

Message is delivered to application
[Akj Comm. layer
Message is received by communication layer »>
i k
Message comes in from the networl Local OS

Network

= The logical organization of a distributed system to
distinguish between message receipt and message
delivery
28

Virtual Synchrony Implementation:
[Birman et al., 1991]

= Only stable messages are delivered

= Stable message: a message received by all processes in
the message’s group view

= Assumptions (can be ensured by using TCP):
- Point-to-point communication is reliable
- Point-to-point communication ensures FIFO-ordering

29

Virtual Synchrony Implementation: Example

G, ={P1, P2, P3, P4, P5}
PS5 fails

P1 detects that P5 has
failed

P1 send a “view change”

message to every process
in G, ={P1, P2, P3, P4}

/

M

30

Page 5

Virtual Synchrony Implementation: Example

= Every process

unstable message
- Send each
from G, to members in G, é

- Marks m as being stable

- Send a flush message to mark that
all unstable messages have been
sent

‘%m
28

31

message

= Every process

- After receiving a flush message
from any process in G,,, installs G, ;

Virtual Synchrony Implementation: Example

Message Ordering

FIFO-order: messages from the same process are
delivered in the same order they were sent

Causal-order: potential causality between different
messages is preserved

Total-order: all processes receive messages in the same
order

Total ordering does not imply causality or FIFO!
Atomicity is orthogonal to ordering

33

Message Ordering and Atomicity

Multicast Basic Message Ordering | Total-ordered Delivery?
Reliable multicast None No

FIFO multicast FIFO-ordered delivery No

Causal multicast Causal-ordered delivery No

Atomic multicast None Yes

FIFO atomic multicast FIFO-ordered delivery Yes

Causal atomic multicast | Causal-ordered delivery Yes

34

Page 6

