
Page 1

1

CS 194: Distributed Systems
Process resilience, Reliable Group

Communication

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Some definitions…

� Availability: probability the system operates correctly at
any given moment

� Reliability: ability to run correctly for a long interval of time

� Safety: failure to operate correctly does not lead to
catastrophic failures

� Maintainability: ability to “easily” repair a failed system

3

… and Some More Definitions
(Failure Models)

� Crash failure: a server halts, but works correctly until it
halts

� Omission failure: a server fails to respond to a request

� Timing failure: a server response exceeds specified time
interval

� Response failure: server’s response is incorrect

� Arbitrary (Byzantine) failure: server produces arbitrary
response at arbitrary times

4

Masking Failures: Redundancy

� How many failures can this design tolerate?

5

Example: Open Shortest Path First (OSPF)
over Broadcast Networks

1) Each node sends an route advertisements to multicast group
DR-rtrs
- Both designated router (DR) and backup designated router (BDR)

subscribe to this group

2) DR floods route advertisements back to all routers
- Send to all-rtrs multicast group to which all nodes subscribe

DR BDR

DR BDR

6

Agreement in Faulty Systems

� Many things can go wrong…

� Communication
- Message transmission can be unreliable

- Time taken to deliver a message is unbounded

- Adversary can intercept messages

� Processes
- Can fail or team up to produce wrong results

� Agreement very hard, sometime impossible, to achieve!

Page 2

7

Two-Army Problem

� “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only
across the area controlled by the white army which can intercept the
messengers.”

� What is the solution?

8

Byzantine Agreement
[Lamport et al. (1982)]

� Goal:
- Each process learn the true values sent by correct processes

� Assumptions:
- Every message that is sent is delivered correctly

- The receiver knows who sent the message

- Message delivery time is bounded

9

Byzantine Agreement Result

� In a system with m faulty processes agreement can be
achieved only if there are 2m+1 functioning correctly

� Note: This result only guarantees that each process
receives the true values sent by correct processors, but it
does not identify the correct processes!

10

Byzantine General Problem: Example

� Phase 1: Generals announce their troop strengths to each
other

P1 P2

P3 P4

1

1
1

11

Byzantine General Problem: Example

� Phase 1: Generals announce their troop strengths to each
other

P1 P2

P3 P4

2

2 2

12

Byzantine General Problem: Example

� Phase 1: Generals announce their troop strengths to each
other

P1 P2

P3 P4

4 4

4

Page 3

13

Byzantine General Problem: Example

� Phase 2: Each general construct a vector with all troops

4x21

P4P3P2P1 P1 P2

P3 P4

yx

z

4y21

P4P3P2P1

4z21

P4P3P2P1

14

Byzantine General Problem: Example

� Phase 3: Generals send their vectors to each other and
compute majority voting

4y21

dcba

4z21

P4P3P2P1 P1 P2

P3 P4

(e, f, g, h)

(a, b, c, d)

(h, i, j, k)

4x21

hgfe

4z21

P4P3P2P1

4x21

4y21

kjih

P4P3P2P1

P2

P3
P4

P1

P3
P4

P1

P2
P3

(1, 2, ?, 4) (1, 2, ?, 4)

(1, 2, ?, 4)

15

Reliable Group Communication

� Reliable multicast: all nonfaulty processes which do not
join/leave during communication receive the message

� Atomic multicast: all messages are delivered in the same
order to all processes

16

Reliable multicast: (N)ACK Implosion

� (Positive) acknowledgements
- Ack every n received packets

- What happens for multicast?
� Negative acknowledgements

- Only ack when data is lost

- Assume packet 2 is lost

SS

R1R1

R2R2

R3R3

123

17

Reliable multicast: (N)ACK Implosion

� When a packet is lost all receivers in the sub-tree
originated at the link where the packet is lost send
NACKs

SS

R1R1

R2R2

R3R3

3

3

3

2?

2?

2?

18

Scalable Reliable Multicast (SRM)
[Floyd et al ’95]

� Receivers use timers to send NACKS and retransmissions
- Randomized: prevent implosion
- Uses latency estimates

• Short timer → cause duplicates when there is reordering
• Long timer → causes excess delay

� Any node retransmits
- Sender can use its bandwidth more efficiently
- Overall group throughput is higher

� Duplicate NACK/retransmission suppression

Page 4

19

Inter-node Latency Estimation

� Every node estimates latency to
every other node

� Uses session reports
- Assume symmetric latency

- What happens when group
becomes very large?

AA BB

t1

t2

d
d

dA,B = (t2 – t1 – d)/2

20

� Chosen from the uniform distribution on

- A – node that lost the packet
- S – source
- C1, C2 – constants
- dS,A – latency between source (S) and A
- i – iteration of repair request tries seen

� Algorithm
- Detect loss → set timer
- Receive request for same data → cancel timer, set new timer
- Timer expires → send repair request

Repair Request Timer Randomization

])(,[2 ,21,1 ASAS
i dCCdC +

21

Timer Randomization

� Repair timer similar
- Every node that receives repair request sets repair timer
- Latency estimate is between node and node requesting repair

- Use following formula:

• D1, D2 – constants
• dR,A – latency between node requesting repair (R) and A

� Timer properties – minimize probability of duplicate packets
- Reduce likelihood of implosion (duplicates still possible)

- Reduce delay to repair

])(,[2 ,21,1 ARAR
i dDDdD +

22

Chain Topology

� C1 = D1 = 1, C2 = D2 = 0
� All link distances are 1

L2L2 L1L1 R1R1 R2R2 R3R3

source

data out
of order

data/repair
request repair

request TO
repair TO

request

repair

23

Star Topology

� C1 = D1 = 0,
� Tradeoff between (1) number of requests

and (2) time to receive the repair
� C2 <= 1

- E(# of requests) = g –1
� C2 > 1

- E(# of requests) = 1 + (g-2)/C2

- E(time until first timer expires) = 2C2/g
�

- E(# of requests) =
- E(time until first timer expires) =

N1N1

N2N2

N3N3 N4N4

NgNg

source

gC =2

g
g/1

24

Bounded Degree Tree

� Use both
- Deterministic suppression (chain topology)

- Probabilistic suppression (star topology)
� Large C2/C1

�
fewer duplicate requests, but larger

repair time
� Large C1

�
fewer duplicate requests

� Small C1

�
smaller repair time

Page 5

25

Adaptive Timers

� C and D parameters depends on topology and congestion
�

choose adaptively
� After sending a request:

- Decrease start of request timer interval
� Before each new request timer is set:

- If requests sent in previous rounds, and any dup requests were from
further away:

• Decrease request timer interval

- Else if average dup requests high:

• Increase request timer interval

- Else if average dup requests low and average request delay too high:

• Decrease request timer interval

26

Atomic Multicast

� All messages are delivered in the same order to “all”
processes

� Group view: the set of processes known by the sender
when it multicast the message

� Virtual synchronous multicast: a message multicast to a
group view G is delivered to all nonfaulty processes in G

- If sender fails after sending the message, the message may be
delivered to no one

27

Virtual Synchronous Multicast

28

Virtual Synchrony Implementation
[Birman et al., 1991]

� The logical organization of a distributed system to
distinguish between message receipt and message
delivery

29

Virtual Synchrony Implementation:
[Birman et al., 1991]

� Only stable messages are delivered

� Stable message: a message received by all processes in
the message’s group view

� Assumptions (can be ensured by using TCP):
- Point-to-point communication is reliable

- Point-to-point communication ensures FIFO-ordering

30

Virtual Synchrony Implementation: Example

� Gi = {P1, P2, P3, P4, P5}
� P5 fails
� P1 detects that P5 has

failed
� P1 send a “view change”

message to every process
in Gi+1 = {P1, P2, P3, P4}

P1

P2 P3

P4

P5

change view

Page 6

31

Virtual Synchrony Implementation: Example

� Every process
- Send each unstable message m

from Gi to members in Gi+1

- Marks m as being stable

- Send a flush message to mark that
all unstable messages have been
sent

P1

P2 P3

P4

P5

unstable message

flush
message

32

Virtual Synchrony Implementation: Example

� Every process
- After receiving a flush message

from any process in Gi+1 installs Gi+1

P1

P2 P3

P4

P5

33

Message Ordering

� FIFO-order: messages from the same process are
delivered in the same order they were sent

� Causal-order: potential causality between different
messages is preserved

� Total-order: all processes receive messages in the same
order

� Total ordering does not imply causality or FIFO!
� Atomicity is orthogonal to ordering

34

Message Ordering and Atomicity

YesCausal-ordered deliveryCausal atomic multicast

YesFIFO-ordered deliveryFIFO atomic multicast

YesNoneAtomic multicast

NoCausal-ordered deliveryCausal multicast

NoFIFO-ordered deliveryFIFO multicast

NoNoneReliable multicast

Total-ordered Delivery?Basic Message OrderingMulticast

