
Page 1

1

CS 194: Distributed Systems
Distributed Commit, Recovery

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Distributed Commit

� Goal: Either all members of a group decide to perform an 
operation, or none of them perform the operation

3

Assumptions

� Failures:
- Crash failures that can be recovered
- Communication failures detectable by timeouts

� Notes: 
- Commit requires a set of processes to agree…

- …similar to the Byzantine general problem…

- … but the solution much simpler because stronger assumptions

4

Two Phase Commit (2PC)

send VOTE_REQ to all

send vote to coordinator
if (vote == no)

decide abort
halt

if (all votes yes)
decide commit
send COMMIT to all

else
decide abort
send ABORT to all who voted yes
halt if receive ABORT, decide abort

else decide commit
halt

Coordinator Participants

5

2PC State Machine 

a) The finite state machine for the coordinator in 2PC
b) The finite state machine for a participant

6

2PC: Crash Recovery Protocol

Stable storage is persistent memory that supports 
writes that are atomic with respect to failures

Log actions: 
� c sends VOTE_REQ write start
� p votes YES write yes
� p votes NO write abort
� c decides commit write commit
� c decides abort write abort
� p receives decision write decision

commit point



Page 2

7

2PC: Crash Recovery Protocol

Upon recovery a process r starts reading the values logged to 
stable storage.

� If there is a start then r was the coordinator:
- If there is a subsequent abort or commit then decision 

was made; otherwise decide abort.
� Otherwise, r was a participant:

- If there is abort or commit then the decision was made;
- If there is no yes then decide abort.
- Otherwise (i.e., there is an yes record) run termination 

protocol.
... when can these records be garbage collected?

8

Recovery Techniques: Checkpoints

� Goal: recover a process from error

� Backward recovery: checkpoint the state of the process 
periodically

- Go to previous checkpoint, if error

- Problem: same failure may repeat

� Forward recovery: go to a known good state if error
- Problem: need to know in advance which error may occur

9

Example: Reliable Communication

� Backward recovery: retransmit packet if lost

� Forward recovery: use erasure coding
- Instead of sending k packets, send n > k using erasure coding

- As long as receiver gets at least k packets out of n, it can 
reconstruct the original k packets

10

Recovery Techniques: Message Logging 

� Sender based: sender logs message before sending it out

� Receiver based: receiver logs message before delivering it

� Replay log messages between checkpoints 
�

restore state 
beyond most recent checkpoint

11

Distributed Checkpointing: 
Recovery Line

� Recovery line: most recent snapshot
- If a process P has recorder the receipt of message m there 

should be a process Q that recorded sending of message m
� How do you find a recover line?

12

Independent Checkpointing: 
The Domino Effect

� Domino effect: cascaded rollback to find a recovery line
� Solutions: 

- Coordinate checkpointing: use two-phase non-blocking protocol 
(see the book)

- Logging and replaying messages



Page 3

13

Message Logging and Checkpointing

� Incorrect replay of messages after 
recovery, leading to an orphan process

14

Stable Storage

� Storage designed to survive anything except major 
calamities

� Use two disks to record identical information
1) Write and verify sector on disk 1

2) Write and verify sector on disk 2

� Recovery 
- Verify all sectors

- If two corresponding sectors differ, copy sector from disk 1 to disk 

15

Stable Storage Recovery

a) Stable Storage

b) Crash after drive 1 is updated

c) Bad spot


