

Attacks

- Interception (eavesdropping): unauthorized party gains access to service or data
- Interruption (denial of service attack): services or data become unavailable
- Modification: unauthorized party changes the data or tampers with the service
- Fabrication: unauthorized party generate additional data or activity

Outline	
- Cryptographic Algorithms (Confidentiality and Integrity)	

Cryptographic Algorithms

- Security foundation: cryptographic algorithms
- Secret key cryptography, Data Encryption Standard (DES)
- Public key cryptography, RSA algorithm
- Message digest, MD5

Page 1

2nd Phase: Operation In Each Round

- Key K is 64 bits
- 16 rounds
- Each round i select a 48 bit key K_{i} from the original 64 bit key K. Perform (F is a given function):
$L_{i}=R_{i-1}$
$R_{i}=L_{i-1} \oplus F\left(R_{i-1}, K_{i}\right)$

DES Properties
- Provide confidentiality
- No mathematical proof, but practical evidence suggests that
decrypting a message without knowing the key requires exhaustive
search
- To increase security use triple-DES, i.e., encrypt the message three
times

Public-Key Cryptography: RSA (Rivest, Shamir, and Adleman)

- Sender uses a public key - Advertised to everyone
- Receiver uses a private key

Generating Public and Private Keys

- Choose two large prime numbers p and q (~256 bit long) and multiply them: $n=p^{*} q$
- Chose encryption key e such that e and $(p-1) *(q-l)$ are relatively prime
- Compute decryption key d, where
$d=e^{-l} \bmod \left((p-l)^{*}(q-l)\right)$
(equivalent to $d^{*} e=1 \bmod ((p-l) *(q-l))$)
- Public key consist of pair (n, e)
- Private key consists of pair (n, d)

RSA Encryption and Decryption

- Encryption of message block m :
- $c=m^{e} \bmod n$
- Decryption of ciphertext c :
- $m=c^{d} \bmod n$

Example (1/2)
- Choose $p=7$ and $q=11 \rightarrow n=p^{*} q=77$
- Compute encryption key e: $(p-1)^{\star}(q-1)=6^{*} 10=60 \rightarrow$
chose $e=13(13$ and 60 are relatively prime numbers)
- Compute decryption key d such that $13^{\star} d=1$ mod $60 \rightarrow$
$d=37\left(37^{*} 13=481\right)$

Example (2/2)

- $\mathrm{n}=77 ; \mathrm{e}=13 ; \mathrm{d}=37$
- Send message block $m=7$
- Encryption: $\mathrm{c}=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}=7^{13} \bmod 77=35$
- Decryption: $m=c^{d} \bmod n=35^{37} \bmod 77=7$

Properties	
- Confidentiality - A receiver B computes n, e, d, and sends out (n, e) - Everyone who wants to send a message to A uses (n, e) to encrypt it - How difficult is to recover d ? (Someone that can do this can decrypt any message sent to B !) - Recall that $d=e^{-1} \bmod ((p-l) *(q-1))$ - So to find d, you need to find primes factors p and q - This is provable very difficult	
	17

Message Digest (MD) 5

- Can provide data integrity and non-repudation - Used to verify the authentication of a message
- Idea: compute a hash on the message and send it along with the message
- Receiver can apply the same hash function on the message and see whether the result coincides with the received hash

Digital Signature Properties
- Integrity: an attacker cannot change the message without knowing A's private key - Confidentiality: if needed, encrypt message with B's public key

Outline
- Cryptographic Algorithms (Confidentiality and Integrity) > Authentication

Authentication
- Goal: Make sure that the sender an receiver are the ones they claim to be - Solutions based on secret key cryptography (e.g., DES) - Three-way handshaking - Trusted third party (key distribution center) - One solution based on public key cryptography (e.g., RSA) - Public key authentication

Authentication using KDC (Ticket Based)

- No need for KDC to contact Bob

- Vulnerable to replay attacks if Chuck gets hold on $\mathrm{K}_{\mathrm{B}, \mathrm{KDC}}{ }^{\text {old }}$

Strawman Solution

- Servers gets replies from all servers...
- ... and take majority voting
- Problem: client needs to authenticate each server (violates replication transparency)

Solution: Secret Sharing
- Secret sharing: none of users know the entire secret
- Intuition:
- Assume we want to tolerate c failures (some of them can by
Byzantine failures)
- Need to combine responses such that c+1 correct servers are
sufficient to get the correct response

(k,n)-threshold Signature Scheme

- One public key K^{+}
- n shares of corresponding private keys, $\mathrm{K}_{\mathrm{i}}, 1<=\mathrm{i}<=\mathrm{n}$
- Encrypted value v with each of private key shares, i.e., $\mathrm{v}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}(\mathrm{v})$
- A client can decrypt value v using K^{+}only if it knows at least k values of v_{i}

