CS 194: Distributed Systems Security

Scott Shenker and Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

1

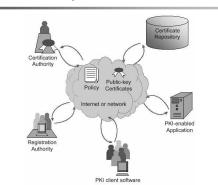
Outline

- > Key Management
- Group management
- Authorization management
- Example: Kerberos

2

Security Management

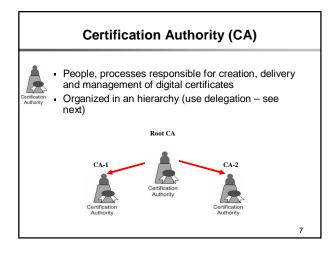
- Problem: how do you get keys in the first place?
- Key distribution: securely associate an entity with a key
 - Example: Public Key Infrastructure (PKI)
- Key establishment: establish session keys
 - Use public key cryptography (we already know ho to do it)
 - Diffie-Hellman key exchange


3

Public Key Infrastructure (PKI)

- System managing public key distribution on a wide-scale
- Trust distribution mechanism
- Allow arbitrary level of trust

4


Components of a PKI

Digital Certificate

- Signed data structure that binds an entity (E) with its corresponding public key (K_F^+)
- Signed by a recognized and trusted authority, i.e., Certification Authority (CA)
- Provide assurance that a particular public key belongs to a specific entity
- How?
 - CA generates $K_{CA}^{-}(E, K_{E}^{+})$
 - Everyone can verify signature using $\mathbf{K}_{\mathrm{CA}^+}$

Registration Authority

• People, processes and/or tools that are responsible for

- Authenticating the identity of new entities (users or computing devices)
- Requiring certificates from CA's.

8

Certificate Repository

 A database which is accessible to all users of a PKI, contains:

- Digital certificates,
- Certificate revocation information
- Policy information

9

Example

Alice generates her own key pair.

Bob generates his own key pair.

 Both sent their public key to a CA and receive a digital certificate

10

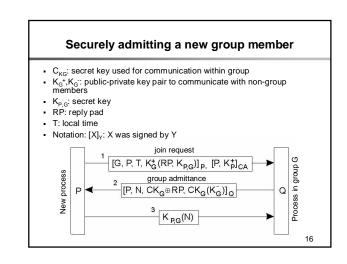
Example

Alice gets Bob's public key from the CA

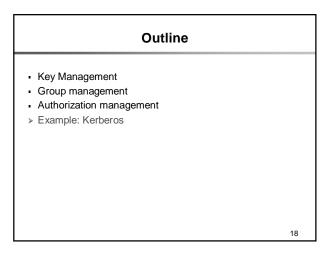
Bob gets Alice's public key from the CA

11

Certificate Revocation


- Process of publicly announcing that a certificate has been revoked and should no longer be used.
- Approaches:
 - Use certificates that automatically time out
 - Use certificate revocation list

Alice computes (g^y mod n)^x = g^{xy} mod n Alice and Bob pick two secret numbers x and y Similar to public-key cryptography Example: For Alice, K_A'=x, K_A* = g^x mod n

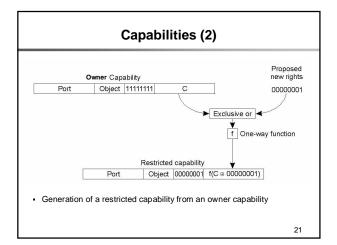

13

Key Management Group management Authorization management Example: Kerberos

Motivation: offer high availability for security services How: replicate services Problem: how to add a new replica to a group without compromising the integrity of the group?

• Key Management • Group management • Authorization management • Example: Kerberos

Authorization Management


- Granting authorization rights
- Related with access control which verifies access rights (see book)

19

Capabilities (1)

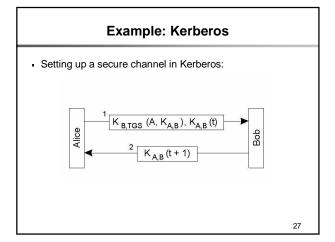
- Capability:
 - Unforgeable data structure for a specific resource R
 - Specify access right the holder has with respect to R
- Capability in Amoeba:

48 bits	24 bits	8 bits	48 bits
Server port	Object	Rights	Check

Delegation

- A wants to delegate an operation on a resource to B
- Problem: how does A delegates its access rights to B?
- Solutions: A signs (A, B, R)
- If B wants to delegate operation to C, C needs to contact A
 - Avoid this problem using a proxy (Neuman scheme)
 - Proxy: a token allowing its owner to operate with the same or rstricted rights as the entity granting the token


20


Delegation: Neuman Scheme The general structure of a proxy as used for delegation: Certificate S⁺_{proxy} sig(A, {R, S⁺_{proxy}}) S_{proxy} access rights public part of secret private part of secret

Delegation: Neuman Scheme Using a proxy to delegate and prove ownership of access - In practice $S^+_{\text{proxy}},\, S^-_{\text{proxy}}$ can be a public-private key pair and N can be a nonce $[R, S^+_{proxy}]_{A^1} K_{A,B}(S^-_{proxy})$ Server

Kerberos

- Based on Needham-Schroeder authentication scheme
- Developed at MIT

