CS 194: Distributed Systems
Review

Scott Shenker and |on Stoica
Computer Science Divison
Department of Electrica Engineering and Computer Sciences
Universty of California, Berkeley
Berkeley, CA 94720-1776

Overview

» Remote Procedure Call (RPC)
« Threads

= Agreement

= Group communication

= Distributed commit

= Security

Example: Local Procedure Call

Machine

Process

ﬁ sum(i, j)
. J inti, j;
n=sum(4, 7); {

return (i+j);

Example: Remote Procedure Call

Stubs

oS oS

Client and Server Stubs

= Principle of RPC between a client and server program

Wait for result

Client
A

®

Call remote Return
procedure from call
Request Reply

Call local procedure Time —>»
and return results

Parameter Passing

= Server and client may encode parameters differently
- E.g., big endian vs. little endian
= How to send parameters “call-by-reference”?
- Basically do “call-by-copy/restore”
- Woks when there is an array of fixed size
- How about arbitrary data structures?

Page 1

RPC Semantics: Discussion

= The original goal: provide the same semantics as a local call

= Impossible to achieve in a distributed system
- Dealing with remote failures fundamentally affects transparency

= Ideal interface: balance the easy of use with making visible the
errors to users

Overview

» Remote Procedure Call (RPC)
» Threads

= Agreement

= Group communication
Distributed commit

Security

Process vs. Thread

= Process: unit of allocation
- Resources, privileges, etc
= Thread: unit of execution
- PC, SP, registers
= Each process has one or more threads
= Each thread belong to one process

Process vs. Thread

= Processes
- Inter-process communication is expensive: need to context switch
- Secure: one process cannot corrupt another process

Process A Process B

S1: Switch from user space

to kernel space] | S3: Switch from kernel
space to user
| N —

Operating system‘

S2: Switch context from
process A to

10

Process vs. Thread

= Threads

- Inter-thread communication cheap: can use process memory and may not
need to context switch

- Not secure: a thread can write the memory used by another thread

11

User Level vs. Kernel Level Threads

= User level: use user-level thread package; totally transparent to
oS

- Light-weight
- If a thread blocks, all threads in the process block
= Kernel level: threads are scheduled by OS
- Athread blocking won't affect other threads in the same process
- Can take advantage of multi-processors
- Still requires context switch, but cheaper than process context switching

12

Page 2

Thread Implementation

= Combining kernel-level lightweight processes and user-level threads
- LWPs are transparent to applications
- Athread package can be shared by multiple LWPs
- A LWP looks constantly after runnable threads

Thread state

User space
— Thread

i
[D‘** Lightweight process

LWP executing a thread

Kernel space

13

User-level, Kernel-level and Combined

§ 84 I § 1

T User User B User
Library Space Space

Library Space

Kernel
Space

Kernel Kernel

Space Space
@ © O
® "

(b) Pure kernel-level

s User-level thread @ Kerneklevel thread @ Process

®

(@) Pure user-level () Combined

Figure 4.6 User-Level and Kernel-Level Threads

(Operating Systems, Stallings)

Example of Combined Threads

Process1 Process 2 Process 3

S E
S

Process 4 Process 5

Kernel

——— 1 [[L= Lx]
$vsrsewt st (7) et e &) g mpmm

(Operating Systems, Stallings)
Figure 4.15 Solaris Multithreaded Architecture Example 15

14
Trade-offs
Model Characteristics
Threads Parallelism, blocking system calls
Single-threaded process No parallelism, blocking system calls
16

Overview

= Remote Procedure Call (RPC)
= Threads

> Agreement

= Group communication

= Distributed commit

= Security

17

Agreement in Faulty Systems

= Agreement very hard, sometime impossible, to achieve!

Page 3

= Many things can go wrong...

= Communication
- Message can be lost
- Time taken to deliver a message is unbounded
- Adversary can intercept messages

= Processes

- Can fail or collude with other processes to produce wrong results

18

Two-Army Problem

= “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only
across the area controlled by the white army which can intercept the
messengers.”

= What is the solution?
19

Byzantine Agreement
[Lamport et al. (1982)]

= Goal:
- Each process learn the true values sent by correct processes

= Assumptions:
- Every message that is sent is delivered correctly
- The receiver knows who sent the message
- Message delivery time is bounded

20

Byzantine Agreement Result

» In a system with m faulty processes agreement can be achieved only if
there are 2m+1 functioning correctly

= Note: This result only guarantees that each process receives the true
values sent by correct processors, but it does not identify the correct
processors!

21

Overview

= Remote Procedure Call (RPC)
= Threads
= Agreement
» Group communication
- Reliable multicast
- Atomic multicast
= Distributed commit
= Security

22

Reliable Group Communication

= Reliable multicast: all non-faulty processes which do not
join/leave during communication receive the message

= Atomic multicast: all messages are delivered in the same
order to all processes

23

Scalable Reliable Multicast (SRM)
[Floyd et al '95]

= Receivers use timers to send NACKS and retransmissions
- Randomized: prevent implosion
- Uses latency estimates
 Short timer — cause duplicates when there is reordering
» Long timer — causes excess delay
= Any node retransmits
- Sender can use its bandwidth more efficiently
- Overall group throughput is higher
= Duplicate NACK/retransmission suppression

24

Page 4

Repair Request Timer
Randomization

= Chosen from the uniform distribution on

2[Cdg 4, (C, +C,)ds]
- A—node that lost the packet
- S—source
- C,, C,— constants
- dg, —latency between source (S) and A
- i —iteration of repair request tries seen
= Algorithm
- Detect loss - set timer
- Receive request for same data — cancel timer, set new timer
- Timer expires — send repair request

25

Timer Randomization

« Repair timer similar
- Every node that receives repair request sets repair timer
- Latency estimate is between node and node requesting repair
- Use following formula:

2 [DldR,Ar (D, + Dz)dR,A]

« D,, D, - constants
* dg,—latency between node requesting repair (R) and A
= Timer properties — minimize probability of duplicate packets
- Reduce likelihood of implosion (duplicates still possible)
- Reduce delay to repair

26

Chain Topology

= C,=D;=1,C=D,=0->timers=1,1
= All link distances are 1

source

@ —OxXE—R—

data out
of order
— data/repair
request —— request repair
repair e request TO
e repair TO

27

Star Topology

= C,=D; =0, > timers=[0, 2C,], [0, 2D,]
= Tradeoff between (1) number of requests
and (2) time to receive the repair

- C<=1)
- E(# of requests) = g-1
= C,>1 @ ‘

- E(# of requests) = 1+ (g-2)/C,

- E(time until first timer expires) = 2C,/g
- Cz = \/6

- E(# of requests) =g

- E(time until first timer expires) =1/+/g

®)

28

Overview

= Remote Procedure Call (RPC)
= Threads

= Agreement

» Group communication

- Reliable multicast
» Atomic multicast

= Distributed commit
= Security

29

Atomic Multicast

= All messages are delivered in the same order to “all”
processes

= Group view: the set of processes known by the sender
when it multicast the message

= Virtual synchronous multicast: a message m multicast to
a group view G is delivered to all non-faulty processes in G

- If sender fails “before” m reaches a non-faulty process,
none of the processes deliver m

30

Page 5

Virtual Synchrony System Model

A Application
Message is delivered to application
[Akj Comm. layer
Message is received by communication layer »>
Message comes in from the network [Aj Local OS
Network

= The logical organization of a distributed system to

distinguish between message receipt and message
delivery

3

1

Virtual Synchronous Multicast

a) Message is not
delivered

b) Message is not delivered

33
Virtual Synchrony Implementation:
Example

» G,={P1, P2, P3, P4, P5}
= PS5 fails
= P1 detects that P5 has

failed
= P1 send a “view change”

message to every process h i

in G, = {P1, P2, P3, P4} $’

35

Virtual Synchronous Multicast
a) Message is not b) Message is delivered
delivered
’ 1
A L A L
1 1
' ‘
1 1
B — ; B — '.
1 1 1 1
1 \ 1 \
1 \ 1 \
1 \ 1 \
1 \ 1 \
G, =(A,B,C) G..=(B,C) G, =(A,B,C) G..=(B,C)
32

Virtual Synchrony Implementation:
[Birman et al., 1991]

= Only stable messages are delivered

= Stable message: a message received by all processes in
the message’s group view

= Assumptions (can be ensured by using TCP):
- Point-to-point communication is reliable
- Point-to-point communication ensures FIFO-ordering

34

Virtual Synchrony Implementation:
Example

= Every process

- Send each
from G, to members in G,

- Marks m as being stable

- Send a flush message to mark that
all unstable messages have been

unstable message
é

sent — \
==

message
36

Page 6

Virtual Synchrony Implementation:
Example

= Every process

- After receiving a flush message
from any process in G,,, installs G, ;

Message Ordering and Atomicity

Multicast Basic Message Ordering | Total-ordered Delivery?
Reliable multicast None No

FIFO multicast FIFO-ordered delivery No

Causal multicast Causal-ordered delivery No

Atomic multicast None Yes

FIFO atomic multicast FIFO-ordered delivery Yes

Causal atomic multicast | Causal-ordered delivery Yes

38

Distributed Commit

= Goal: Either all members of a group decide to perform an
operation, or none of them perform the operation

40

37
Overview
= Remote Procedure Call (RPC)
= Threads
= Agreement
= Group communication
» Distributed commit
= Security
39
Assumptions
Coordinator
- Failures:
- Crash failures that can be recovered
- Communication failures detectable by timeouts
= Notes: if (all votes yes)
. . decide commit
- Commit requires a set of processes to agree... send COMMIT to all
- ...similar to the Byzantine general problem... elze .
. . : ecide abort
- ... but the solution much simpler because stronger assumptions send ABORT to all who voted yes
halt
41

send vote to coordinator
if (vote == no)

Two Phase Commit (2PC)

Participants

decide abort
halt

else
halt

if receive ABORT, decide abort

decide commit

42

Page 7

2PC State Machine

Vote-request

. INT) Vote-abort INIT
Commit [" Vote-request
Vote-request y Vote-commit

Global-abort

ACK

Vote-abort
Global-abort

Vote-commit
Global-commit

COMMIT

Global-commit
ACK

The finite state machine for the coordinator in 2PC
The finite state machine for a participant

43

Overview

Remote Procedure Call (RPC)
Threads

Agreement

Group communication
Distributed commit

> Security

» Cryptographic Algorithms (Confidentiality and Integrity)
- Authentication

Security Requirements

= Authentication: ensures that sender and receiver are
who they are claiming to be

= Dataintegrity: ensure that data is not changed from
source to destination

= Confidentiality: ensures that data is red only by
authorized users

= Non-repudiation: ensures that the sender has strong
evidence that the receiver has received the message,
and the receiver has strong evidence of the sender
identity (not discussed here)

- The sender cannot deny that it has sent the message
and the receiver cannot deny that it has received the
message

45

44
Cryptographic Algorithms
= Security foundation: cryptographic algorithms
- Secret key cryptography, Data Encryption Standard
(DES)

- Public key cryptography, RSA algorithm

- Message digest, MD5
46

Symmetric Key

= Both the sender and the receiver use the same
secret keys

Plaintext Plaintext

Interneti

Encrypt with
secret key

Decrypt with
secret key

Ciphertext

47

Encrypting Larger Messages

= Initialization Vector (1V) is a random number generated by
sender and sent together with the ciphertext

48

Page 8

Public-Key Cryptography: RSA (Rivest,

DES Properties Shamir, and Adleman)
= Provide confidentiality = Sender uses a public key
- No mathematical proof, but practical evidence suggests that - Advertised to everyone
decrypting a message without knowing the key requires exhaustive . .
search = Receiver uses a private key
- Toincrease security use triple-DES, i.e., encrypt the message three Plaintext Plaintext

times

Interneti

Encrypt with Decrypt with
public key private key
Ciphertext
49 50
Digital Signature Digital Signature Properties

= In practice someone cannot alter the message without modifying the
digest = Integrity: an attacker cannot change the message without

- Digest operation very hard to invert knowing A’s private key

= Encrypt digest with sender’s private key
= Ky, K,*: private and public keys of A

- = Confidentiality: if needed, encrypt message with B’s public

Alice's computer Bob's computer

key
»m
m ‘ Hash

i » function, j

Hash Alice's Alice's ‘
function, private key, P public key, Compare —» 0K
H K T K T\
I T
H(m) Ky (Hm) H(m)
v 52
Overview Authentication

= Remote Procedure Call (RPC) .
= Goal: Make sure that the sender an receiver are the ones

= Threads)

they claim to be

= Solutions based on secret key cryptography (e.g., DES)
- Three-way handshaking
- Trusted third party (key distribution center)

= One solution based on public key cryptography (e.g., RSA)
- Public key authentication

= Agreement

= Group communication
= Distributed commit

> Security

« Cryptographic Algorithms (Confidentiality and Integrity)
» Authentication

53 54

Page 9

Authentication

= Authentication based on a shared secret key
- A, B: sender and receiver identities
- K, shared secret key

- R, Rg: random keys exchanged by A and B to verify identities

Alice

Bob

ONICRORONG)

55

Authentication using KDC

(Ticket Based)

» No need for KDC to contact Bob

@

A B

@ KA‘KDC(KA‘E)V KE‘KDC(KA‘E)

KDC

Alice

®

A KE‘KDC(KA‘E)

Bob

= Vulnerable to replay attacks if Chuck gets hold on Kg ¢

57

Authentication using KDC

(Basic Protocol)

@

= KDC - Key Distribution Center
= Maintain only N keys in the system: one for each node

A B

Alice

@ Kakoc(Kag)

Bob

@ Kekoc(Kag)

‘ KDC (generates K, g) ‘

56
Authentication Using Public-Key
Cryptography
= K,*, Kg*: public keys
@ KARY
8 @ KA+(RA' RE'KAE) Qo
5 |
@ KAE(RE)
58

Midterm Information

Closed books; 8,5"x11" crib sheet (both sides)

No calculators, PDAs, cell phones with cameras, etc
Please use PENCIL and ERASER
Expect also questions from project (e.g., XML-RMI)

59

Page 10

