
Page 1

1

CS 194: Distributed Systems
Review

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Overview

� Remote Procedure Call (RPC)
� Threads
� Agreement
� Group communication
� Distributed commit
� Security

3

Example: Local Procedure Call

.

.

.
n = sum(4, 7);

.

.

.

sum(i, j)
int i, j;
{

return (i+j);
}

Machine

Process

4

Example: Remote Procedure Call

.

.

.

n = sum(4, 7);
.
.
.

sum(i, j)
int i, j;
{

return (i+j);
}

Client

Process

sum
4
7

message

OS

Server

Process

sum
4
7

message

OS

Stubs

5

Client and Server Stubs

� Principle of RPC between a client and server program

6

Parameter Passing
� Server and client may encode parameters differently

- E.g., big endian vs. little endian
� How to send parameters “call-by-reference”?

- Basically do “call-by-copy/restore”
- Woks when there is an array of fixed size
- How about arbitrary data structures?

Page 2

7

RPC Semantics: Discussion

� The original goal: provide the same semantics as a local call

� Impossible to achieve in a distributed system
- Dealing with remote failures fundamentally affects transparency

� Ideal interface: balance the easy of use with making visible the
errors to users

8

Overview

� Remote Procedure Call (RPC)
� Threads
� Agreement
� Group communication
� Distributed commit
� Security

9

Process vs. Thread

� Process: unit of allocation
- Resources, privileges, etc

� Thread: unit of execution
- PC, SP, registers

� Each process has one or more threads
� Each thread belong to one process

10

Process vs. Thread

� Processes
- Inter-process communication is expensive: need to context switch

- Secure: one process cannot corrupt another process

11

Process vs. Thread
� Threads

- Inter-thread communication cheap: can use process memory and may not
need to context switch

- Not secure: a thread can write the memory used by another thread

12

User Level vs. Kernel Level Threads
� User level: use user-level thread package; totally transparent to

OS
- Light-weight

- If a thread blocks, all threads in the process block
� Kernel level: threads are scheduled by OS

- A thread blocking won’t affect other threads in the same process

- Can take advantage of multi-processors

- Still requires context switch, but cheaper than process context switching

Page 3

13

Thread Implementation

� Combining kernel-level lightweight processes and user-level threads

- LWPs are transparent to applications

- A thread package can be shared by multiple LWPs

- A LWP looks constantly after runnable threads

14

User-level, Kernel-level and Combined

(Operating Systems, Stallings)

15

Example of Combined Threads

(Operating Systems, Stallings)
16

Trade-offs

No parallelism, blocking system callsSingle-threaded process

Parallelism, blocking system callsThreads

CharacteristicsModel

17

Overview

� Remote Procedure Call (RPC)
� Threads
� Agreement
� Group communication
� Distributed commit
� Security

18

Agreement in Faulty Systems

� Many things can go wrong…

� Communication
- Message can be lost

- Time taken to deliver a message is unbounded

- Adversary can intercept messages

� Processes
- Can fail or collude with other processes to produce wrong results

� Agreement very hard, sometime impossible, to achieve!

Page 4

19

Two-Army Problem

� “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only
across the area controlled by the white army which can intercept the
messengers.”

� What is the solution?

20

Byzantine Agreement
[Lamport et al. (1982)]

� Goal:
- Each process learn the true values sent by correct processes

� Assumptions:
- Every message that is sent is delivered correctly

- The receiver knows who sent the message

- Message delivery time is bounded

21

Byzantine Agreement Result

� In a system with m faulty processes agreement can be achieved only if
there are 2m+1 functioning correctly

� Note: This result only guarantees that each process receives the true
values sent by correct processors, but it does not identify the correct
processors!

22

Overview

� Remote Procedure Call (RPC)
� Threads
� Agreement
� Group communication

- Reliable multicast

- Atomic multicast
� Distributed commit
� Security

23

Reliable Group Communication

� Reliable multicast: all non-faulty processes which do not
join/leave during communication receive the message

� Atomic multicast: all messages are delivered in the same
order to all processes

24

Scalable Reliable Multicast (SRM)
[Floyd et al ’95]

� Receivers use timers to send NACKS and retransmissions
- Randomized: prevent implosion
- Uses latency estimates

• Short timer → cause duplicates when there is reordering
• Long timer → causes excess delay

� Any node retransmits
- Sender can use its bandwidth more efficiently
- Overall group throughput is higher

� Duplicate NACK/retransmission suppression

Page 5

25

� Chosen from the uniform distribution on

- A – node that lost the packet
- S – source
- C1, C2 – constants
- dS,A – latency between source (S) and A
- i – iteration of repair request tries seen

� Algorithm
- Detect loss → set timer
- Receive request for same data → cancel timer, set new timer
- Timer expires → send repair request

Repair Request Timer
Randomization

])(,[2 ,21,1 ASAS
i dCCdC +

26

Timer Randomization

� Repair timer similar

- Every node that receives repair request sets repair timer

- Latency estimate is between node and node requesting repair

- Use following formula:

• D1, D2 – constants
• dR,A – latency between node requesting repair (R) and A

� Timer properties – minimize probability of duplicate packets

- Reduce likelihood of implosion (duplicates still possible)

- Reduce delay to repair

])(,[2 ,21,1 ARAR
i dDDdD +

27

Chain Topology

� C1 = D1 = 1, C2 = D2 = 0
�

timers = 1, 1
� All link distances are 1

L2L2 L1L1 R1R1 R2R2 R3R3

source

data out
of order

data/repair
request repair

request TO
repair TO

request

repair

28

Star Topology

� C1 = D1 = 0,
�

timers = [0, 2C2], [0, 2D2]
� Tradeoff between (1) number of requests

and (2) time to receive the repair
� C2 <= 1

- E(# of requests) = g –1
� C2 > 1

- E(# of requests) = 1 + (g-2)/C2

- E(time until first timer expires) = 2C2/g
�

- E(# of requests) =
- E(time until first timer expires) =

N1N1

N2N2

N3N3 N4N4

NgNg

source

gC =2

g

g/1

29

Overview

� Remote Procedure Call (RPC)
� Threads
� Agreement
� Group communication

- Reliable multicast
�

Atomic multicast
� Distributed commit
� Security

30

Atomic Multicast

� All messages are delivered in the same order to “all”
processes

� Group view: the set of processes known by the sender
when it multicast the message

� Virtual synchronous multicast: a message m multicast to
a group view G is delivered to all non-faulty processes in G

- If sender fails “before” m reaches a non-faulty process,
none of the processes deliver m

Page 6

31

Virtual Synchrony System Model

� The logical organization of a distributed system to
distinguish between message receipt and message
delivery 32

Virtual Synchronous Multicast

a) Message is not
delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

b) Message is delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

33

Virtual Synchronous Multicast

a) Message is not
delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

b) Message is not delivered

A

B

C

Gi = (A, B, C) Gi+1 = (B, C)

34

Virtual Synchrony Implementation:
[Birman et al., 1991]

� Only stable messages are delivered

� Stable message: a message received by all processes in
the message’s group view

� Assumptions (can be ensured by using TCP):
- Point-to-point communication is reliable

- Point-to-point communication ensures FIFO-ordering

35

Virtual Synchrony Implementation:
Example

� Gi = {P1, P2, P3, P4, P5}
� P5 fails
� P1 detects that P5 has

failed
� P1 send a “view change”

message to every process
in Gi+1 = {P1, P2, P3, P4}

P1

P2 P3

P4

P5

change view

36

Virtual Synchrony Implementation:
Example

� Every process
- Send each unstable message m

from Gi to members in Gi+1

- Marks m as being stable

- Send a flush message to mark that
all unstable messages have been
sent

P1

P2 P3

P4

P5

unstable message

flush
message

Page 7

37

Virtual Synchrony Implementation:
Example

� Every process
- After receiving a flush message

from any process in Gi+1 installs Gi+1

P1

P2 P3

P4

P5

38

Message Ordering and Atomicity

YesCausal-ordered deliveryCausal atomic multicast

YesFIFO-ordered deliveryFIFO atomic multicast

YesNoneAtomic multicast

NoCausal-ordered deliveryCausal multicast

NoFIFO-ordered deliveryFIFO multicast

NoNoneReliable multicast

Total-ordered Delivery?Basic Message OrderingMulticast

39

Overview

� Remote Procedure Call (RPC)
� Threads
� Agreement
� Group communication
� Distributed commit
� Security

40

Distributed Commit

� Goal : Either all members of a group decide to perform an
operation, or none of them perform the operation

41

Assumptions

� Failures:
- Crash failures that can be recovered
- Communication failures detectable by timeouts

� Notes:
- Commit requires a set of processes to agree…

- …similar to the Byzantine general problem…

- … but the solution much simpler because stronger assumptions

42

Two Phase Commit (2PC)

send VOTE_REQ to all

send vote to coordinator
if (vote == no)

decide abort
halt

if (all votes yes)
decide commit
send COMMIT to all

else
decide abort
send ABORT to all who voted yes
halt if receive ABORT, decide abort

else decide commit
halt

Coordinator Participants

Page 8

43

2PC State Machine

a) The finite state machine for the coordinator in 2PC

b) The finite state machine for a participant

44

Overview

� Remote Procedure Call (RPC)
� Threads
� Agreement
� Group communication
� Distributed commit
� Security

�
Cryptographic Algorithms (Confidentiality and Integrity)

- Authentication

45

Security Requirements

� Authentication: ensures that sender and receiver are
who they are claiming to be

� Data integri ty: ensure that data is not changed from
source to destination

� Confidentiality: ensures that data is red only by
authorized users

� Non-repudiation: ensures that the sender has strong
evidence that the receiver has received the message,
and the receiver has strong evidence of the sender
identity (not discussed here)

- The sender cannot deny that it has sent the message
and the receiver cannot deny that it has received the
message

46

Cryptographic Algorithms

� Security foundation: cryptographic algorithms
- Secret key cryptography, Data Encryption Standard

(DES)
- Public key cryptography, RSA algorithm
- Message digest, MD5

47

Symmetric Key

� Both the sender and the receiver use the same
secret keys

InternetEncrypt with
secret key

Decrypt with
secret key

Plaintext Plaintext

Ciphertext

48

Encrypting Larger Messages

� Initialization Vector (IV) is a random number generated by
sender and sent together with the ciphertext

+

Block1

Cipher1

DES

+

Block2

DES

+

Block3

DES

+

Block4

DES

Cipher2 Cipher3 Cipher4

IV

Page 9

49

DES Properties

� Provide confidentiality
- No mathematical proof, but practical evidence suggests that

decrypting a message without knowing the key requires exhaustive
search

- To increase security use triple-DES, i.e., encrypt the message three
times

50

Public-Key Cryptography: RSA (Rivest,
Shamir, and Adleman)

� Sender uses a public key
- Advertised to everyone

� Receiver uses a private key

InternetEncrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

51

Digital Signature

� In practice someone cannot alter the message without modifying the
digest

- Digest operation very hard to invert
� Encrypt digest with sender’s private key
� KA

-, KA
+: private and public keys of A

52

Digital Signature Properties

� Integrity: an attacker cannot change the message without
knowing A’s private key

� Confidentiality: if needed, encrypt message with B’s public
key

53

Overview

� Remote Procedure Call (RPC)
� Threads
� Agreement
� Group communication
� Distributed commit
� Security

• Cryptographic Algorithms (Confidentiality and Integrity)
�

Authentication

54

Authentication

� Goal: Make sure that the sender an receiver are the ones
they claim to be

� Solutions based on secret key cryptography (e.g., DES)
- Three-way handshaking
- Trusted third party (key distribution center)

� One solution based on public key cryptography (e.g., RSA)
- Public key authentication

Page 10

55

Authentication

� Authentication based on a shared secret key

- A, B: sender and receiver identities

- KA,B: shared secret key

- RA,RB: random keys exchanged by A and B to verify identities

A
lic

e

B
ob

A1

RB
2

3 KA,B(RB)

RA
4

5 KA,B(RA)

56

Authentication using KDC
(Basic Protocol)

� KDC – Key Distribution Center
� Maintain only N keys in the system: one for each node

A
lic

e

B
ob

A, B1

K
D

C
 (

ge
ne

ra
te

s
K

A
,B

)

2 KA,KDC(KA,B) KB,KDC(KA,B)2

57

Authentication using KDC
(Ticket Based)

� No need for KDC to contact Bob

A
lic

e

B
ob

A, B1

K
D

C

2 KA,KDC(KA,B),

3

KB,KDC(KA,B)

A, KB,KDC(KA,B)

� Vulnerable to replay attacks if Chuck gets hold on KB,KDC
old

58

Authentication Using Public-Key
Cryptography

� KA
+, KB

+: public keys

A
lic

e

B
ob

KB
+(A, RA)1

2 KA
+(RA, RB,KA,B)

3 KA,B(RB)

59

Midterm Information

� Closed books; 8,5”x11” crib sheet (both sides)
� No calculators, PDAs, cell phones with cameras, etc
� Please use PENCIL and ERASER
� Expect also questions from project (e.g., XML-RMI)

