
Page 1

1

CS 194: Lecture 15

Midterm Review

2

Notation

� Red titles mean start of new topic

� They don’t indicate increased importance…..

3

Clock Synchronization

� Distributed systems often require roughly consistent 
notions of time

� Usually the requirement isn’t that time is accurate (UTC), 
only that it is synchronized

� However, synchronizing machines with UTC automatically 
synchronizes all machines with each other

� Two well-known methods:
- Cristian’s algorithm (UTC time-server based)

- Berkeley algorithm (no UTC signal, but master)
4

Clock Synchronization (Cristian)

� Client polls time server (which has external UTC source)

� Gets time from server

� Adjusts received time by adding estimate of one-way delay
- Estimates travel time as 1/2 of RTT
- Adds this to server time

� Errors introduced not by delays, but by asymmetry in 
delays (path to server and path from server)

5

Clock Synchronization (Berkeley)

� Time master polls clients (master has no UTC)

� Gets time from each client, and averages

� Sends back message to each client with a recommended 
adjustment

� Clocks are synchronized, but not UTC

� Errors arise when nodes have different delays from master

6

Logical Clocks

� Most algorithms don’t require tightly synchronized clocks, 
but they often require a common notion of causality

� That is, events can be ordered arbitrarily, as long as 
causality isn’t violated

� For example, it doesn’t matter whether I updated my 
password in Japan before or after someone saved a file in 
Chile, as long as no messages or other interactions 
occurred between the two systems

� Lamport captured this notion of causality



Page 2

7

Lamport Timestamps

� When message arrives, if process time is less 
than timestamp s, then jump process time to s+1

� Clock must tick once between every two events

� If A → B then must have L(A) < L(B)
- logical clock ordering never violates causaility

� If L(A) < L(B), it does NOT follow that A → B
- Lamport clocks leave some causal ambiguity

8

Vector Timestamps Definition

� VI[I]: number of events occurred in process I
- Not using Lamport’s rule of jumping clocks ahead!

� VI[J] = K: process I knows that K events have 
occurred at process J

� All messages carry vectors

� When J receives vector v, for each K it sets 
VJ[K] = v[K] if it is larger than its current value

� It then updates VJ[J] by one (to reflect recv event)

9

Questions

� Can a message from I to J have v[J] greater than the 
current value of VJ[J]?

� Can it be equal? (not after J updates after receipt!)

� Right after a message from I to J is received and VJ is 
updated, can you have v[K] > VJ[K]?

� Therefore, after a message from I to J arrives, VJ
dominates VI

- Greater than or equal in every entry

10

Vector Timestamps Properties

� A → B, if and only if the vector associated with B 
dominates that of A

� A and B are concurrent if and only if the vectors 
from A and B are not comparable:

- At least one element from A greater than that of B

- At least one element from B greater than that of A

11

Elections

� Need to select a special node, that all other nodes agree on

� Assume all nodes have unique ID

� Example methods for picking node with highest ID
- Bully algorithm

- Gossip method

12

Exclusion

� Ensuring that a critical resource is accessed by no more 
than one process at the same time

� Methods:
- Centralized coordinator: ask, get permission, release

- Distributed coordinator: treat all nodes as coordinator

• If two nodes are competing, timestamps resolve conflict

- Interlocking permission sets: Every node I asks permission from set 
P[I], where P[I] and P[J] always have nonempty intersections



Page 3

13

Concurrency Control

� Want to allow several transactions to be in progress

� But the result must be the same as some sequential order 
of transactions

� Use locking policies:
- Grab and hold

- Grab and unlock when not needed

- Lock when first needed, unlock when done

- Two-phase locking

� Which policies can have deadlock?
14

Alternative to Locking

� Use timestamp ordering
- Retrying an aborted transaction uses new timestamp

� Data items have:
- Read timestamp tR: timestamp of transaction that last read it
- Write timestamp tW: timestamp of transaction that last wrote it

� Pessimistic timestamp ordering:
- When reading, abort if ts<tW(A)
- When writing, abort if ts<tR(A)

� Optimistic: do all your work, then check to make sure no 
timestamp conditions are violated

15

Data Replication and Consistency

� Scalability requires replicated data

� Application correctness requires some form of consistency
- Here we focus on individual operations, not transactions

� How do we reconcile these two requirements?

16

Models of Consistency

� Strict consistency (in your dreams…)

� Linearizable (in your proofs….)

� Sequential consistency: same order of operations

� Causal consistency: all causal operations ordered

� FIFO consistency: operations within process ordered

17

Mechanisms for Sequential 
Consistency

� Local cache replicas: pull, push, lease
- Why does this produce sequential consistency?

� Primary-based replication protocols: [won’t ask]

� Replicated-write protocols: quorum techniques

� Cache-coherence protocols [didn’t cover]

18

Quorum-based Protocols

� Assign a number of votes V(I) to each replica I
- Let V be the total number of votes

� VR=read quorum, VW=write quorum

� Requirements: VR+VW > V and VW > V/2

� Examples: 
- Read-one, write-all

- Majority



Page 4

19

Scaling

� None of these protocols scale

� To read or write, you have to either
- (a) contact a primary copy

- (b) contact over half of the replicas

� All this complication is to ensure sequential consistency

� Can we weaken sequential consistency without losing 
some important features?

20

Eventual Consistency

� Rather than insisting that the order of operations meet 
some standard, we ask only that in the end all nodes 
eventually agree

- If updates are stopped, will mechanism produce uniform replicas?

� Some of the previous notions of consistency did not 
produce this!

- FIFO, and causal

21

Implementing Eventual Consistency

� All writes eventually propagate to all replicas

� Writes, when they arrive, are applied in the same order at 
all replicas

- Easily done with timestamps and “undo”

22

Update Propagation

� Rumor or epidemic stage:
- Attempt to spread an update quickly
- Willing to tolerate incompletely coverage in return for reduced traffic 

overhead

- Push/pull methods spreading methods (pull better than push)

� Correcting omissions:
- Making sure that replicas that weren’t updated during the rumor 

stage get the update

- Anti-entropy

23

Bayou

Will NOT be on midterm!

24

Bayou Design Choices

� Variable connectivity � Flexible update propagation
- Incremental progress, pairwise communication

� Variable end-nodes � Flexible notion of clients and servers
- Some nodes keep state (servers), some don’t (clients)

- Laptops could have both, PDAs probably just clients

� Availability crucial � Must allow disconnected operation
- Conflicts inevitable
- Use application-specific conflict detection and resolution



Page 5

25

Components of Design

� Update propagation

� Conflict detection

� Conflict resolution

� Session guarantees

26

The CAP Theorem

� Perspective on tradeoffs in distributed systems

� Asks why there are different design philosophies

27

BASE or ACID?

� Classic distributed systems: focused on ACID semantics
- A: Atomic
- C: Consistent

- I: Isolated

- D: Durable

� Modern Internet systems: focused on BASE
- Basically Available

- Soft-state (or scalable)

- Eventually consistent

28

Why the Divide?

� What goals might you want from a shared-date system?
- C, A, P

� Strong Consistency: all clients see the same view, even in 
the presence of updates

� High Availability: all clients can find some replica of the 
data, even in the presence of failures

� Partition-tolerance: system as a whole can survive 
partition

29

CAP Theorem

� You can only have two out of these three properties

� The choice of which feature to discard determines the 
nature of your system

30

Consistency and Availability

� Comment:
- Providing transactional semantics requires all functioning nodes to 

be in contact with each other

� Examples:
- Single-site and clustered databases

- Other cluster-based designs

� Typical Features:
- Two-phase commit

- Cache invalidation protocols

- Classic DS style



Page 6

31

Consistency and Partition-Tolerance

� Comment:
- If one is willing to tolerate system-wide blocking, then can provide 

consistency even when there are temporary partitions

� Examples:
- Distributed databases
- Distributed locking
- Quorum (majority) protocols

� Typical Features:
- Pessimistic locking
- Minority partitions unavailable
- Also common DS style

• Voting vs primary replicas
32

Partition-Tolerance and Availability

� Comment:
- Once consistency is sacrificed, life is easy….

� Examples:
- DNS
- Web caches
- Coda
- Bayou

� Typical Features:
- TTLs and lease cache management
- Optimistic updating with conflict resolution
- This is the “Internet design style”

33

Summary of Techniques/Tradeoffs

� Expiration-based caching: AP not C

� Quorum/majority algorithms: PC not A

� Two-phase commit: AC not P


