CS 194: Lecture 15

Midterm Review

Notation

Red titles mean start of new topic

They don't indicate increased importance.....

Clock Synchronization

Distributed systems often require roughly consistent
notions of time

Usually the requirement isn’t that time is accurate (UTC),
only that it is synchronized

However, synchronizing machines with UTC automatically
synchronizes all machines with each other

Two well-known methods:
- Cristian’s algorithm (UTC time-server based)
- Berkeley algorithm (no UTC signal, but master)

Clock Synchronization (Cristian)

Client polls time server (which has external UTC source)
Gets time from server

Adjusts received time by adding estimate of one-way delay
- Estimates travel time as 1/2 of RTT
- Adds this to server time

Errors introduced not by delays, but by asymmetry in
delays (path to server and path from server)

Clock Synchronization (Berkeley)

Time master polls clients (master has no UTC)
Gets time from each client, and averages

Sends back message to each client with a recommended
adjustment

Clocks are synchronized, but not UTC

Errors arise when nodes have different delays from master

Logical Clocks

Most algorithms don’t require tightly synchronized clocks,
but they often require a common notion of causality

That is, events can be ordered arbitrarily, as long as
causality isn't violated

For example, it doesn’'t matter whether | updated my
password in Japan before or after someone saved a file in
Chile, as long as no messages or other interactions
occurred between the two systems

Lamport captured this notion of causality

Page 1

Lamport Timestamps

= When message arrives, if process time is less
than timestamp s, then jump process time to s+1

= Clock must tick once between every two events

= If A » B then must have L(A) < L(B)
- logical clock ordering never violates causaility

= If L(A) < L(B), it does NOT follow that A - B
- Lamport clocks leave some causal ambiguity

Vector Timestamps Definition

= V|[I]: number of events occurred in process |
- Not using Lamport's rule of jumping clocks ahead!

= V|[J] = K: process | knows that K events have
occurred at process J

All messages carry vectors

= When J receives vector v, for each K it sets
V,[K] = VIK] if it is larger than its current value

= It then updates V,[J] by one (to reflect recv event)

Questions

Can a message from | to J have V[J] greater than the
current value of V;[J]?

Can it be equal? (not after J updates after receipt!)

Right after a message from | to J is received and V, is
updated, can you have V[K] > V,[K]?

Therefore, after a message from | to J arrives, V,
dominates V,

- Greater than or equal in every entry

Vector Timestamps Properties

= A - B, if and only if the vector associated with B
dominates that of A

= A and B are concurrent if and only if the vectors
from A and B are not comparable:

- At least one element from A greater than that of B
- Atleast one element from B greater than that of A

10

Elections

= Need to select a special node, that all other nodes agree on
= Assume all nodes have unique ID

= Example methods for picking node with highest ID
- Bully algorithm
- Gossip method

11

Exclusion

= Ensuring that a critical resource is accessed by no more
than one process at the same time

= Methods:
- Centralized coordinator: ask, get permission, release

- Distributed coordinator: treat all nodes as coordinator
« If two nodes are competing, timestamps resolve conflict

- Interlocking permission sets: Every node | asks permission from set
P[l], where P[I] and P[J] always have nonempty intersections

12

Page 2

Concurrency Control

Want to allow several transactions to be in progress

But the result must be the same as some sequential order
of transactions

Use locking policies:
- Grab and hold
- Grab and unlock when not needed
- Lock when first needed, unlock when done
- Two-phase locking

Which policies can have deadlock?
13

Alternative to Locking

Use timestamp ordering
- Retrying an aborted transaction uses new timestamp

Data items have:
- Read timestamp tR: timestamp of transaction that last read it
- Write timestamp tW: timestamp of transaction that last wrote it

Pessimistic timestamp ordering:
- When reading, abort if ts<tW(A)
- When writing, abort if ts<tR(A)

Optimistic: do all your work, then check to make sure no
timestamp conditions are violated

14

Data Replication and Consistency

Scalability requires replicated data

Application correctness requires some form of consistency
- Here we focus on individual operations, not transactions

How do we reconcile these two requirements?

15

Models of Consistency

Strict consistency (in your dreams...)

Linearizable (in your proofs....)

Sequential consistency: same order of operations
Causal consistency: all causal operations ordered

FIFO consistency: operations within process ordered

16

Mechanisms for Sequential
Consistency

Local cache replicas: pull, push, lease
- Why does this produce sequential consistency?

Primary-based replication protocols: [won't ask]
Replicated-write protocols: quorum techniques

Cache-coherence protocols [didn’t cover]

17

Quorum-based Protocols

Assign a number of votes V(l) to each replica |
- Let V be the total number of votes

VR=read quorum, VW=write quorum
Requirements: VR+VW >V and VW > V/2

Examples:
- Read-one, write-all
- Majority

18

Page 3

Scaling

= None of these protocols scale

« Toread or write, you have to either
- (a) contact a primary copy
- (b) contact over half of the replicas

= All this complication is to ensure sequential consistency

= Can we weaken sequential consistency without losing
some important features?

19

Eventual Consistency

= Rather than insisting that the order of operations meet
some standard, we ask only that in the end all nodes
eventually agree
- If updates are stopped, will mechanism produce uniform replicas?

= Some of the previous notions of consistency did not
produce this!
- FIFO, and causal

20

Implementing Eventual Consistency

= All writes eventually propagate to all replicas

= Writes, when they arrive, are applied in the same order at
all replicas
- Easily done with timestamps and “undo”

21

Update Propagation

= Rumor or epidemic stage:
- Attempt to spread an update quickly

- Willing to tolerate incompletely coverage in return for reduced traffic
overhead

- Push/pull methods spreading methods (pull better than push)

= Correcting omissions:

- Making sure that replicas that weren't updated during the rumor
stage get the update

- Anti-entropy

22

Bayou

Will NOT be on midterm!

23

Bayou Design Choices

= Variable connectivity = Flexible update propagation
- Incremental progress, pairwise communication

= Variable end-nodes = Flexible notion of clients and servers
- Some nodes keep state (servers), some don't (clients)
- Laptops could have both, PDAs probably just clients

= Availability crucial = Must allow disconnected operation

- Conflicts inevitable
- Use application-specific conflict detection and resolution

24

Page 4

Components of Design

= Update propagation
« Conflict detection
= Conflict resolution

» Session guarantees

25

The CAP Theorem

= Perspective on tradeoffs in distributed systems

» Asks why there are different design philosophies

26

BASE or ACID?

= Classic distributed systems: focused on ACID semantics
- A: Atomic
- C: Consistent
- I: Isolated
- D: Durable

= Modern Internet systems: focused on BASE
- Basically Available
- Soft-state (or scalable)
- Eventually consistent

27

Why the Divide?

What goals might you want from a shared-date system?
- C,AP

Strong Consistency: all clients see the same view, even in
the presence of updates

High Availability: all clients can find some replica of the
data, even in the presence of failures

Partition-tolerance: system as a whole can survive
partition

28

CAP Theorem

= You can only have two out of these three properties

= The choice of which feature to discard determines the
nature of your system

29

Consistency and Availability

= Comment:

- Providing transactional semantics requires all functioning nodes to
be in contact with each other

= Examples:
- Single-site and clustered databases
- Other cluster-based designs

= Typical Features:
- Two-phase commit
- Cache invalidation protocols
- Classic DS style

30

Consistency and Partition-Tolerance

= Comment:

- If one is willing to tolerate system-wide blocking, then can provide
consistency even when there are temporary partitions

= Examples:
- Distributed databases
- Distributed locking
- Quorum (majority) protocols

= Typical Features:
- Pessimistic locking
- Minority partitions unavailable
- Also common DS style
« Voting vs primary replicas

Partition-Tolerance and Availability

= Comment:
- Once consistency is sacrificed, life is easy....

= Examples:
- DNS
- Web caches
- Coda
- Bayou

= Typical Features:
- TTLs and lease cache management
- Optimistic updating with conflict resolution
- This is the “Internet design style”

32

31
Summary of Techniques/Tradeoffs
= Expiration-based caching: AP not C
= Quorum/majority algorithms: ~ PC not A
= Two-phase commit: AC not P
33

Page 6

