
Page 1

1

CS 194: Distributed Systems
Distributed based Object Systems

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Outline

� Common Object Request Broker Architecture (CORBA)
� Distributed Common Object Model (DCOM)

3

Introduction to CORBA

� The Object Management Group (OMG) was formed in
1989. Its aims were:

- to make better use of distributed systems

- to use object-oriented programming

- to allow objects in different programming languages to
communicate with one another

� The object request broker (ORB) enables clients to
invoke methods in a remote object

� CORBA is a specification of an architecture supporting
this.

- CORBA 1 in 1990 and CORBA 2 in 1996.

• 4

Generic Architecture

Middleware

Object

Client Server

Object

5

CORBA Architecture

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

� Remote-object: object implementation resides in server’s
address space

6

Stub

� Provides interface between client object and ORB
� Marshalling: client invocation
� Unmarshalling: server response

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

Page 2

7

Skeleton

� Provides iterface between server object and ORB
� Unmarshaling: client invocation
� Marshaling: server response

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

8

(Portable) Object Adapter (POA)

� Register class implementations
� Creates and destroys objects
� Handles method invokation
� Handles client authentication and access control

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

9

Object Request Broker (ORB)
� Communication infrastructure sending messages between

objects
� Communication type:

- GIOP (General Inter-ORB Protocol)

- IIOP (Internet Inter-ORB Protocol) (GIOP on TCP/IP)

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

10

CORBA Object

Server

Interface
IDL

C++/Java
Implementation

Interoperable Object Reference
CORBA

Object

Servant

11

Interoperable Object Reference (IOR)

• Uniquely identifies an object
• Example

• IOR:000000000000001049444c3a5472697669616c3a312e300000000001
000000000000007c000102000000000d3135322e38312e342e3131300000
048000000025abacab3131303033383632313336005f526f6f74504f41000
0cafebabe3bd5b8780000000000000000000001000000010000002c00000
000000100010000000400010020000101090001010005010001000101090
00000020001010005010001

Server

Interface
IDL

C++/Java
Implementation

Interoperable Object Reference
CORBA

Object

Servant

12

Interface Definition Language (IDL)

� Describes interface
� Language independent
� Client and server platform independent

Server

Interface
IDL

C++/Java
Implementation

Interoperable Object Reference
CORBA

Object

Servant

Page 3

13

Overall CORBA Architecture

ORB

Client Server

IIOP
ORB

Stub Object Adapter

Skeleton

C++ Object IDL Java Object

Implementation
repository

Interface
repository

Implementation repository
�

activates registered servers on demand and locates running servers
�

uses the object adapter name to register and activate servers

Implementation repository
�

activates registered servers on demand and locates running servers
�

uses the object adapter name to register and activate servers

Interface repository
the interface repository provides information about registered IDL interfaces to
clients and servers that require it.

Interface repository
the interface repository provides information about registered IDL interfaces to
clients and servers that require it.

14

Example of CORBA Services

� Naming: Keeps track of association between object
names and their reference. Allows ORB to locate
referenced objects

� Life Cycle: Handles the creation, copying, moving,
and deletion objects

� Trader: A “yellow pages” for objects. Lets you find
them by the services they provide

� Event: Facilitates asynchronous communications
through events

� Concurrency: Manages locks so objects can share
resources

� Query: Locates objects by specified search criteria
� …

15

Object Invocation Models

� Invocation models supported in CORBA

Caller continues immediately
and can later block until
response is delivered

At-most-onceDeferred
synchronous

Caller continues immediately
without waiting for any response
from the server

Best effort deliveryOne-way

Caller blocks until a response is
returned or an exception is
raised

At-most-onceSynchronous

DescriptionFailure semanticsRequest type

16

Event and Notification Services (1)

� Push model
� Each event is associated with a single data item
� Events are delivered through a channel
� Consumers need to register to a channel

17

Event and Notification Services (2)

� Pull model

18

Messaging (1)

� Asynchronous method invocation
� Example:

void sendcb_add(in int i, in int j); // called by client

void replycb_add(in int ret_val, in int k); // called by client’s ORB

Page 4

19

Messaging (2)

� Pulling model for asynchronous method invocation
� Example:

void sendpoll_add(in int i, in int j); // called by client
void replycall_add(out int ret_val, out int k); // called by the client

20

Interoperability

� Allow multi-vendor ORB implementations to
communicate with each other

� General Inter-ORB Protocol (GIOP) message types

Part (fragment) of a larger messageBothFragment

Contains information on an errorBothMessageError

Indication that connection will be closedBothCloseConnection

Indicates client no longer expects a replyClientCancelRequest

Contains location information on an objectServerLocateReply

Contains a request on the exact location of an
objectClientLocateRequest

Contains the response to an invocationServerReply

Contains an invocation requestClientRequest

DescriptionOriginatorMessage type

21

Object References (1)

� The organization of an IOR with specific information for
IIOP

22

Object References (2)

� Indirect binding in CORBA

23

Fault Tolerance: Object Groups

� Object groups: one or mode identical copies of same object
� Replication transparent to client
� Replication strategies

- Primary-backup, Quorum, ….

24

Security

� Transparency: application-level objects should be unaware
of security services which are used

� Control: client/object should be able to specify security
requirements

� Security polices: specified by policy objects

� Administrative domain where client/server is executed
determines set of security services

Page 5

25

Secure Object Invocation in CORBA

26

CORBA Application

1) Define interface using IDL
2) Compile interface
3) Implement interface
4) Instantiate server:

• Register object as a CORBA object

5) Instantiate client:
• Invoke CORBA object

• Example using a Java client and server

27

CORBA IDL interfaces Shape and
ShapeList

struct
Rectangle{

long width;
long height;
long x;
long y;

} ;

struct GraphicalObject
{

string type;
Rectangle enclosing;
boolean isFilled;

};

interface Shape {
long getVersion() ;
GraphicalObject getAllState() ; // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All;
interface ShapeList {

exception FullException{ };
Shape newShape(in GraphicalObject g) raises (FullException);
All allShapes(); // returns sequence of remote object references
long getVersion() ;

};

Figure 17.1

an interface specifies a name and a set of methods

interface ShapeList

the parameter of newShape is an in parameter
and of type Graphical Object The return value
is an extra out parameter of type Shape. No
classes can be passed as arguments or results

sequences and arrays in typedefs

Exceptions defined by raises and
set by throw. They can have
arguments.

this struct is used as a parameter or
result type in methods in the remote
interfaces

this struct is used in
defining another struct.

28

IDL Interface

� The interface compiler is called idltojava
� When given an IDL interface, it produces

- Server skeletons for each class (e.g. _ShapeListImplBase)

- Proxy classes (e.g. _ShapeListStub)

- A Java class for each struct e.g. Rectangle, GraphicalObject

- Helper classes (narrow method) and holder classes (for out
arguments)

- The equivalent Java interfaces (e.g. ShapeList below)

29

The ShapeListServant class of the Java server
program for the CORBA interface ShapeList

import org.omg.CORBA.*;
class ShapeListServant extends _ShapeListImplBase {

ORB theOrb;
private Shape theList[];
private int version;
private static int n=0;
public ShapeListServant(ORB orb){

theOrb = orb;
// initialize the other instance variables

}
public Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException {

version++;
Shape s = new ShapeServant(g, version);
if(n >=100) throw new ShapeListPackage.FullException();

theList[n++] = s;
theOrb.connect(s);
return s;

}
public Shape[] allShapes(){ ... }
public int getVersion() { ... }

}

� A Java server has classes for its
IDL interfaces (e.g. Shape and
ShapeList). Here is the class
ShapeListServant

A servant class extends the corresponding
skeleton class (e.g. ShapeListImplBase)

A servant class implements the methods in the
interface (ShapeList). newShape is a factory
method. It creates new CORBA objects. It
uses the connect method to inform the ORB
about the new CORBA object. (it has a remote
reference module)

CORBA objects are instances of servant
classes.

30

Java class ShapeListServer (the
server class)

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListServer {

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null);
ShapeListServant shapeRef = new ShapeListServant(orb);
orb.connect(shapeRef);
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", "");
NameComponent path[] = {nc};
ncRef.rebind(path, shapeRef);
java.lang.Object sync = new java.lang.Object();
synchronized (sync) { sync.wait();}

} catch (Exception e) { ... }
}

}

The server class contains the main method

it creates and initialises the ORB

it creates an instance of ShapeListServant class - a
Java object - which is made a CORBA object
by using the connect method to register it with the

ORB

it waits for client requests

1. it gets a reference to the Naming Service
2. narrows it to NamingContext- from Object
3. makes a NameComponent containing the

name “ShapeList”
4. makes a path

5. uses rebind to register the name and
object reference

Page 6

31

it creates and initialises an ORB

Java client program for CORBA
interfaces Shape and ShapeList

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListClient{

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null);
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", "");
NameComponent path [] = { nc };
ShapeList shapeListRef =

ShapeListHelper.narrow(ncRef.resolve(path));
Shape[] sList = shapeListRef.allShapes();
GraphicalObject g = sList[0].getAllState();

} catch(org.omg.CORBA.SystemException e) {...}
}

it invokes the allShapes method in the CORBA object to get an array
containing remote references to all of the GraphicalObjects currently
stored by the server

it uses one of the remote references in the array to
invoke the getAllState method in the corresponding
CORBA object whose type is Shape
the value returned is of type GraphicalObject

1. it contacts the NamingService for initial context
2. Narrows it to NamingContext
3. It makes a name component
4. It makes a path
5. It gets a reference to the CORBA object called

“ShapeList”, using resolve and narrows it

32

Outline

� Common Object Request Broker Architecture (CORBA)
� Distributed Common Object Model (DCOM)

33

Distributed Component Object
Model (DCOM)

� Designed by Microsoft
� Based on Component Object Model (COM)
� Addresses issues such as:

- Interoperability

• Different applications, platforms, languages

- Versioning

• Compatibility between a new version of a server and old
versions of clients

� New interfaces should preserve the old interface

- Naming

• Use Globally unique identifiers

34

History

� DDE
�

OLE1
�

COM
�

OLE
�

DCOM
� Dynamic Data Exchange (DDE)

- For data exchange between any application through clipboard package
- Originally for Windows 2.1

� Object Linking and Embedding (OLE v1.0)
- A compound document can embed objects belonging to other applications
- E.g., an Excel spreadsheet in a Word document
- An embedded object is linked to its original application
- Restricted to document objects

35

History (continued)

� Component Object Model (COM)
- Interoperability of components

- Ability to share non-document based components

- Object-based technology

• Identity, polymorphism (multiple interfaces to a component),
interface inheritance

� OLE
- Layered on top of COM (and DCOM)

- Links the application layer to the underlying COM architecture

36

Object Model

� The difference between language-defined (CORBA) and
binary interfaces (DCOM)

Page 7

37

DCOM Properties

� Distributed shared memory management
- DCOM provides interfaces for distributed components to share

memory

� Network interoperability and transparency

� Dynamic loading and unloading
- DCOM manages reference counts to objects
- Unloads objects whose reference count is 0

� Status reporting
- Of remote execution using HRESULT struct

38

DCOM Services

� DCOM is responsible for initializing a connection between
components, and

- Negotiating protocols for communication

� DCOM provides support for persistent storage
- Objects can persist

� Components can be assigned “intelligent names” called
monikers

39

DCOM Architecture

� SCM: Service Control Manager

40

Creating objects

� Classes of objects have globally unique identifiers (GUIDs)
- 128 bit numbers
- Also called class ids (CLSID)

� DCOM provides functions to create objects given a server
name and a class id

- The SCM on the client connects to the SCM of the server and
requests creation of the object

41

MIDL

� An extension of DCE’s IDL

� The MIDL compiler generates the client and server stub
files

� Every DCOM interface inherits from an interface known
as IUnknown

- Interface names start with I

- IUnknown has three methods

• AddRef(), Release() and QueryInterface()

• AddRef() and Release() are used to manage reference
counts (for memory management)

42

Events

� Event processing in DCOM.

Page 8

43

Passing an Object Reference in DCOM
(with custom marshaling)

44

Monikers (1)

� Object names (as opposed to class names) are called monikers

� A moniker distinguishes one instance from another of the same
class

� Monikers themselves are objects

� A moniker carries enough information to locate the object it
represents

- They can also recreate the object, if it is not currently running

� They have a human readable form similar to a URL. Example:
Moniker for a file object “ f i l e: c: \ my document s\ Jul y
Repor t . doc”

45

Monikers (2)

� When a client passes a moniker to access an object,
COM looks up a Running Object Table (ROT) for the
moniker name

- If it exists, a pointer to the object is returned

- Else, a new object instance is created, its state is restored, its
reference is entered in ROT, and a pointer to the object is
returned to the client

• Monikers contain reference to the object’s persisted state

46

Fault Tolerance

Never join a transaction, even if told to do soDISABLED

Never join a transactionNOT_SUPPORTED

Join a transaction only if caller is already part of oneSUPPORTED

A new transaction is started if not already done soREQUIRED

A new transaction is always started at each
invocationREQUIRES_NEW

DescriptionAttribute value

� Supported by mean of transactions
� Developer specify that a series of method invocations

should be grouped in a transaction

47

Declarative Security (1)

� Authentication levels in DCOM

Authenticate, integrity-check, and encrypt data
packetsPACKET_PRIVACY

Authenticate data packets and do integrity checkPACKET_INTEGRI
TY

Authenticate all data packetsPACKET

Authenticate client at each invocationCALL

Authenticate client when first connected to serverCONNECT

No authentication is requiredNONE

DescriptionAuthentication
level

48

Declarative Security (2)

� Impersonation levels in DCOM

The server can invoke remote objects on behalf
of the clientDELEGATE

The server can invoke local objects on behalf of
the clientIMPERSONATE

The server knows the client and can do access
control checksIDENTIFY

The client is completely anonymous to the
serverANONYMOUS

DescriptionImpersonation
level

Page 9

49

Programmatic Security (1)

Kerberos authenticationGSS_KERBEROS

Windows NT securityWINNT

DEC authentication based on public keysDCE_PUBLIC

DCE authentication based on shared keysDCE_PRIVATE

No authenticationNONE

DescriptionService

� Allow applications to security levels, and choose between
different security services

� Default authentication services supported in DCOM:

50

Programmatic Security (2)

Default authorization services supported in DCOM

Authorization using DEC Privilege Attribute
Certificates (PACs)DCE

Authorization based on the client's identityNAME

No authorizationNONE

DescriptionService

51

CORBA vs. DCOM (1)

NoyesTrading service

YesYesDirectory service

Hard-codedFlexible (POA)Object server

YesYesMessaging

YesYesEvents

YesYesCallbacks

YesYesAsync.
communication

YesYesSync.
communication

BinaryIDL basedInterfaces

From environmentMany of its ownServices

Remote objectsRemote objectsObject model

FunctionalityInteroperabilityDesign goals

DCOMCORBAIssue

52

CORBA vs. DCOM (2)

DCOMCORBAIssue

Various
mechanisms

Various
mechanisms

Security

By transactionsYesRecovery support

By transactionsBy replicationFault tolerance

YesYesTransactions

NoneSeparate serverReplication
support

TransactionsTransactionsSynchronization

Interface pointerObject's locationObject reference

NoNoLocation service

YesYesNaming service

