CS 194: Distributed Systems
Distributed based Object Systems

Scott Shenker and lon Stoica
Computer Science Divison
Department of Electrica Engineering and Computer Sciences
Univerdty of California, Berkeley
Berkeley, CA 94720-1776

Outline

» Common Object Request Broker Architecture (CORBA)
» Distributed Common Object Model (DCOM)

Introduction to CORBA

= The Object Management Group (OMG) was formed in
1989. Its aims were:

- to make better use of distributed systems
- to use object-oriented programming

- to allow objects in different programming languages to
communicate with one another

= The object request broker (ORB) enables clients to
invoke methods in a remote object

= CORBA is a specification of an architecture supporting
this.

- CORBA 1in 1990 and CORBA 2 in 1996.

Generic Architecture

CORBA Architecture

= Remote-object: object implementation resides in server's
address space

Server

Client

Stub

= Provides interface between client object and ORB
= Marshalling: client invocation
= Unmarshalling: server response

Client Server
™~
(\

110P

Page 1

Skeleton

= Provides iterface between server object and ORB
= Unmarshaling: client invocation
= Marshaling: server response

Client Server
[0+ Ot ==

\/

110P

(Portable) Object Adapter (POA)

= Register class implementations

= Creates and destroys objects

= Handles method invokation

= Handles client authentication and access control

Server

Client

Object Request Broker (ORB)

= Communication infrastructure sending messages between
objects
= Communication type:
- GIOP (General Inter-ORB Protocol)
- 1lOP (Internet Inter-ORB Protocol) (GIOP on TCP/IP)

Server

Client

e T

Interoperable Object Reference (IOR)

- Uniquely identifies an object
- Example
« |IOR:000000000000001049444c3a5472697669616¢3a312e300000000001

000000000000007¢000102000000000d 3135322e38312e342e3131300000
048000000025abacab3131303033383632313336005f526f6f74504f41000
Ocafebabe3bd5b8780000000000000000000001000000010000002¢00000
000000100010000000400010020000101090001010005010001000101090
00000020001010005010001

Server
—————

CORBA
Object F 4
Servant

11

—
N\
110P
8
CORBA Object
Server
CORBA
Object
10
Interface Definition Language (IDL)
= Describes interface
= Language independent
= Client and server platform independent
Server
CORBA
Object F
\ 4 Servant
12

Page 2

Overall CORBA Architecture

Interface
repository

Implementation

Client repository

Server

Example of CORBA Services

Interface repository

the interface repository provides information about registered IDL interfaces to
clients and servers that require it.
Z 1

Implementation repository
activates registered servers on demand and locates running servers
uses the object adapter name to register and activate servers

13

Naming: Keeps track of association between object
names and their reference. Allows ORB to locate
referenced objects

Life Cycle: Handles the creation, copying, moving,
and deletion objects

Trader: A “yellow pages” for objects. Lets you find
them by the services they provide

Event: Facilitates asynchronous communications
through events

Concurrency: Manages locks so objects can share
resources

Query: Locates objects by specified search criteria

14

Object Invocation Models

= Invocation models supported in CORBA

Request type | Failure semantics Description

Synchronous At-most-once Caller blocks until a response is
returned or an exception is
raised

One-way Best effort delivery Caller continues immediately
without waiting for any response
from the server

Deferred At-most-once Caller continues immediately

synchronous and can later block until
response is delivered

Event and Notification Services (1)

= Push model

= Each event is associated with a single data item
= Events are delivered through a channel

= Consumers need to register to a channel

Push event to consumers

Consumer
Consumer

Event channel

16

15
Event and Notification Services (2)
= Pull model
Ask suppliers for new event
2
Event channel
-
17

Messaging (1)

= Asynchronous method invocation
= Example:
void sendch_add(ininti, inintj); // called by client
void replycb_add(in int ret_val, in int k); / called by client's ORB

Client application

1. Call _by t_he > *
application !
Client | Callback | 4. Call by the ORB
proxy ! interface
3 3. Response from server
Client |
ORB _ 7

2. Request to server

Page 3

Messaging (2)

= Pulling model for asynchronous method invocation
= Example:
void sendpoll_add(ininti, inintj); // called by client
void replycall_add(out int ret_val, out int k); // called by the client

‘ Client application
T Call_by t_he » * * < 4. Call _by t_he
application ’ application
Client | Polling
proxy 1 interface
3 A 3. Response from server
Client | ¥
ORB . |

2. Request to server

Interoperability

= Allow multi-vendor ORB implementations to
communicate with each other

= General Inter-ORB Protocol (GIOP) message types

Message type Originator | Description

Request Client Contains an invocation request

Reply Server Contains the response to an invocation
LocateRequest Client OCI;)jrét;\ins a request on the exact location of an
LocateReply Server Contains location information on an object
CancelRequest Client Indicates client no longer expects a reply
CloseConnection | Both Indication that connection will be closed
MessageError Both Contains information on an error

Fragment Both Part (fragment) of a larger message

20

Object References (1)

= The organization of an IOR with specific information for

1IOP
Tagged Profile
b Interoperable Object Reference (IOR)
Repository| | Profile

identifier I Profle ‘ o D ‘

e Host ‘ Port ‘ Object key | Components

version
POA Object Other server-
identifier | identifier | specific information

21

Object References (2)

= Indirect binding in CORBA

IOR refers to implementation repository

5. Actual invocation

Client / >

Object
server
4. Redirect message

SinekeRict IS actlv;e ; 2. Activate/start object

Implementation
repository

1. First invocation
or binding request

Fault Tolerance: Object Groups

= Object groups: one or mode identical copies of same object
= Replication transparent to client
= Replication strategies

- Primary-backup, Quorum,

Interoperable Object Group Reference (I0GR)

Repository| | Profile, o o . | Profile
identifier | | 1D Braties] o Profile-N
]IOP Object lorP Object
ver, | Host-1 Porm‘ ¥ey.1 |Companents ver | HostN [PortN| | 7 |Components,
T Other group- [TAG Other group-
PRIMARY | specific information BACKUP | specific information

23

Security

Transparency: application-level objects should be unaware
of security services which are used

Control: client/object should be able to specify security
requirements

Security polices: specified by policy objects

Administrative domain where client/server is executed
determines set of security services

24

Page 4

Secure Object Invocation in CORBA

Client application Object implementation

Set of A
client-specific
policy objects

Set of
object»specwfic/‘ Policy
policy objects

~

CORBA Application

1)
2)
3)
4)

Define interface using IDL
Compile interface

Implement interface

Instantiate server:

* Register object as a CORBA object
Instantiate client:

« Invoke CORBA object

5)

« Example using a Java client and server

26

Client ORB [~ Set of relevant Server ORB
ORB security
Local OS SoicES Local OS
4 ! ! —
Network
Invocation
25
CORBA IDL interfaces Shape and
ShapelList
struct struct Graphical Object
Rectangle{
long width; string type;
long height: Rectangle enclosing;
longx; this struct is used in hoolean i<Filled:
longy, defining another struct. this struct is used as a parameter or
h esult type in methods in the remote
interface Shape(. interfaces
long getVersi
Grapfical Object gaNlSaleQ Il returns state of the Granhical Obiect

b ~an interface specifies a name and a set of methods
typedef sequence <Shape, 100> A“.,ﬁ——ff** sequences and arrays in typedefs

interface ShapeList { : :
exception FullException{ }; —— interface ShapeList

Shape newEh@pe(n Graphical Object g) raises (Full Exception);
AJI aJIEhapas() ~—~—_ " raurnswqumcege‘rmeob]ecl references

the parameter of newShape is an in parameter
and of type Graphical Object The return value set by throw. They can have
is an extra out parameter of type Shape. No arguments.

classes can be passed as arguments or results =

PE—

Exceptions defined by raises and

IDL Interface

= The interface compiler is called idltojava
= When given an IDL interface, it produces
- Server skeletons for each class (e.g. _ShapeListimplBase)
- Proxy classes (e.g. _ShapelListStub)
- AJava class for each struct e.g. Rectangle, GraphicalObject

- Helper classes (narrow method) and holder classes (for out
arguments)

- The equivalent Java interfaces (e.g. ShapeList below)

28

The ShapeListServant class of the Java server
program for the CORBA interface ShapelList

= AlJava server has classes for its

import org.omg.CORBA*; IDL interfaces (e.g. Shape and
dasosggﬁseg?ml exends_shapelistfimpl ase(ShapelList). Here is the class
r|

ShapelListServant
A servant class extends the corresponding
skeleton class (e.g. ShapeListimplBase)

private Shape theList[];

privateint version;

privatestaticint n=0;

public ShapeListServant(ORB orb){
theOrb = orb;

CORBA objects are instances of servant
Il'initialize the other instance vari

) classes.

public Shape newShape(Graphical Object g) throws Shapel.istPackage.FullException {
version++;
Shape s= new ShapeServant(g;-version);
iff(n >=100) throw new ShapeL_istPadkage.Full Exception();

:::éi,z[nmg . A servant class implements the methods in the
return ';’0 © interface (ShapeList). newShape is a factory

} method. It creates new CORBA objects. It
public Shape[] allshapes){ ..} Uses the connect method to inform the ORB

publicintgetVersion() { ... } about the new CORBA object. (it has a remote
} reference module)

Java class ShapeListServer (the
server class)

=

object reference

Sy S S o o

: . slass contains the main method
it gets a reference to the Naming Service o~

narrows it to NamingContext- from Object -
makes a NameComponent containing the
name “ShapeList” —
makes a path

uses rebind to register the name and

it creates and initialises the ORB

)eListServant(orb);

org.omg. CORBAOhlem OhiReF = \
" orbresolve in it creates an |nstance of ShapeListServant class - a
“ NamingContext nc Java object - which is made a CORBA object
NameComponent r by using the connect method to register it with the
NameComponent | ORB
" ncRef rebind(path, shapeRef);

javalang.Object sync = new java.lang.Object();

synchronized (sync) { - syncwaitQ:}———— ¢ waits for client requests
} catch (Exceptione){ ... }

}
} 30

Page 5

Java client program for CORBA
interfaces Shape and ShapelList

import org.omg.CosNaming.*;
import org.omg.CosNaming.Nam
import org.omg.CORBA*;
public class ShapeLigtClient{
public static void main(String
try{

o HwnE

it contacts the NamingService for initial context
Narrows it to NamingContext

It makes a name component

It makes a path

It gets a reference to the CORBA object called
“ShapelList”, using resolve and narrows it

ORB orb = ORB.init(args, nufl);
org.omg.CORBA.Object objRef =

P . nang it Uses one of the remote references in the

t |nvo_k§s B invoke the getAllState method in the corrésponding

containing remote re . N

stored by the server CORBA object whqse type is Shap:
-~~~ the value returned is of type Gr:
ShapeL.ist shapeListRet =

Shapel.istHel per .narr ow(ncRef.resolve(path));
" Shape[] sList = shapeListRef.all Shapes();
GraphicalObject g = sList[0] .getAll Sate();
} catch(org.omg.CORBA.SystemException €) {...}

31

Outline

= Common Object Request Broker Architecture (CORBA)
» Distributed Common Object Model (DCOM)

32

Distributed Component Object
Model (DCOM)

= Designed by Microsoft
= Based on Component Object Model (COM)
= Addresses issues such as:
- Interoperability
« Different applications, platforms, languages
- Versioning

« Compatibility between a new version of a server and old
versions of clients

o New interfaces should preserve the old interface
- Naming
« Use Globally unique identifiers

33

History

» DDE - OLE1 - COM = OLE - DCOM

= Dynamic Data Exchange (DDE)
- For data exchange between any application through clipboard package
- Originally for Windows 2.1

= Object Linking and Embedding (OLE v1.0)
- A compound document can embed objects belonging to other applications
- E.g., an Excel spreadsheet in a Word document
- An embedded object is linked to its original application
- Restricted to document objects

34

History (continued)

= Component Object Model (COM)
- Interoperability of components
- Ability to share non-document based components
- Object-based technology

« Identity, polymorphism (multiple interfaces to a component),
interface inheritance

= OLE

- Layered on top of COM (and DCOM)
- Links the application layer to the underlying COM architecture

35

Object Model

= The difference between language-defined (CORBA) and
binary interfaces (DCOM)

Binary interfaces

Pointer to method |
implementation

! —
=

IDLto-interface — >
compiler | »_e——»

. >

Java class defs

IDL specification

G+ class defs
C profotypes

Compiler-
specific
code

IDL-to-language
compiler language

Standard
programming-
compiler

Language-specific
interface descriptions

Language-defined interfaces 36

Page 6

DCOM Properties

= Distributed shared memory management

- DCOM provides interfaces for distributed components to share
memory

= Network interoperability and transparency

= Dynamic loading and unloading
- DCOM manages reference counts to objects
- Unloads objects whose reference count is 0

= Status reporting
- Of remote execution using HRESULT struct

DCOM Services

= DCOM is responsible for initializing a connection between
components, and
- Negotiating protocols for communication

= DCOM provides support for persistent storage
- Objects can persist

= Components can be assigned “intelligent names” called
monikers

38

37
DCOM Architecture
Client machine Object server
scMm Client application gt'j:; Objcﬂ scMm
Proxy Client | com Proxy | Object coMm
T marshaler proxy marshaler| stub T
Local OS Local OS v
Registry Registry U
[« I
Microsoft RPC LEATEILS
= SCM: Service Control Manager
39

Creating objects

= Classes of objects have globally unique identifiers (GUIDs)
- 128 bit numbers
- Also called class ids (CLSID)

= DCOM provides functions to create objects given a server
name and a class id

- The SCM on the client connects to the SCM of the server and
requests creation of the object

MIDL

= An extension of DCE’s IDL

= The MIDL compiler generates the client and server stub
files

= Every DCOM interface inherits from an interface known
as IlUnknown
- Interface names start with |
- lUnknown has three methods
« AddRef(), Release() and Querylinterface()

« AddRef() and Release() are used to manage reference
counts (for memory management)

41

40
Events
Supplier Consumer
Event class
object
Event Consumer
Interface . e
containing _m_event
m_event
Object
Invocation Invocation implementing
is stored is passed m_event
E to consumer
42

Page 7

Passing an Object Reference in DCOM
(with custom marshaling)

Process A Process B
Marshaled)
Client application dlient proxy Client application
Client Proxy l Proxy Client
proxy (un)marshaler (un)marshaler proxy

Binding information \ i Same binding
\ ! information

Object

Stub Object

Object server

43

Monikers (1)

Object names (as opposed to class names) are called monikers

A moniker distinguishes one instance from another of the same
class

Monikers themselves are objects

A moniker carries enough information to locate the object it
represents
- They can also recreate the object, if it is not currently running

They have a human readable form similar to a URL. Example:
Moniker for a file object “fil e: c:\ ny document s\ Jul y

Monikers (2)

= When a client passes a moniker to access an object,
COM looks up a Running Object Table (ROT) for the
moniker name
- Ifit exists, a pointer to the object is returned

- Else, a new object instance is created, its state is restored, its
reference is entered in ROT, and a pointer to the object is
returned to the client

« Monikers contain reference to the object's persisted state

45

Declarative Security (1)

= Authentication levels in DCOM

Authentication

level Description

NONE No authentication is required

CONNECT Authenticate client when first connected to server

CALL Authenticate client at each invocation

PACKET Authenticate all data packets

$¢CKET—INTEGRI Authenticate data packets and do integrity check

Authenticate, integrity-check, and encrypt data
PACKET_PRIVACY packets

47

Report. doc”
44
Fault Tolerance
= Supported by mean of transactions
= Developer specify that a series of method invocations
should be grouped in a transaction
Attribute value Description
A new transaction is always started at each
REQUIRES_NEW invocation
REQUIRED A new transaction is started if not already done so
SUPPORTED Join a transaction only if caller is already part of one
NOT_SUPPORTED | Never join a transaction
DISABLED Never join a transaction, even if told to do so
46
Declarative Security (2)
= Impersonation levels in DCOM
Impersonation -
level Description
ANONYMOUS The client is completely anonymous to the
server
The server knows the client and can do access
IDENTIFY control checks
The server can invoke local objects on behalf of
IMPERSONATE the client
DELEGATE The server can invoke remote objects on behalf
of the client

48

Programmatic Security (1)

= Allow applications to security levels, and choose between
different security services

= Default authentication services supported in DCOM:

Service Description

NONE No authentication

DCE_PRIVATE DCE authentication based on shared keys
DCE_PUBLIC DEC authentication based on public keys
WINNT Windows NT security

GSS_KERBEROS

Kerberos authentication

Programmatic Security (2)

Default authorization services supported in DCOM

49
CORBA vs. DCOM (1)
Issue CORBA DCOM
Design goals Interoperability Functionality
Object model Remote objects Remote objects
Services Many of its own From environment
Interfaces IDL based Binary
Sync.
communication Yes Yes
Async.
communication Yes Yes
Callbacks Yes Yes
Events Yes Yes
Messaging Yes Yes
Object server Flexible (POA) Hard-coded
Directory service Yes Yes
Trading service yes No
51

Service Description
NONE No authorization
NAME Authorization based on the client's identity
DCE Authorization using DEC Privilege Attribute
Certificates (PACs)
50
CORBA vs. DCOM (2)
Issue CORBA DCOM
Naming service Yes Yes
Location service No No
Object reference Object's location Interface pointer
Synchronization Transactions Transactions
Replication Separate server None
support
Transactions Yes Yes
Fault tolerance By replication By transactions
Recovery support | Yes By transactions
Security Various Various
mechanisms mechanisms
52

Page 9

