
Page 1

1

CS 194: Distributed Systems
Distributed File Systems

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Outline

� Network File System (NFS)
� CODA

3

Main Goal

� Provide a client transparent access to a file system stored
at a remote server

� Why would you want to store files remotely?

4

NFS

� A specification for a distributed file system (by Sun, 1984)
� Implemented on various OS’s
� De facto standard in the UNIX community
� Latest version is 4 (2000)
� Client-server file system

5

Access Model

� Two access models :
- Remote access
- Upload/Download

Remote access Upload/Download

6

NFS Architecture

� Virtual File System (VFS) provide a uniform access to local and remote
files

Page 2

7

File System Model

� Similar to UNIX: files are treated as uninterpreted
sequences of bytes

� Each files has a name, but usually referred by a file handle
- Client use a name service to get file handle

� Files organized into a naming graphs
- Nodes � directories or files

� First three versions were stateless; version 4 is stateful

8

Stateful vs. Stateless

� Stateless model: each call contains complete information to
execute operation

� Stateful model: server maintain context (info) shared by
consecutive operations

� Discussion: compare stateless and stateful design

9

Communication

� RPC based
� One operation per RPC (NFS v. 1,2,3)
� Multiple operations per RPC (NFS v. 4)

NFS v1,v2,v3 (stateless) NFS v4. (stateful)

10

Naming
� Allow a client to mount a remote file system into its own

local file system
� Pathnames are not globally unique; what’s the implication?

11

Example: Mounting Nested Directories

12

File Handles

� File handle: created by server hosting the file

� Unique with respect to all file systems exported by servers

� Persistent: doesn’t change during file’s lifetime

� Length: 32b in v2, 64b in v3, and 64b in v4

Page 3

13

Automounting

� Mount file system transparently when client accesses it

14

Mandatory File Attributes

Server-unique identifier of the file's file systemFSID

Indicator for a client to see if and/or when the file has
changedCHANGE

The length of the file in bytesSIZE

The type of the file (regular, directory, symbolic link)TYPE

DescriptionAttribute

15

Semantics of File Sharing

a) On a single processor, when a
read follows a write, the value
returned by the read is the
value just written

b) In a distributed system with
caching, obsolete values may
be returned.

16

Semantics of File Sharing

All changes occur atomicallyTransaction

No updates are possible; simplifies sharing and
replicationImmutable files

No changes are visible to other processes until the
file is closed

Session
semantics

Every operation on a file is instantly visible to all
processesUNIX semantics

CommentMethod

� NFS implements session semantics

17

File Locking in NFS

Renew the leas on a specified lockRenew

Remove a lock from a range of bytesLocku

Test whether a conflicting lock has been
grantedLockt

Creates a lock for a range of bytesLock

DescriptionOperation

� NFS v1-v3: use a separate (stateful) lock manager
� NFS v4: integrated in the file system

18

Client Caching

� NFS v1-v3: mainly left outside the protocol (see book)
� NFS v4: use file delegation

Page 4

19

Fault Tolerance

� Need to maintain state consistent in v4, e.g.,
- Locking
- Delegation

� Challenge: eliminate duplicate operations in case of failure

� Solution: use transaction identifiers (XID)

20

Handling Retransmissions

a) Request still in progress
b) Reply has just been returned
c) Reply has been some time ago, but was lost

21

Security

� Secure RPC: three methods
- System authentication: trust the user has passed a proper login

procedure

- Diffie-Hellman key exchange (but not very secure—uses only 192b
Keys)

- Kerberos

� File access control
- Use access control list (ACL)

22

Security Architecture

23

Outline

� Network File System (NFS)
� CODA

24

The Coda File System

� Developed at CMU

� Based on Andrew File System (AFS), another distributed
system developed at CMU

- Community wide system

Page 5

25

AFS Goals

� Scalability: system should grow without major problems

� Fault-Tolerance: system should remain usable in the
presence of server failures, communication failures and
voluntary disconnections

� Unix Emulation

� Design philosophy: Scalability and Accessibility more
important than consistency

26

Coda Goals

� AFS goals, plus

� Disconnected mode for portable computers

27

System Model

� Client workstations are personal computers owned by their
users

- Fully autonomous
- Cannot be trusted

� Coda allows laptops that operate in disconnected mode

28

Overall Organization of AFS & Coda

29

Internal Organization of Virtue

30

Communication

� Based on RPC2: provides reliable transmission on top of
UDP

� RPC2 supports side-effects, i.e., user defined protocols

� RPC2 provides support for multicast
- Transparent for the client

Page 6

31

Side Effects in Coda’s RPC

32

Support for Multicast in RCP2

� Example: send invalidation
a) One at a time

b) Multicast

33

Naming

� Single shared naming space (vs. client-based in NFS)

34

File Identifiers
� Globally unique (vs server unique in NFS)
� Coda distinguishes between physical and logical volumes
� Logical volume (identified by RVID) a possible replicated physical

volume (identified VID)

35

Sharing Files in Coda

� Transaction semantics
- Session is treated like a transaction

36

Caching and Replication

� Caching:
- Achieve scalability
- Increases fault tolerance

� Challenge: how to maintain data consistency?

� Solution: use callbacks to notify clients when a file changes
- If a client modifies a copy, server sends a callback break to all

clients maintaining copies of same file

Page 7

37

Example: Client Caching

38

Server Replication

� Unit of replication: volume

� Volume Storage Group (VSG): set of servers that have a
copy of a volume

� Accessible Volume Storage Group (AVSG): set of servers
in VSG that the client can contact

� Use vector versioning
- One entry for each server in VSG

- When file updated, corresponding version in AVSG is updated

39

Example: Handling Network Partition

� Versioning vector when partition happens: [1,1,1]
� Client A updates file � versioning vector in its partition: [2,2,1]
� Client B updates file � versioning vector in its partition: [1,1,2]
� Partition repaired � compare versioning vectors: conflict!

40

Disconnected Operation
� HOARDING: File cache in advance with all files that will be

accessed when disconnected
- Best effort

� EMULATION: when disconnected, behavior of server
emulated at client

� REINTEGRATION: transfer updates to server; resolves
conflicts

41

Security

� Set-up a secure channel between client and server
- Use secure RPC

� System-level authentication

42

Mutual Authentication in RPC2

� Based on Needham-Schroeder protocol

Page 8

43

Establishing a Secure Channel

� Upon authentication AS (authentication server) returns:
- Clear token: CT = [Alice, TID, KS, Tstart, Tend]

- Secret token: ST = Kvice([CT]*Kvice)

- KS: secret key obtained by client during login procedure

- Kvice: secret key shared by vice servers
� Token is similar to the ticket in Kerberos

C
lie

nt
 (

V
en

us
)

V
ic

e
S

er
ve

r
44

NFS vs Coda

Needham-SchroederExisting mechanismsSecure channels

ReintegrationClient-basedRecovery

Replication and cachingReliable comm.Fault tolerance

write-backwrite-backCache consist.

TransactionalSessionSharing sem.
GlobalPer clientName space

File systemDirectoryMount granularity

YesNoServer groups

RPCRPCCommunication

Up/DownloadRemoteAccess model
High availabilityAccess transparencyDesign goals

CodaNFSIssue

