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Outline

» Network File System (NFS)
« CODA

Main Goal

= Provide a client transparent access to a file system stored
at a remote server

= Why would you want to store files remotely?

NFS

= A specification for a distributed file system (by Sun, 1984)
= Implemented on various OS'’s

= De facto standard in the UNIX community

= Latest version is 4 (2000)

= Client-server file system

NFS Architecture
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Access Model
= Two access models :
- Remote access
- Upload/Download
Remote access Upload/Download
1. File moved to client
Client Server Client Server
= »
Requests from \ /
clientto access  File stays 2. Accesses are 3. WHsh slisitisdsns
remote file on server done on client | '

file is returned to
server
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= Virtual File System (VFS) provide a uniform access to local and remote
files

Client Server
System call layer System call layer
v
Virtual file system Virtual file system
(VFS) layer (VFS) layer
Local file Local file
system interface ‘ NFS client ‘ ‘ NFS server system interface
RPC client RPC server
stub stub
I

A

I

Network




File System Model

= Similar to UNIX: files are treated as uninterpreted
sequences of bytes

= Each files has a name, but usually referred by a file handle
- Client use a name service to get file handle

= Files organized into a naming graphs
- Nodes - directories or files

= First three versions were stateless; version 4 is stateful

Stateful vs. Stateless

= Stateless model: each call contains complete information to
execute operation

= Stateful model: server maintain context (info) shared by
consecutive operations

= Discussion: compare stateless and stateful design

Communication

= RPC based
= One operation per RPC (NFSv. 1,2,3)
= Multiple operations per RPC (NFS v. 4)

NFS v1,v2,v3 (stateless) NFS v4. (stateful)

Client Server Client Server
LOOKUP
OPEN
LOOKUP READ
Lookup name :r Lookup name
:) Open file
- "} Read file data
' Read file data il
Time o] Time

Naming

= Allow a client to mount a remote file system into its own
local file system

= Pathnames are not globally unique; what's the implication?

Client A

remote / N\, bin
<

Server Client B

£ Y
users, / \

A

f

Exported directory |

Exported directory

mounted by client mounted by client

Network

Example: Mounting Nested Directories

Exported directory
contains imported
subdirectory

Server A Server B

File Handles

\

Client
imports
directory

from
server A

=

Server A
imports
directory
from
i server B

Network

Client needs to

explicitly import
subdirectory from
server B

= File handle: created by server hosting the file
= Unique with respect to all file systems exported by servers
= Persistent: doesn’t change during file’s lifetime

= Length: 32bin v2, 64b in v3, and 64b in v4
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Automounting Mandatory File Attributes
= Mount file system transparently when client accesses it
Attribute Description
Client machine Server machine - - —
TYPE The type of the file (regular, directory, symbolic link)
r— 1. Lookup "fhomefalice" users /D SIZE The length of the file in bytes
¥ Indicator for a client to see if and/or when the file has
NFS client L Automounter‘ % Mountrequest » CHANGE hanged
‘ ) change
2 Create subdi,”a“ce..l /a"/ce// \\ FSID Server-unique identifier of the file's file system
‘ Local file system interface ‘ “"‘ﬁ‘ﬁ h\ﬁ
hom‘e):‘ ‘/ “‘
alice ///// e 7
A |
/ 5 T 4. Mount subdir "alice"
’\' D \\“// fFOO;'InS:r:ef” aee
S 14
Semantics of File Sharing Semantics of File Sharing
. Client machine #1
a) On asingle processor, when a
read fol(ljot\;vs ﬁwrite(,j the r:/alue ok Method Comment
returned by the read is the P"’f\ess Py \ Ev " T e
; " / : ery operation on a file is instantly visible to all
value just written 7/ el \ UNIX semantics procgss%s Y
b) In a distributed system with 2 Wrie'e' 1. Read"ab’} Session No changes are visible to other processes until the
caching, obsolete values may File server semantics file is closed
returned. ChigmaLfie : ' No updates are possible; simplifies sharing and
be returned Snge machne | ﬁ/ Immutable files replié)ation P P 9
— . [alb) Transaction All changes occur atomically
474 3. Read gets "ab"
J ablc )
’ Cllent machine#2  / = NFS implements session semantics
ngess‘“\ By
|| \ Process
~ T B
1. Write "c" 2. Read gets "abc"
@ ®) 16
File Locking in NFS Client Caching
+ NFS v1-v3: use a separate (stateful) lock manager « NFS v1-v3: mainly left outside the protocol (see book)
= NFS v4: integrated in the file system « NFS v4: use file delegation
1. Client asks for file
Operation Description
Lock Creates a lock for a range of bytes 2. Server delegates file
Test whether a conflicting lock has been
Lockt granted
Locku Remove a lock from a range of bytes Local copy 3. Server recalls delegation
Renew Renew the leas on a specified lock
Updated file
4. Client sends returns file
17 18
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Fault Tolerance

= Need to maintain state consistent in v4, e.g.,
- Locking
- Delegation

= Challenge: eliminate duplicate operations in case of failure

= Solution: use transaction identifiers (XID)
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Handling Retransmissions

a) Request still in progress
b) Reply has just been returned
c) Reply has been some time ago, but was lost

Client Server Client Server Client Server
XID = 1234
=l
N
\“ process v
| request !

y XD=1234 | )
////4‘ Cache ‘><< yCache
- | sa
Time Time Time

(@) ()

(©

Security

= Secure RPC: three methods

- System authentication: trust the user has passed a proper login
procedure

- Diffie-Hellman key exchange (but not very secure—uses only 192b
Keys)

- Kerberos

= File access control
- Use access control list (ACL)

21

Security Architecture

Client Server

‘ Virtual file system layer

Access
control

Virtual file system layer ‘

1 v
Access
control

v

Local file " Local file
system interface ‘ NFS client ‘ ‘ NFS server ‘ system interface
RPC client RPC server
stub Secure channel stub

Outline

= Network File System (NFS)
» CODA
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The Coda File System

= Developed at CMU

= Based on Andrew File System (AFS), another distributed
system developed at CMU

- Community wide system

24
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AFS Goals

= Scalability: system should grow without major problems

» Fault-Tolerance: system should remain usable in the
presence of server failures, communication failures and
voluntary disconnections

= Unix Emulation

= Design philosophy: Scalability and Accessibility more
important than consistency

25

Coda Goals

= AFS goals, plus

» Disconnected mode for portable computers

System Model

= Client workstations are personal computers owned by their
users

- Fully autonomous
- Cannot be trusted

= Coda allows laptops that operate in disconnected mode

26

Overall Organization of AFS & Coda

toa V\c\e\f\\le server D
) % /

i %Q\ \? ? F -t D/D
g ]
— —

g =]
S04 0 Dome
]
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27
Internal Organization of Virtue
Virtue client machine
User User Venus
process process process
RPC client
stub
A
A4 A
Local fils l:‘ Virtual file system layer
system interface ‘:
ot
| —
Network
29

Communication

= Based on RPC2: provides reliable transmission on top of
UDP

= RPC2 supports side-effects, i.e., user defined protocols

= RPC2 provides support for multicast
- Transparent for the client

30
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Side Effects in Coda’'s RPC

Support for Multicast in RCP2

= Example: send invalidation
a) One atatime

b) Multicast
Client clent
— 1
mvahdate/ | Reply Invalidate | Reply
Server J \‘ Server /( \
\\ /A— \\
Invalidate | Reply Invalidate / Reply
Client 34 / Client Xl /
Time — Time —»
@ (b)
32

Client Server
application
¢ Application-specific ¢
RPC —1_| Client protocol Server
side effect side effect
A 4 4
RPC client RPC protocol RPC server
stub b &l stub
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Naming
= Single shared naming space (vs. client-based in NFS)
Naming inherited from server's hame space
Client A / Server \ Client B

afs /g
Yoo

e / \T\\\—/J’l",

Exported directory
mounted by client

Exported directory
mounted by client

File Identifiers

= Globally unique (vs server unique in NFS)

» Coda distinguishes between physical and logical volumes

» Logical volume (identified by RVID) a possible replicated physical
volume (identified VID)

Volume

replication DB File handle

File server

i 4

Server| File hm
T
Serverl :

Server2

-

File server

v
File handle

Volume
location DB

o

Network
Sharing Files in Coda
= Transaction semantics
- Session is treated like a transaction
Session S,
Client N
Open(RD) Invalidate
Close
Sever N[ . N
Client
T~ Time —»
Session Sy 35

Caching and Replication

= Caching:
- Achieve scalability
- Increases fault tolerance

= Challenge: how to maintain data consistency?

= Solution: use callbacks to notify clients when a file changes

- If a client modifies a copy, server sends a callback break to all
clients maintaining copies of same file

36
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Example: Client Caching

Session S Sesslon Sa
ClientA —
Open(RD) /4 C\ose \ f \C[ose
Open(RD)
Invalidate
Sarvar \ /F"?f (callback break), </ Fllef -

o WF’iI’e’fﬁﬁ O}; (no file transfer) f
/
/ Open(WR) /
Open(WR)/ Close / Close
- —

i -
Client B o Tine

Session Sy Sess’ion Sy
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Server Replication

Unit of replication: volume

Volume Storage Group (VSG): set of servers that have a
copy of a volume

Accessible Volume Storage Group (AVSG): set of servers
in VSG that the client can contact

Use vector versioning
- One entry for each server in VSG
- When file updated, corresponding version in AVSG is updated
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Example: Handling Network Partition

= Versioning vector when partition happens: [1,1,1]

= Client A updates file > versioning vector in its partition: [2,2,1]
= Client B updates file > versioning vector in its partition: [1,1,2]
= Partition repaired - compare versioning vectors: conflict!

Disconnected Operation

HOARDING: File cache in advance with all files that will be
accessed when disconnected

- Best effort
EMULATION: when disconnected, behavior of server
emulated at client
REINTEGRATION: transfer updates to server; resolves
conflicts

HOARDING

Reintegration
completed

REINTEGRATION

Disconnection

Disconnection

EMULATION

Reconnection
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Server Server
s, j— S,
| T [
Client Broken Client
A Server network B
S5 .
= 39
Security
= Set-up a secure channel between client and server
- Use secure RPC
= System-level authentication
41

Mutual Authentication in RPC2

= Based on Needham-Schroeder protocol

LG
* R o)
*Kane®a*)
“nd®o)

Alice
Bob
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Establishing a Secure Channel

= Upon authentication AS (authentication server) returns:
- Clear token: CT = [Alice, TID, Kg, T Tendl

- Secret token: ST = K o([CTI*ice)
- Kg: secret key obtained by client during login procedure

- Kce: Secret key shared by vice servers

vice®

= Token is similar to the ticket in Kerberos

Client (Venus)

Alice

K veo(SD. KsR)

K]

Bob
Vice Server
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NFS vs Coda

Issue NFS Coda

Design goals Access transparency High availability
Access model Remote Up/Download
Communication RPC RPC

Server groups No Yes

Mount granularity | Directory File system
Name space Per client Global

Sharing sem. Session Transactional
Cache consist. write-back write-back
Fault tolerance Reliable comm. Replication and caching
Recovery Client-based Reintegration

Secure channels

Existing mechanisms

Needham-Schroeder
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