CS 194: Distributed Systems
Distributed File Systems

Scott Shenker and lon Stoica
Computer Science Divison
Department of Electrica Engineering and Computer Sciences
Universty of California, Berkeley
Berkeley, CA 94720-1776

Outline

» Network File System (NFS)
« CODA

Main Goal

= Provide a client transparent access to a file system stored
at a remote server

= Why would you want to store files remotely?

NFS

= A specification for a distributed file system (by Sun, 1984)
= Implemented on various OS'’s

= De facto standard in the UNIX community

= Latest version is 4 (2000)

= Client-server file system

NFS Architecture

3
Access Model
= Two access models :
- Remote access
- Upload/Download
Remote access Upload/Download
1. File moved to client
Client Server Client Server
= »
Requests from \ /
clientto access File stays 2. Accesses are 3. WHsh slisitisdsns
remote file on server done on client | '

file is returned to
server

Page 1

= Virtual File System (VFS) provide a uniform access to local and remote
files

Client Server
System call layer System call layer
v
Virtual file system Virtual file system
(VFS) layer (VFS) layer
Local file Local file
system interface ‘ NFS client ‘ ‘ NFS server system interface
RPC client RPC server
stub stub
I

A

I

Network

File System Model

= Similar to UNIX: files are treated as uninterpreted
sequences of bytes

= Each files has a name, but usually referred by a file handle
- Client use a name service to get file handle

= Files organized into a naming graphs
- Nodes - directories or files

= First three versions were stateless; version 4 is stateful

Stateful vs. Stateless

= Stateless model: each call contains complete information to
execute operation

= Stateful model: server maintain context (info) shared by
consecutive operations

= Discussion: compare stateless and stateful design

Communication

= RPC based
= One operation per RPC (NFSv. 1,2,3)
= Multiple operations per RPC (NFS v. 4)

NFS v1,v2,v3 (stateless) NFS v4. (stateful)

Client Server Client Server
LOOKUP
OPEN
LOOKUP READ
Lookup name :r Lookup name
:) Open file
- "} Read file data
' Read file data il
Time o] Time

Naming

= Allow a client to mount a remote file system into its own
local file system

= Pathnames are not globally unique; what's the implication?

Client A

remote / N\, bin
<

Server Client B

£ Y
users, / \

A

f

Exported directory |

Exported directory

mounted by client mounted by client

Network

Example: Mounting Nested Directories

Exported directory
contains imported
subdirectory

Server A Server B

File Handles

\

Client
imports
directory

from
server A

=

Server A
imports
directory
from
i server B

Network

Client needs to

explicitly import
subdirectory from
server B

= File handle: created by server hosting the file
= Unique with respect to all file systems exported by servers
= Persistent: doesn’t change during file’s lifetime

= Length: 32bin v2, 64b in v3, and 64b in v4

12

Page 2

Automounting Mandatory File Attributes
= Mount file system transparently when client accesses it
Attribute Description
Client machine Server machine - - —
TYPE The type of the file (regular, directory, symbolic link)
r— 1. Lookup "fhomefalice" users /D SIZE The length of the file in bytes
¥ Indicator for a client to see if and/or when the file has
NFS client L Automounter‘ % Mountrequest » CHANGE hanged
‘) change
2 Create subdi,”a“ce..l /a"/ce// \\ FSID Server-unique identifier of the file's file system
‘ Local file system interface ‘ “"‘ﬁ‘ﬁ h\ﬁ
hom‘e):‘ ‘/ “‘
alice ///// e 7
A |
/ 5 T 4. Mount subdir "alice"
’\' D \\“// fFOO;'InS:r:ef” aee
S 14
Semantics of File Sharing Semantics of File Sharing
. Client machine #1
a) On asingle processor, when a
read fol(ljot\;vs ﬁwrite(,j the r:/alue ok Method Comment
returned by the read is the P"’f\ess Py \ Ev " T e
; " / : ery operation on a file is instantly visible to all
value just written 7/ el \ UNIX semantics procgss%s Y
b) In a distributed system with 2 Wrie'e' 1. Read"ab’} Session No changes are visible to other processes until the
caching, obsolete values may File server semantics file is closed
returned. ChigmaLfie : ' No updates are possible; simplifies sharing and
be returned Snge machne | ﬁ/ Immutable files replié)ation P P 9
— . [alb) Transaction All changes occur atomically
474 3. Read gets "ab"
J ablc)
’ Cllent machine#2 / = NFS implements session semantics
ngess‘“\ By
|| \ Process
~ T B
1. Write "c" 2. Read gets "abc"
@ ®) 16
File Locking in NFS Client Caching
+ NFS v1-v3: use a separate (stateful) lock manager « NFS v1-v3: mainly left outside the protocol (see book)
= NFS v4: integrated in the file system « NFS v4: use file delegation
1. Client asks for file
Operation Description
Lock Creates a lock for a range of bytes 2. Server delegates file
Test whether a conflicting lock has been
Lockt granted
Locku Remove a lock from a range of bytes Local copy 3. Server recalls delegation
Renew Renew the leas on a specified lock
Updated file
4. Client sends returns file
17 18

Page 3

Fault Tolerance

= Need to maintain state consistent in v4, e.g.,
- Locking
- Delegation

= Challenge: eliminate duplicate operations in case of failure

= Solution: use transaction identifiers (XID)

19

Handling Retransmissions

a) Request still in progress
b) Reply has just been returned
c) Reply has been some time ago, but was lost

Client Server Client Server Client Server
XID = 1234
=l
N
\“ process v
| request !

y XD=1234 |)
////4‘ Cache ‘><< yCache
- | sa
Time Time Time

(@) ()

(©

Security

= Secure RPC: three methods

- System authentication: trust the user has passed a proper login
procedure

- Diffie-Hellman key exchange (but not very secure—uses only 192b
Keys)

- Kerberos

= File access control
- Use access control list (ACL)

21

Security Architecture

Client Server

‘ Virtual file system layer

Access
control

Virtual file system layer ‘

1 v
Access
control

v

Local file " Local file
system interface ‘ NFS client ‘ ‘ NFS server ‘ system interface
RPC client RPC server
stub Secure channel stub

Outline

= Network File System (NFS)
» CODA

23

The Coda File System

= Developed at CMU

= Based on Andrew File System (AFS), another distributed
system developed at CMU

- Community wide system

24

Page 4

AFS Goals

= Scalability: system should grow without major problems

» Fault-Tolerance: system should remain usable in the
presence of server failures, communication failures and
voluntary disconnections

= Unix Emulation

= Design philosophy: Scalability and Accessibility more
important than consistency

25

Coda Goals

= AFS goals, plus

» Disconnected mode for portable computers

System Model

= Client workstations are personal computers owned by their
users

- Fully autonomous
- Cannot be trusted

= Coda allows laptops that operate in disconnected mode

26

Overall Organization of AFS & Coda

toa V\c\e\f\\le server D
) % /

i %Q\ \? ? F -t D/D
g]
— —

g =]
S04 0 Dome
]
28

27
Internal Organization of Virtue
Virtue client machine
User User Venus
process process process
RPC client
stub
A
A4 A
Local fils l:‘ Virtual file system layer
system interface ‘:
ot
| —
Network
29

Communication

= Based on RPC2: provides reliable transmission on top of
UDP

= RPC2 supports side-effects, i.e., user defined protocols

= RPC2 provides support for multicast
- Transparent for the client

30

Page 5

Side Effects in Coda’'s RPC

Support for Multicast in RCP2

= Example: send invalidation
a) One atatime

b) Multicast
Client clent
— 1
mvahdate/ | Reply Invalidate | Reply
Server J \‘ Server /(\
\\ /A— \\
Invalidate | Reply Invalidate / Reply
Client 34 / Client Xl /
Time — Time —»
@ (b)
32

Client Server
application
¢ Application-specific ¢
RPC —1_| Client protocol Server
side effect side effect
A 4 4
RPC client RPC protocol RPC server
stub b &l stub
31
Naming
= Single shared naming space (vs. client-based in NFS)
Naming inherited from server's hame space
Client A / Server \ Client B

afs /g
Yoo

e / \T\\\—/J’l",

Exported directory
mounted by client

Exported directory
mounted by client

File Identifiers

= Globally unique (vs server unique in NFS)

» Coda distinguishes between physical and logical volumes

» Logical volume (identified by RVID) a possible replicated physical
volume (identified VID)

Volume

replication DB File handle

File server

i 4

Server| File hm
T
Serverl :

Server2

-

File server

v
File handle

Volume
location DB

o

Network
Sharing Files in Coda
= Transaction semantics
- Session is treated like a transaction
Session S,
Client N
Open(RD) Invalidate
Close
Sever N[. N
Client
T~ Time —»
Session Sy 35

Caching and Replication

= Caching:
- Achieve scalability
- Increases fault tolerance

= Challenge: how to maintain data consistency?

= Solution: use callbacks to notify clients when a file changes

- If a client modifies a copy, server sends a callback break to all
clients maintaining copies of same file

36

Page 6

Example: Client Caching

Session S Sesslon Sa
ClientA —
Open(RD) /4 C\ose \ f \C[ose
Open(RD)
Invalidate
Sarvar \ /F"?f (callback break), </ Fllef -

o WF’iI’e’fﬁﬁ O}; (no file transfer) f
/
/ Open(WR) /
Open(WR)/ Close / Close
- —

i -
Client B o Tine

Session Sy Sess’ion Sy

37

Server Replication

Unit of replication: volume

Volume Storage Group (VSG): set of servers that have a
copy of a volume

Accessible Volume Storage Group (AVSG): set of servers
in VSG that the client can contact

Use vector versioning
- One entry for each server in VSG
- When file updated, corresponding version in AVSG is updated

38

Example: Handling Network Partition

= Versioning vector when partition happens: [1,1,1]

= Client A updates file > versioning vector in its partition: [2,2,1]
= Client B updates file > versioning vector in its partition: [1,1,2]
= Partition repaired - compare versioning vectors: conflict!

Disconnected Operation

HOARDING: File cache in advance with all files that will be
accessed when disconnected

- Best effort
EMULATION: when disconnected, behavior of server
emulated at client
REINTEGRATION: transfer updates to server; resolves
conflicts

HOARDING

Reintegration
completed

REINTEGRATION

Disconnection

Disconnection

EMULATION

Reconnection

40

Server Server
s, j— S,
| T [
Client Broken Client
A Server network B
S5 .
= 39
Security
= Set-up a secure channel between client and server
- Use secure RPC
= System-level authentication
41

Mutual Authentication in RPC2

= Based on Needham-Schroeder protocol

LG
* R o)
Kane®a)
“nd®o)

Alice
Bob

42

Page 7

Establishing a Secure Channel

= Upon authentication AS (authentication server) returns:
- Clear token: CT = [Alice, TID, Kg, T Tendl

- Secret token: ST = K o([CTI*ice)
- Kg: secret key obtained by client during login procedure

- Kce: Secret key shared by vice servers

vice®

= Token is similar to the ticket in Kerberos

Client (Venus)

Alice

K veo(SD. KsR)

K]

Bob
Vice Server

43

NFS vs Coda

Issue NFS Coda

Design goals Access transparency High availability
Access model Remote Up/Download
Communication RPC RPC

Server groups No Yes

Mount granularity | Directory File system
Name space Per client Global

Sharing sem. Session Transactional
Cache consist. write-back write-back
Fault tolerance Reliable comm. Replication and caching
Recovery Client-based Reintegration

Secure channels

Existing mechanisms

Needham-Schroeder

Page 8

