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How Did it Start?

� A killer application: Naptser
- Free music over the Internet

� Key idea: share the content, storage and bandwidth of 
individual (home) users

Internet
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Model

� Each user stores a subset of files
� Each user has access (can download) files from all users in 

the system
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Main Challenge

� Find where a particular file is stored
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Other Challenges

� Scale: up to hundred of thousands or millions of machines 
� Dynamicity: machines can come and go any time
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Napster

� Assume a centralized index system that maps files (songs) 
to machines that are alive

� How to find a file (song)
- Query the index system 

�
return a machine that stores the required 

file
• Ideally this is the closest/least-loaded machine

- ftp the file
� Advantages: 

- Simplicity, easy to implement sophisticated search engines on top 
of the index system

� Disadvantages:
- Robustness, scalability (?)
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Napster: Example
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Gnutella

� Distribute file location
� Idea: flood the request
� Hot to find a file:

- Send request to all neighbors
- Neighbors recursively multicast the request
- Eventually a machine that has the file receives the request, 

and it sends back the answer
� Advantages:

- Totally decentralized, highly robust
� Disadvantages:

- Not scalable; the entire network can be swamped with 
request (to alleviate this problem, each request has a TTL)  
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Gnutella: Example

� Assume: m1’s neighbors are m2 and m3; m3’s 
neighbors are m4 and m5;…
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Distributed Hash Tables (DHTs)

� Abstraction: a distributed hash-table data structure 
- insert(id, item);
- item = query(id); (or lookup(id);)

- Note: item can be anything: a data object, document, file, 
pointer to a file…

� Proposals
- CAN, Chord, Kademlia, Pastry, Tapestry, etc

11

DHT Design Goals

� Make sure that an item (file) identified is always found
� Scales to hundreds of thousands of nodes
� Handles rapid arrival and failure of nodes
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Content Addressable Network 
(CAN)

� Associate to each node and 
item a unique id in an d-
dimensional Cartesian space 
on a d-torus

� Properties 
- Routing table size O(d)

- Guarantees that a file is found 
in at most d*n1/d steps, where n
is the total number of nodes
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CAN Example: Two Dimensional 
Space

� Space divided between nodes
� All nodes cover the entire space
� Each node covers either a 

square or a rectangular area of 
ratios 1:2 or 2:1

� Example: 
- Node n1:(1, 2) first node that joins �

cover the entire space
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CAN Example: Two Dimensional 
Space

� Node n2:(4, 2) joins � space is 
divided between n1 and n2
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CAN Example: Two Dimensional 
Space

� Node n2:(4, 2) joins � space is 
divided between n1 and n2
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CAN Example: Two Dimensional 
Space

� Nodes n4:(5, 5) and n5:(6,6) 
join
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CAN Example: Two Dimensional 
Space

� Nodes: n1:(1, 2); n2:(4,2); 
n3:(3, 5); n4:(5,5);n5:(6,6)

� Items: f1:(2,3); f2:(5,1); 
f3:(2,1); f4:(7,5);
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CAN Example: Two Dimensional 
Space

� Each item is stored by the node 
who owns its mapping in the 
space 
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CAN: Query Example

� Each node knows its neighbors 
in the d-space

� Forward query to the neighbor 
that is closest to the query id

� Example: assume n1 queries f4
� Can route around some failures
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CAN: Node Joining
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CAN: Node Joining
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CAN: Node Joining
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CAN: Node Joining
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Node departure

� Node explicitly hands over its zone and the associated 
(key,value) database to one of its neighbors

� Incase of network failure this is handled by a take-over 
algorithm

� Problem : take over mechanism does not provide 
regeneration of data 

� Solution:
every node has a backup of its neighbours
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Chord

� Associate to each node and item a unique id in an uni-
dimensional space 0..2m-1

� Goals
- Scales to hundreds of thousands of nodes

- Handles rapid arrival and failure of nodes
� Properties 

- Routing table size O(log(N)) , where N is the total number of nodes

- Guarantees that a file is found in O(log(N)) steps
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Identifier to Node Mapping Example

� Node  8 maps [5,8]
� Node 15 maps [9,15]
� Node 20 maps [16, 20]
� …
� Node 4 maps [59, 4]

� Each node maintains a 
pointer to its successor
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Lookup

� Each node maintains its 
successor 

� Route packet (ID, data) to 
the node responsible for ID 
using successor pointers

4

20

3235

8

15

44

58

lookup(37)

node=44

28

Joining Operation

� Each node A periodically sends a stabilize() message to its 
successor B

� Upon receiving a stabilize() message node B 
- returns its predecessor B’=pred(B) to A by sending a notify(B’)

message
� Upon receiving notify(B’) from B, 

- if B’ is between A and B, A updates its successor to B’

- A doesn’t do anything, otherwise 
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Joining Operation
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� Node with id=50 joins the 
ring

� Node 50 needs to know at 
least one node already in the 
system
- Assume known node is 15

succ=4
pred=44
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Joining Operation
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� Node 50 asks node 
15 to forward join 
message

� When join(50) 
reaches the 
destination (i.e., node 
58), node 58 
1) updates its 

predecessor to 50,
2) returns a notify 

message to node 50
� Node 50 updates its 

successor to 58

join(50)

notify()

pred=50

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35
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Joining Operation (cont’d)
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� Node 44 sends a stabilize 
message to its successor, 
node 58

� Node 58 reply with a notify 
message

� Node 44 updates its 
successor to 50 succ=58
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Joining Operation (cont’d)
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� Node 44 sends a stabilize 
message to its new 
successor, node 50

� Node 50 sets its predecessor 
to node 44
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Joining Operation (cont’d)
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� This completes the joining 
operation!
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Achieving Efficiency: finger tables
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Achieving Robustness

� To improve robustness each node maintains the k (> 1) 
immediate successors instead of only one successor

� In the notify() message, node A can send its k-1 successors 
to its predecessor B

� Upon receiving notify() message, B can update its 
successor list by concatenating the successor list received 
from A with A itself 
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CAN/Chord Optimizations

� Reduce latency
- Chose finger that reduces expected time to reach destination
- Chose the closest node from range [N+2i-1,N+2i) as successor

� Accommodate heterogeneous systems
- Multiple virtual nodes per physical node
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Conclusions

� Distributed Hash Tables are a key component of scalable 
and robust overlay networks

� CAN: O(d) state,  O(d*n1/d) distance
� Chord: O(log n) state, O(log n) distance
� Both can achieve stretch < 2
� Simplicity is key
� Services built on top of distributed hash tables

- persistent storage (OpenDHT, Oceanstore)

- p2p file storage, i3 (chord)

- multicast (CAN, Tapestry)


