
Page 1

1

CS 194: Distributed Systems
Distributed Hash Tables

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

How Did it Start?

� A killer application: Naptser
- Free music over the Internet

� Key idea: share the content, storage and bandwidth of
individual (home) users

Internet

3

Model

� Each user stores a subset of files
� Each user has access (can download) files from all users in

the system

4

Main Challenge

� Find where a particular file is stored

A
B

C

D

E

F

E?

5

Other Challenges

� Scale: up to hundred of thousands or millions of machines
� Dynamicity: machines can come and go any time

6

Napster

� Assume a centralized index system that maps files (songs)
to machines that are alive

� How to find a file (song)
- Query the index system

�
return a machine that stores the required

file
• Ideally this is the closest/least-loaded machine

- ftp the file
� Advantages:

- Simplicity, easy to implement sophisticated search engines on top
of the index system

� Disadvantages:
- Robustness, scalability (?)

Page 2

7

Napster: Example

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

m1 A
m2 B
m3 C
m4 D
m5 E
m6 F

E?
m5

E? E

8

Gnutella

� Distribute file location
� Idea: flood the request
� Hot to find a file:

- Send request to all neighbors
- Neighbors recursively multicast the request
- Eventually a machine that has the file receives the request,

and it sends back the answer
� Advantages:

- Totally decentralized, highly robust
� Disadvantages:

- Not scalable; the entire network can be swamped with
request (to alleviate this problem, each request has a TTL)

9

Gnutella: Example

� Assume: m1’s neighbors are m2 and m3; m3’s
neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

10

Distributed Hash Tables (DHTs)

� Abstraction: a distributed hash-table data structure
- insert(id, item);
- item = query(id); (or lookup(id);)

- Note: item can be anything: a data object, document, file,
pointer to a file…

� Proposals
- CAN, Chord, Kademlia, Pastry, Tapestry, etc

11

DHT Design Goals

� Make sure that an item (file) identified is always found
� Scales to hundreds of thousands of nodes
� Handles rapid arrival and failure of nodes

12

Content Addressable Network
(CAN)

� Associate to each node and
item a unique id in an d-
dimensional Cartesian space
on a d-torus

� Properties
- Routing table size O(d)

- Guarantees that a file is found
in at most d*n1/d steps, where n
is the total number of nodes

Page 3

13

CAN Example: Two Dimensional
Space

� Space divided between nodes
� All nodes cover the entire space
� Each node covers either a

square or a rectangular area of
ratios 1:2 or 2:1

� Example:
- Node n1:(1, 2) first node that joins �

cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

14

CAN Example: Two Dimensional
Space

� Node n2:(4, 2) joins � space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

15

CAN Example: Two Dimensional
Space

� Node n2:(4, 2) joins � space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

16

CAN Example: Two Dimensional
Space

� Nodes n4:(5, 5) and n5:(6,6)
join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

17

CAN Example: Two Dimensional
Space

� Nodes: n1:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6)

� Items: f1:(2,3); f2:(5,1);
f3:(2,1); f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

18

CAN Example: Two Dimensional
Space

� Each item is stored by the node
who owns its mapping in the
space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Page 4

19

CAN: Query Example

� Each node knows its neighbors
in the d-space

� Forward query to the neighbor
that is closest to the query id

� Example: assume n1 queries f4
� Can route around some failures

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

20

CAN: Node Joining

�

�����������	�
����� ��������������������� ��! �#"�$&%	'�(� � '�!*)+� �-,�.�/

21

CAN: Node Joining

0 ��1�� �32-� '4� ! ���65*�4� �*7�� �-��5*'����

�

8 9�:)��

�����������	�

22

CAN: Node Joining

8 9�:) �

;�<-��= �?>A@���B-@��DCFEAG H < G#��I B J���K�� = BL�������NM

�
M

�����������	�

23

CAN: Node Joining

�����M

O�< B�P	Q I @�M4R BTS��	���DI �DU�V	Q W�XY�������������Z���[��BT�	���\U�V	Q W
24

Node departure

� Node explicitly hands over its zone and the associated
(key,value) database to one of its neighbors

� Incase of network failure this is handled by a take-over
algorithm

� Problem : take over mechanism does not provide
regeneration of data

� Solution:
every node has a backup of its neighbours

Page 5

25

Chord

� Associate to each node and item a unique id in an uni-
dimensional space 0..2m-1

� Goals
- Scales to hundreds of thousands of nodes

- Handles rapid arrival and failure of nodes
� Properties

- Routing table size O(log(N)) , where N is the total number of nodes

- Guarantees that a file is found in O(log(N)) steps

26

Identifier to Node Mapping Example

� Node 8 maps [5,8]
� Node 15 maps [9,15]
� Node 20 maps [16, 20]
� …
� Node 4 maps [59, 4]

� Each node maintains a
pointer to its successor

4

20

3235

8

15

44

58

27

Lookup

� Each node maintains its
successor

� Route packet (ID, data) to
the node responsible for ID
using successor pointers

4

20

3235

8

15

44

58

lookup(37)

node=44

28

Joining Operation

� Each node A periodically sends a stabilize() message to its
successor B

� Upon receiving a stabilize() message node B
- returns its predecessor B’=pred(B) to A by sending a notify(B’)

message
� Upon receiving notify(B’) from B,

- if B’ is between A and B, A updates its successor to B’

- A doesn’t do anything, otherwise

29

Joining Operation

4

20

32
35

8

15

44

58

50

� Node with id=50 joins the
ring

� Node 50 needs to know at
least one node already in the
system
- Assume known node is 15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

30

Joining Operation

4

20

3235

8

15

44

58

50

� Node 50 asks node
15 to forward join
message

� When join(50)
reaches the
destination (i.e., node
58), node 58
1) updates its

predecessor to 50,
2) returns a notify

message to node 50
� Node 50 updates its

successor to 58

join(50)

notify()

pred=50

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

Page 6

31

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

� Node 44 sends a stabilize
message to its successor,
node 58

� Node 58 reply with a notify
message

� Node 44 updates its
successor to 50 succ=58

stabilize()

no
tif

y(
pr

ed
ec

es
so

r=
50

)

succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35

32

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

� Node 44 sends a stabilize
message to its new
successor, node 50

� Node 50 sets its predecessor
to node 44

succ=58

succ=50

Stabilize()pred=44

pred=50

pred=35

succ=4

pred=nil

33

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

� This completes the joining
operation!

succ=58

succ=50

pred=44

pred=50

34

Achieving Efficiency: finger tables

80 + 20
80 + 21

80 + 22
80 + 23

80 + 24

80 + 25

(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min +

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

4580

20
112

96

35

Achieving Robustness

� To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

� In the notify() message, node A can send its k-1 successors
to its predecessor B

� Upon receiving notify() message, B can update its
successor list by concatenating the successor list received
from A with A itself

36

CAN/Chord Optimizations

� Reduce latency
- Chose finger that reduces expected time to reach destination
- Chose the closest node from range [N+2i-1,N+2i) as successor

� Accommodate heterogeneous systems
- Multiple virtual nodes per physical node

Page 7

37

Conclusions

� Distributed Hash Tables are a key component of scalable
and robust overlay networks

� CAN: O(d) state, O(d*n1/d) distance
� Chord: O(log n) state, O(log n) distance
� Both can achieve stretch < 2
� Simplicity is key
� Services built on top of distributed hash tables

- persistent storage (OpenDHT, Oceanstore)

- p2p file storage, i3 (chord)

- multicast (CAN, Tapestry)

