CS 194: Distributed Systems
WWW and Web Services

Scott Shenker and lon Stoica
Computer Science Divison
Department of Electrica Engineering and Computer Sciences
Universty of California, Berkeley
Berkeley, CA 94720-1776

= 1945: Vannevar Bush, Memex:

"a devicein which anindividual
stores all his books, records, and
communications, and which is
mechanized so that it may be
consulted with exceeding speed
and flexibility"

(See http://www.iath.virginia.edu/elab/hfl0051.html)

The Web — History (Il)

= 1967, Ted Nelson, Xanadu:

- A world-wide publishing network that
would allow information to be stored not
as separate files but as connected
literature

- Owners of documents would be
automatically paid via electronic means
for the virtual copying of their documents

= Coined the term “Hypertext”

Ted Nelson

The Web — History (lll)

= World Wide Web (WWW): a distributed
database of “pages” linked through
Hypertext Transport Protocol (HTTP)
- First HTTP implementation - 1990
« Tim Berners-Lee at CERN
- HTTP/0.9 — 1991
« Simple GET command for the Web
Tim Berners-Lee - HTTP/1.0 -1992
« Client/Server information, simple caching
- HTTP/1.1 - 1996

The Web

= Core components:
- Servers: store files and execute remote commands
- Browsers: retrieve and display “pages”
- Uniform Resource Locators (URLSs): way to refer to pages

= A protocol to transfer information between clients
and servers
- HTTP

Uniform Record Locator (URL)

protocol :// host-nane: port/directory-path/resource

= Extend the idea of hierarchical namespaces to include anything in
afile system

- ftp:/lwww.cs.berkeley.edu/~istoica/cs194/05/lecture.ppt

» Extend to program executions as well...
- http://us.f413.mail.yahoo.com/ym/ShowlL etter?box=%40B%40Bulk&M

s0ld=2604_1744106_29699 1123 1261 0 28917 3552 128995710
0&Search=&Nhead=f&YY=31454&order=down&sort=date&pos=0&vie
w=a&head=b

- Server side processing can be incorporated in the name

Web and DNS

URLSs use hostnames
Thus, content names are tied to specific hosts
This is bad!

Uniform Resource Names (URNSs) are one
proposal to achieve persistence
- Not discussed in this lecture

Hyper Text Transfer Protocol (HTTP)

= Client-server architecture

= Synchronous request/reply protocol
- Runs over TCP, Port 80

= Stateless

Big Picture
Client Server
TCP Syn
Establish + ack
connection || _TCP SyN
Client TCcp
request] 4%k + HTTp GET
[
Request)
response \
/
Close __~

connection

Hyper Text Transfer Protocol Commands

= GET - transfer resource from given URL

= HEAD — GET resource metadata (headers) only
= PUT - store/modify resource under given URL

= DELETE — remove resource

= POST - provide input for a process identified by
the given URL (usually used to post CGI
parameters)

Response Codes

1x informational

2x success

3x redirection

4x client error in request

5x server error; can't satisfy the request

11

Client Request

= Steps to get the resource:

http://www.eecs.berkeley.edu/index.html

1. Use DNS to obtain the IP address of
www.eecs.berkeley.edu

2. Send to an HTTP request:
CGET /index. htm HTTP/ 1.0

Server Response

HTTP/1.0 200 OK

Content-Type: text/html|

Content-Length: 1234

Last-Modified: Mon, 19 Nov 2001 15:31:20 GMT
<HTML>

<HEAD>

<TITLE>EECS Home Page</TITLE>

</HEAD>

</BODY>
</HTML>

13

HTTP/1.0 Example

Client Server
Request image 1

Transfer image 1
Request image »

’//‘Fr/w‘ﬁﬂw/e}//

Request text

'—/ﬂw/
Finish display

page

HHTP/1.0 Performance

= Create a new TCP connection for each resource
- Large number of embedded objects in a web page
- Many short lived connections
= TCP transfer
- Too slow for small object
- May never exit slow-start phase

= Connections may be set up in parallel (5 is
default in most browsers)

15

HTTP/1.0 Caching Support

Exploit locality of reference
A modifier to the GET request:
- If-modified-since — return a “not modified” response if
resource was not modified since specified time
A response header:
- Expires — specify to the client for how long it is safe to cache
the resource
A request directive:
- No-cache —ignore all caches and get resource directly from
server
These features can be best taken advantage of with HTTP
proxies
- Locality of reference increases if many clients share a proxy

HTTP/1.1 (1996)

= Performance:
- Persistent connections
- Pipelined requests/responses
= Efficient caching support
- Network Cache assumed more explicitly in the design

- Gives more control to the server on how it wants data
cached

= Support for virtual hosting

- Allows to run multiple web servers on the same
machine

17

Persistent Connections

= Allow multiple transfers over one connection
= Avoid multiple TCP connection setups

= Avoid multiple TCP slow starts

Pipelined Requests/Responses

« Buffer requests and responses to ~ ent Senver

reduce the number of packets %

%}Uestz\’
.) %7“88{3\‘
= Multiple requests can be contained

in one TCP segment
‘W
sfer 2

« Note: order of responses has to be %
maintained [TranstE =]

19

Caching and Replication

= Problem: You are a web content provider
- How do you handle millions of web clients?

- How do you ensure that all clients experience good
performance?

- How do you maintain availability in the presence of server
and network failures?

= Solutions:

- Add more servers at different locations = If you are CNN this
might work!

- Caching
- Content Distribution Networks (Replication)

“Base-line”

= Many clients transfer same information
- Generate unnecessary server and network load
- Clients experience unnecessary latency

21

Reverse Caches

= Cache documents close to server - decrease server load
= Typically done by content providers

Server Mﬁ

Reverse caches

Forward Proxies

= Cache documents close to clients = reduce network traffic
and decrease latency

+ Typically done by ISPs or corporate LANs
Server Mﬁ

Reverse caches

23

Content Distribution Networks
(CDNSs)

= Integrate forward and reverse caching
functionalities into one overlay network (usually)
administrated by one entity
- Example: Akamai
= Documents are cached both
- As aresult of clients’ requests (pull)
- Pushed in the expectation of a high access rate
= Beside caching do processing, e.g.,
- Handle dynamic web pages
- Transcoding

CDNs (cont’d)

25

Example: Akamai

= Akamai creates new domain names for each client
content provider.
- e.g., al28.g.akamai.net
= The CDN'’s DNS servers are authoritative for the
new domains
= The client content provider modifies its content so
that embedded URLSs reference the new domains.

- “Akamaize” content, e.g.: http://www.cnn.com/image-of-the-
day.gif becomes http://a128.g.akamai.net/image-of-the-day.gif.

Example: Akamai

akamai.net

www.nhc.noaa.gov
LUEDNS servers

“Akamai zes” its content.

Ioékup
- a128.g.akamai .net
= '
DNS server for p
nhc.noaa.gov Iy

get
http://www.nhc.noaa.gov

% local
DNS server
“Akamai zed" response object hasinline URLs

@ for secondary content at a128.g.akamai.net
and other Akamai-managed DNS names.

Akamai servers
store/cache secondary

—_ a content for “ Akamaized”
% services.

27

Core Web Technologies

= HTML
= CGI
= XML

What is HTML?

= HTML is the lingua franca for web publishing.

= Hyper Text Markup Language is based on SGML
(Standard Generalized Markup Language)
- HTML 4.0: http://iwww.w3.0rg/TR/html4/intro/intro.html

= Initial version invented by Tim Berners-Lee

= Originally developed for sharing scientific documents on
the web

29

What is HTML?

= HTML documents are plain text files
= Contain text and HTML mark-up tags

= Markup tags describe elements representing the
style and structure of the visual document

Markup Tags

= An HTML element may include a name, some attributes and
some text or hypertext, and will appear in an HTML
document as

<tagName> text </tagName>
<tagName attribute=argument> text </tagName>, or just
<tagName>
= Examples:
<title> My Document </title>
Berkeley CS Web page<a>

31

A trivial HTML document

Nesting sructure
<HTM.>

<HEAD> /HTML \
<TI TLE>
M/ web page HEAD
</ TITLE>

A [TITLEW e pace]

<BODY>

Wel come to ny webpage!

This is on the sanme |ine. BODY

</ BODY> Wl cone to ny webpage!

</ HTML> This is on the same line.

)

Common Gateway Interface (CGl)

CGlI — general standard specifying how programs can
be run on server, from the WWW

Any program in any language can be a CGI program -
it just has to follow the CGlI rules

These rules define how programs get data (e.qg.,
HTML form data) and how to make sure web server
knows it's a CGI program

Call of a CGI program (like any HTML page):

<ahref=" http://www.mysite/cgi -bin/myprog” >
Run my CGI program

33

Client-Server CGI Architecture

3. Start program
to fetch

do\cument Server machine
2, Process Webserver
input

4. Database
> cal interaction

H < program €

A
5. HTML document

created

Local OS Local database

1 Get document
request sent to Y
the server

6 Response sent back

CGIl Examples

= Any programming language can be used for CGI (e.g.,
shell script)

= Every CGI program must write out data to send back to
web browser.

The first thing they must write out is MIME type of file
(e.g., text/plain, text/html)

#/bin/sh

echo “ Content-type: text/plain”
echo

echo “Hello World”

35

CGl and Forms

CGlI programs can process data from forms:

<form method="get"
action="http:/Avww.foo.org/cgi-bin/cgiwrap/example.cgi">

<p> Name: <input type="text" name="username" /> </p>

<p> Age: <input type="text" name="age" /> </p>

<p> <input type="submit" value="Do it" /> </p>

</form>

If method="get” then the form data gets put in variable
QUERY_STRING available to CGI programs

GET vs POST

= Using “get” method:

- Data added to URL as ..prog?var=val etc.

- This data is putin QUERY_STRING variable available to CGI
programs

- Eg.:
http://us.f413.mail.yahoo.com/ym/ShowL etter?box=
%40B%40Bulk&Msgld=2604_1744106_29699_112
3_1261_0_28917_3552_1289957100&Search=&Nh

ead=f&YY=31454&order=down&sort=date&pos=0&
view=a&head=b

= Alternative is to use “post” method:
- Datais sent separately to URL.

- CGl program reads this data from its standard input.
37

CGI Security

= CGI programs let anyone in the world run a program on
your system

= Special wrapper programs may be used to do some
security checks

XML: eXtensible Markup Language

= A simple, very flexible text format derived from
SGML

= Rapidly emerging as the language of choice for
data sharing on the Internet

39

XML Example

= An XML definition for referring to a journal article.

) <IELEMENT article (title, author+,journal)>

) <IELEMENT title (#PCDATA)>

M) <IELEMENT author (name, affiliation?)>

4) <IELEMENT name (#PCDATA)>

(5) <IELEMENT affiliation (#PCDATA)>

(6) <IELEMENT journal (jname, volume, number?, month? pages, year)>
@) <IELEMENT jname (#PCDATA)>

(8) <IELEMENT volume (#PCDATA)>

9) <IELEMENT number (#PCDATA)>
(10) <IELEMENT month (#PCDATA)>
(11) <IELEMENT pages (#PCDATA)>
(12) <IELEMENT year (#PCDATA)>

XML Example (cont’d)

= XML document using XML definitions from previous slide

1) <?xml = version "1.0">

) <IDOCTYPE article SYSTEM "article.dtd">

®) <article>

4) <title> Prudent Engineering Practice for Cryptographic
Protocols</title>

(5) <author><name>M. Abadi</name></author>

(6) <author><name>R. Needham</name></author>
@) <journal>

8) <jname>IEEE Transactions on Software
Engineering</jname>

) <volume>22</volume>

(10) <number>12</number>

(11) <month>January</month>

(12) <pages>6 — 15</pages>

(13) <year>1996</year>

(14) <fjournal>

(15) </article> 41

XML vs HTML?

= HTML combines structure and display, while XML separates
them

- HTML - presentation markup language: it describes the look, feel, and
actions of web pages

- XML describes document structure: what words in documents are

= Flexibility:
- HTML - only one standard definition of all of the tags
- XML — custom documents defining the meaning of tags

= XML may replace HTML in the future

Web Services

« WS are applications that communicate using
internet-based middleware

« WS are network-based software applications
developed to interact with other applications using
Internet standard technologies and connections to
seamlessly perform business process

43

Web Services Architecture Stacks

Processes
Discovery, Aggregation, Choreography.-

Descriptions
‘Web Services Descriptions (W3DL)

Messages

<H4-@mcomn

SOAP Extensions
Reliability, Correlation, Transactions

HzZmIMOrzr I

ewouds QLA TNX SeIBojouyds L eseE

‘ SOAP ‘

Communications
HTTP, SMTP, FTP, JMS, lIOP, ...

WS Components

1. A standard way for communication (SOAP)

2. A uniform data representation and exchange
mechanism (XML)

3. A standard meta language to describe the
services offered (WSDL)

4. A mechanism to register and locate WS based
applications (UDDI)

45

What is SOAP?

Lightweight protocol used for exchange of messages in a
decentralized, distributed environment

Platform-independent
Used for Remote Procedure Calls

W3C note defines the use of SOAP with XML as payload
and HTTP as transport

SOAP Elements

= Envelope (mandatory)
- Top element of the XML document representing the message

= Header (optional)

- Determines how a recipient of a SOAP message should process the
message

- Adds features to the SOAP message such as authentication,
transaction management, payment, message routes, etc...

= Body (mandatory)
- Exchanges information intended for the recipient of the message
- Typical use is for RPC calls and error reporting

47

SOAP Elements

= SOAP Encoding
= Envelope package

= Header/Body pattern
- Similar to how HTTP works

Header

Body

Simple Example

<Envel ope>

<Header >
<t ransl d>345</transl d>
</ Header >
< >
M || c=Add(n1,n2)
[——
<n1>3</ nlb/’g
<n2>4</n2>— | |
</ Add>
</ Body>

</ Envel ope>

49

SOAP Request

<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="htt p://schenmas. xm soap. or g/ soap/ envel ope/ "

SOAP- ENV: encodi ngStyl e="htt p: / / schemas. xni soap. or g/ soap/ encodi ng/ " >

<SOAP- ENV: Header >
<t:transld xnins:t="http://a.conftrans”>345</t:transl d>
</ SOAP- ENV: Header >
<SOAP- ENV: Body>
<m Add xmi ns: n¥“http://a.conf Cal culator”>
<n1>3</ni1>
<n2>4</ n2>
</ m Add>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

SOAP Request

<SOAP- ENV: Envel ope

xm ns: SOAP- ENV="ht t p:

/ schenas. xn soap. or g/ soap/ envel ope/”

SOAP- ENV: encodi n le="http://schemas. xni soap. or g/ soap/ encodi ng/ " >
SOAP- ENV: He:
) " Scopes the message to the SOAP
<t:transld Xmns:t="http://a decribi the SOAP
</ SOAP- ENV: Headex > ace ng
envelope
<SOAP- ENV: Body>
<m Add xni ns: m=* Rttp: 773 Egtablishesthe type of encoding
<n1>3</n1> that is used within the message
<n2>4</n2> (different data types supported)

</ m Add>
</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope>

51

SOAP Request

<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="htt p://schemas. xm soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngSt yl e="h heak = . - 4ing/ ">
o e teaers | Qualifiestransaction Id |
<t:transld xnins:t="http://a.conftrans”>345</t:transl d>
</ SOAP- ENV: Header >
<SOAP- ENV: Body>

| Definesthe method \

<m Add xmi ns: n¥“http://a.conf Cal cul ator”>

<n1>3</nl>
<n2>4</ n2>
</ m Add>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

SOAP Response

<SOAP- ENV: Envel ope

xm ns: SOAP- ENV="htt p://schemas. xm soap. or g/ soap/ envel ope/ "
SOAP- ENV: encodi ngStyl e="ht t p: / / schemas. xni soap. or g/ soap/ encodi I
<SOAP- ENV: Header >

<t:transld xnins:t="http://a.conftrans”>345</t:transl d>
</ SOAP- ENV: Header >
<SOAP- ENV: Body>

<m AddResponse xm ns: nm&“http://a.com Cal cul ator”>

<resul t x7</resul t>
</ m AddRespo
</ SOAP- ENV: Body>

XML-RPC vs SOAP

</ SOAP- ENV: Envel ope>

Response typically uses method

name with “ Response” appended
53

= XML-RPC: lower common denominator form of
communication

- Simple, easy to understand (only 7 pages specification)

= SOAP: can transfer more sophisticated information
(could define virtually any data structure)
- Flexible, but complex
- Supported by industry

WSDL

= Web Services Description Language is an XML
document

= Describes WS functionality

= How WS communicate & where it is accessible
(What, Where & How)

55

ubDDI

Universal Description Definition Interface
A standard discovery mechanism for WS

Users can query a UDDI registry (company
name, service type, Industry category or other
criteria)

Provides pointers to WSDL document

UDDI is also based on XML

10

