
1

CS 194: Distributed Systems
WWW and Web Services

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

The Web – History (I)

� 1945: Vannevar Bush, Memex:

� "a device in which an individual
stores all his books, records, and
communications, and which is
mechanized so that it may be
consulted with exceeding speed
and flexibility"

Vannevar Bush (1890-1974)

Memex

(See http://www.iath.virginia.edu/elab/hfl0051.html)

3

The Web – History (II)

� 1967, Ted Nelson, Xanadu:
- A world-wide publishing network that

would allow information to be stored not
as separate files but as connected
literature

- Owners of documents would be
automatically paid via electronic means
for the virtual copying of their documents

� Coined the term “Hypertext”

Ted Nelson

4

The Web – History (III)

� World Wide Web (WWW): a distributed
database of “pages” linked through
Hypertext Transport Protocol (HTTP)

- First HTTP implementation - 1990

• Tim Berners-Lee at CERN

- HTTP/0.9 – 1991

• Simple GET command for the Web

- HTTP/1.0 –1992

• Client/Server information, simple caching

- HTTP/1.1 - 1996

Tim Berners-Lee

5

The Web

� Core components:
- Servers: store files and execute remote commands

- Browsers: retrieve and display “pages”
- Uniform Resource Locators (URLs): way to refer to pages

� A protocol to transfer information between clients
and servers

- HTTP

6

Uniform Record Locator (URL)

pr ot ocol : / / host - name: por t / di r ec t or y- pat h/ r esour ce

� Extend the idea of hierarchical namespaces to include anything in
a file system
- ftp://www.cs.berkeley.edu/~istoica/cs194/05/lecture.ppt

� Extend to program executions as well…
- http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%40B%40Bulk&M

sgId=2604_1744106_29699_1123_1261_0_28917_3552_128995710
0&Search=&Nhead=f&YY=31454&order=down&sort=date&pos=0&vie
w=a&head=b

- Server side processing can be incorporated in the name

2

7

Web and DNS

� URLs use hostnames

� Thus, content names are tied to specific hosts

� This is bad!

� Uniform Resource Names (URNs) are one
proposal to achieve persistence

- Not discussed in this lecture

8

Hyper Text Transfer Protocol (HTTP)

� Client-server architecture

� Synchronous request/reply protocol
- Runs over TCP, Port 80

� Stateless

9

Big Picture

Client Server
TCP Syn

TCP syn + ack

TCP ack + HTTP GET

...

Establish
connection

Request
response

Client
request

Close
connection

10

Hyper Text Transfer Protocol Commands

� GET – transfer resource from given URL
� HEAD – GET resource metadata (headers) only
� PUT – store/modify resource under given URL
� DELETE – remove resource
� POST – provide input for a process identified by

the given URL (usually used to post CGI
parameters)

11

Response Codes

� 1x informational
� 2x success
� 3x redirection
� 4x client error in request
� 5x server error; can’t satisfy the request

12

Client Request

� Steps to get the resource:

http://www.eecs.berkeley.edu/index.html

1. Use DNS to obtain the IP address of
www.eecs.berkeley.edu

2. Send to an HTTP request:

GET / i ndex. ht ml HTTP/ 1. 0

3

13

Server Response

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1234
Last-Modified: Mon, 19 Nov 2001 15:31:20 GMT
<HTML>
<HEAD>
<TITLE>EECS Home Page</TITLE>
</HEAD>
…
</BODY>
</HTML>

14

HTTP/1.0 Example

Client Server

Request image 1

Transfer image 1

Request image 2

Transfer image 2

Request text

Transfer text

Finish display
page

15

HHTP/1.0 Performance

� Create a new TCP connection for each resource
- Large number of embedded objects in a web page

- Many short lived connections
� TCP transfer

- Too slow for small object

- May never exit slow-start phase
� Connections may be set up in parallel (5 is

default in most browsers)

16

HTTP/1.0 Caching Support

� Exploit locality of reference
� A modifier to the GET request:

- If-modified-since – return a “not modified” response if
resource was not modified since specified time

� A response header:
- Expires – specify to the client for how long it is safe to cache

the resource
� A request directive:

- No-cache – ignore all caches and get resource directly from
server

� These features can be best taken advantage of with HTTP
proxies

- Locality of reference increases if many clients share a proxy

17

HTTP/1.1 (1996)

� Performance:
- Persistent connections

- Pipelined requests/responses

- …
� Efficient caching support

- Network Cache assumed more explicitly in the design

- Gives more control to the server on how it wants data
cached

� Support for virtual hosting
- Allows to run multiple web servers on the same

machine

18

Persistent Connections

� Allow multiple transfers over one connection

� Avoid multiple TCP connection setups

� Avoid multiple TCP slow starts

4

19

Pipelined Requests/Responses

� Buffer requests and responses to
reduce the number of packets

� Multiple requests can be contained
in one TCP segment

� Note: order of responses has to be
maintained

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

20

Caching and Replication

� Problem: You are a web content provider
- How do you handle millions of web clients?

- How do you ensure that all clients experience good
performance?

- How do you maintain availability in the presence of server
and network failures?

� Solutions:
- Add more servers at different locations

�
If you are CNN this

might work!

- Caching

- Content Distribution Networks (Replication)

21

“ Base-line”

� Many clients transfer same information
- Generate unnecessary server and network load

- Clients experience unnecessary latency

Server

Clients

Backbone ISP

ISP-1 ISP-2

22

Reverse Caches
� Cache documents close to server

�
decrease server load

� Typically done by content providers

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse caches

23

Forward Proxies
� Cache documents close to clients

�
reduce network traffic

and decrease latency
� Typically done by ISPs or corporate LANs

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse caches

Forward caches

24

Content Distribution Networks
(CDNs)

� Integrate forward and reverse caching
functionalities into one overlay network (usually)
administrated by one entity

- Example: Akamai
� Documents are cached both

- As a result of clients’ requests (pull)

- Pushed in the expectation of a high access rate
� Beside caching do processing, e.g.,

- Handle dynamic web pages

- Transcoding

5

25

CDNs (cont’d)

Clients

ISP-1

Server

Forward caches

Backbone ISP

ISP-2

CDN

26

Example: Akamai

� Akamai creates new domain names for each client
content provider.

- e.g., a128.g.akamai.net
� The CDN’s DNS servers are authoritative for the

new domains
� The client content provider modifies its content so

that embedded URLs reference the new domains.
- “Akamaize” content, e.g.: http://www.cnn.com/image-of-the-

day.gif becomes http://a128.g.akamai.net/image-of-the-day.gif.

27

Example: Akamai

get
http://www.nhc.noaa.gov

a

DNS server for
nhc.noaa.gov

b

c

local
DNS server

www.nhc.noaa.gov
“ Akamaizes” its content.

“ Akamaized” response object has inline URLs
for secondary content at a128.g.akamai.net
and other Akamai-managed DNS names.

akamai.net
DNS servers

lookup
a128.g.akamai.net

Akamai servers
store/cache secondary

content for “Akamaized”
services.

28

Core Web Technologies

� HTML
� CGI
� XML

29

What is HTML?

� HTML is the lingua franca for web publishing.

� Hyper Text Markup Language is based on SGML
(Standard Generalized Markup Language)

- HTML 4.0: http://www.w3.org/TR/html4/intro/intro.html

� Initial version invented by Tim Berners-Lee

� Originally developed for sharing scientific documents on
the web

30

What is HTML?

� HTML documents are plain text files

� Contain text and HTML mark-up tags

� Markup tags describe elements representing the
style and structure of the visual document

6

31

Markup Tags

� An HTML element may include a name, some attributes and
some text or hypertext, and will appear in an HTML
document as

<tagName> text </tagName>

<tagName attribute=argument> text </tagName>, or just

<tagName>
� Examples:
<title> My Document </title>

Berkeley CS Web page<a>

32

A trivial HTML document

<HTML>

<HEAD>

<TI TLE>

My web page
</ TI TLE>

</ HEAD>

<BODY>

Wel come t o my webpage!
Thi s i s on t he same l i ne.

</ BODY>

</ HTML>

HTML

HEAD

BODY
Wel come t o my webpage!

Thi s i s on t he same l i ne.

TITLE
My web page

Nesting structure

33

Common Gateway Interface (CGI)

� CGI – general standard specifying how programs can
be run on server, from the WWW

� Any program in any language can be a CGI program -
it just has to follow the CGI rules

� These rules define how programs get data (e.g.,
HTML form data) and how to make sure web server
knows it’s a CGI program

� Call of a CGI program (like any HTML page):

Run my CGI program

34

Client-Server CGI Architecture

35

CGI Examples

� Any programming language can be used for CGI (e.g.,
shell script)

� Every CGI program must write out data to send back to
web browser.

� The first thing they must write out is MIME type of file
(e.g., text/plain, text/html)

#!/bin/sh
echo “Content-type: text/plain”
echo
echo “Hello World”

36

CGI and Forms

� CGI programs can process data from forms:

� If method=“get” then the form data gets put in variable
QUERY_STRING available to CGI programs

<form method="get"
action="http://www.foo.org/cgi-bin/cgiwrap/example.cgi">

<p> Name: <input type="text" name="username" /> </p>
<p> Age: <input type="text" name="age" /> </p>
<p> <input type="submit" value="Do it" /> </p>
</form>

7

37

GET vs POST

� Using “get” method:
- Data added to URL as ..prog?var=val etc.

- This data is put in QUERY_STRING variable available to CGI
programs

- E.g.:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=
%40B%40Bulk&MsgId=2604_1744106_29699_112
3_1261_0_28917_3552_1289957100&Search=&Nh
ead=f&YY=31454&order=down&sort=date&pos=0&
view=a&head=b

� Alternative is to use “post” method:
- Data is sent separately to URL.

- CGI program reads this data from its standard input.
38

CGI Security

� CGI programs let anyone in the world run a program on
your system

� Special wrapper programs may be used to do some
security checks

39

XML: eXtensible Markup Language

� A simple, very flexible text format derived from
SGML

� Rapidly emerging as the language of choice for
data sharing on the Internet

40

XML Example

� An XML definition for referring to a journal article.

(1) <!ELEMENT article (title, author+,journal)>
(2) <!ELEMENT title (#PCDATA)>
(3) <!ELEMENT author (name, affiliation?)>
(4) <!ELEMENT name (#PCDATA)>
(5) <!ELEMENT affiliation (#PCDATA)>
(6) <!ELEMENT journal (jname, volume, number?, month? pages, year)>
(7) <!ELEMENT jname (#PCDATA)>
(8) <!ELEMENT volume (#PCDATA)>
(9) <!ELEMENT number (#PCDATA)>
(10) <!ELEMENT month (#PCDATA)>
(11) <!ELEMENT pages (#PCDATA)>
(12) <!ELEMENT year (#PCDATA)>

41

XML Example (cont’d)

� XML document using XML definitions from previous slide

(1) <?xml = version "1.0">
(2) <!DOCTYPE article SYSTEM "article.dtd">
(3) <article>
(4) <title> Prudent Engineering Practice for Cryptographic
Protocols</title>
(5) <author><name>M. Abadi</name></author>
(6) <author><name>R. Needham</name></author>
(7) <journal>
(8) <jname>IEEE Transactions on Software
Engineering</jname>
(9) <volume>22</volume>
(10) <number>12</number>
(11) <month>January</month>
(12) <pages>6 – 15</pages>
(13) <year>1996</year>
(14) </journal>
(15) </article> 42

XML vs HTML?

� HTML combines structure and display, while XML separates
them

- HTML – presentation markup language: it describes the look, feel, and
actions of web pages

- XML describes document structure: what words in documents are

� Flexibility:
- HTML – only one standard definition of all of the tags

- XML – custom documents defining the meaning of tags

� XML may replace HTML in the future

8

43

Web Services

• WS are applications that communicate using
internet-based middleware

• WS are network-based software applications
developed to interact with other applications using
Internet standard technologies and connections to
seamlessly perform business process

44

Web Services Architecture Stacks

www.w3c.org

45

WS Components

1. A standard way for communication (SOAP)

2. A uniform data representation and exchange
mechanism (XML)

3. A standard meta language to describe the
services offered (WSDL)

4. A mechanism to register and locate WS based
applications (UDDI)

46

What is SOAP?

� Lightweight protocol used for exchange of messages in a
decentralized, distributed environment

� Platform-independent

� Used for Remote Procedure Calls

� W3C note defines the use of SOAP with XML as payload
and HTTP as transport

47

SOAP Elements

� Envelope (mandatory)
- Top element of the XML document representing the message

� Header (optional)
- Determines how a recipient of a SOAP message should process the

message

- Adds features to the SOAP message such as authentication,
transaction management, payment, message routes, etc…

� Body (mandatory)
- Exchanges information intended for the recipient of the message

- Typical use is for RPC calls and error reporting

48

SOAP Elements

� SOAP Encoding
� Envelope package
� Header/Body pattern

- Similar to how HTTP works

Header

Body

9

49

Simple Example

<Envel ope>

<Header >

<t r ansI d>345</ t r ansI d>

</ Header >

<Body>

<Add>

<n1>3</ n1>

<n2>4</ n2>

</ Add>

</ Body>

</ Envel ope>

c = Add(n1, n2)

50

SOAP Request

<SOAP- ENV: Envel ope

xml ns: SOAP- ENV=“ ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ ”

SOAP- ENV: encodi ngSt y l e=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ ” >

<SOAP- ENV: Header >

<t : t r ansI d xml ns : t =“ ht t p: / / a. com/ t r ans” >345</ t : t r ansI d>

</ SOAP- ENV: Header >

<SOAP- ENV: Body>

<m: Add xml ns: m=“ ht t p: / / a. com/ Cal cul at or ” >

<n1>3</ n1>

<n2>4</ n2>

</ m: Add>

</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope>

51

SOAP Request

<SOAP- ENV: Envel ope

xml ns: SOAP- ENV=“ ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ ”

SOAP- ENV: encodi ngSt y l e=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ ” >

<SOAP- ENV: Header >

<t : t r ansI d xml ns : t =“ ht t p: / / a. com/ t r ans” >345</ t : t r ansI d>

</ SOAP- ENV: Header >

<SOAP- ENV: Body>

<m: Add xml ns: m=“ ht t p: / / a. com/ Cal cul at or ” >

<n1>3</ n1>

<n2>4</ n2>

</ m: Add>

</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope>

Scopes the message to the SOAP
namespace describing the SOAP
envelope

Establishes the type of encoding
that is used within the message
(different data types supported)

52

SOAP Request

<SOAP- ENV: Envel ope

xml ns: SOAP- ENV=“ ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ ”

SOAP- ENV: encodi ngSt y l e=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ ” >

<SOAP- ENV: Header >

<t : t r ansI d xml ns : t =“ ht t p: / / a. com/ t r ans” >345</ t : t r ansI d>

</ SOAP- ENV: Header >

<SOAP- ENV: Body>

<m: Add xml ns: m=“ ht t p: / / a. com/ Cal cul at or ” >

<n1>3</ n1>

<n2>4</ n2>

</ m: Add>

</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope>

Defines the method

Qualifies transaction Id

53

SOAP Response

<SOAP- ENV: Envel ope

xml ns: SOAP- ENV=“ ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ ”

SOAP- ENV: encodi ngSt y l e=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/

<SOAP- ENV: Header >

<t : t r ansI d xml ns : t =“ ht t p: / / a. com/ t r ans” >345</ t : t r ansI d>

</ SOAP- ENV: Header >

<SOAP- ENV: Body>

<m: AddResponse xml ns : m=“ ht t p: / / a. com/ Cal cul at or ” >

<r esul t >7</ r esul t >

</ m: AddResponse>

</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope> Response typically uses method
name with “Response” appended

54

XML-RPC vs SOAP

� XML-RPC: lower common denominator form of
communication

- Simple, easy to understand (only 7 pages specification)

� SOAP: can transfer more sophisticated information
(could define virtually any data structure)

- Flexible, but complex

- Supported by industry

10

55

WSDL

� Web Services Description Language is an XML
document

� Describes WS functionality

� How WS communicate & where it is accessible
(What, Where & How)

56

UDDI

� Universal Description Definition Interface

� A standard discovery mechanism for WS

� Users can query a UDDI registry (company
name, service type, Industry category or other
criteria)

� Provides pointers to WSDL document

� UDDI is also based on XML

