Beyond Theory: DHTs in Practice

CS 194 - Distributed Systems
Sean C. Rhea
April 18, 2005
In collaboration with: Dennis Geels, Brighten Godfrey,

Brad Karp, John Kubiatowicz, Sylvia Ratnasamy,
Timothy Roscoe, Scott Shenker, lon Stoica, and Harlan Yu

Tak Outline

* Bamboo: a churn-resilient DHT
— Churn resilience at the lookup layer [USENIX’ 04]
— Churn resilience at the storage layer
[Cates 03], [Unpublished]
* OpenDHT: the DHT asaservice
— Finding the right interface [IPTPS 04]
— Protecting against overuse [Under Submission]
» Future work

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Making DHTs Robust:
The Problem of Membership Churn

* Inasystem with 1,000s of machines, some
machines failing / recovering at all times

» Thisprocessis called churn

» Without repair, quality of overlay network
degrades over time

» A significant problem deployed peer-to-
peer systems

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

How Bad is Churnin Real Systems?

f Lifetime |

Session
Time %
time

arrive depart arrive depart

‘ An hour isan incredibly short MTTF! ‘

Refresher: DHT Lookup/Routing

Put and get
must find the
same machin

put(ky,vq)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Authors ‘ Systems Observed ‘ Session Time

SGG02 Gnutella, Napster 50% < 60 minutes

CLLO2 Gnutella, Napster 31% < 10 minutes

SW02 FagtTrack 50% < 1 minute

BSV03 Overnet 50% < 60 minutes

GDS03 Kazaa 50% < 2.4 minutes
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Can DHTs Handle Churn?
A Simple Test

» Start 1,000 DHT processes on a 80-CPU cluster
— Real DHT code, emulated wide-area network
— Models cross traffic and packet loss
 Churn nodes at somerate
» Every 10 seconds, each machine asks:
“Which machineisresponsible for key k?’
— Use several machines per key to check consistency
— Log results, process them after test

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Test Results

¢ In Tapestry (the OceanStore DHT), overlay partitions

— Leadsto very highlevel of incond stencies

— Worked great in Smulations, but not on more realigtic network
« And the problem isn’t limited to Tapestry:

FreePagry ‘ MIT Chord
3 100 ™ *"*"'I,,M__;'wmq 5 Chord ——
2 80 1 = f Bamboo
z 6.2h 16h | ‘ g
] \ 5 3
= o 3lh 4T min | 1 E j
H 40 L = - ‘
H 20 Consistent 9 4 § [= o —
& Completed &8 mmJ b= = = o
ML v e L 8 16 32 64 128
0 50 100 150 200 : g
. Median Session Time (min)
Time (minutes)
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The Bamboo DHT

 Forget about comparing Chord-Pastry-Tapestry
— Too many differing factors
— Hard to isolate effects of any one feature

* Instead, implement anew DHT called Bamboo
— Same overlay structure as Pastry
— Implements many of the features of other DHTs
— Allowstesting of individual features independently

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

How Bamboo Handles Churn
(Overview)

1. Routes around suspected failures quickly

— Abnormal latencies indicate failure or congestion

— Route around them before we can tell difference
2. Recoversfailed neighbors periodically

— Keeps network load independent of churn rate

— Prevents overlay-induced positive feedback cycles
3. Chooses neighbors for network proximity

— Minimizesrouting latency in non-failure case

— Allowsfor shorter timeouts

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Bamboo Basics:
Partition Key Space

» Each nodein DHT will store somek,v pairs
 Given akey spaceK, e.g. [0, 2169):

— Choose an identifier for each node, id; O K,
uniformly at random

— A pair kv is stored at the node whose identifier
isclosest to k

-001+0 100 0 00 0 @ {2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Bamboo Basics:
Build Overlay Network

» Each node has two sets of neighbors

— Important for correctness
* Long-hop neighbors
— Allow puts/getsin O(log n) hops

N

-0+ 0 100 0 00 0 @ 2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Bamboo Basics:
Route Puts/Gets Thru Overlay

» Route greedily, always making progress

get(k)

-0 000 0 00 0 @ 2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Routing Around Failures

 Under churn, neighbors may have failed
» To detect failures, acknowledge each hop

-0 1000 0 00 0 @ 2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Routing Around Failures

* |f we don't receive an ACK, resend through

different neighbor
/m

OO +@r 00 00 0 0 2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Computing Good Timeouts

* Must compute timeouts carefully
— If too long, increase put/get latency
— If too short, get message explosion

O

-0+ 000 0 00 0 @ 2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Computing Good Timeouts

e Chord errs on the side of caution
— Very stable, but gives long lookup latencies

(&)
o

-0 000 0 00 0 @ {2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Computing Good Timeouts

» Keep past history of latencies
— Exponentially weighted mean, variance

» Useto compute timeouts for new requests
— timeout = mean + 4 x variance

* When atimeout occurs
— Mark node “ possibly down”: don’t use for now
— Re-route through alternate neighbor

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Timeout Estimation Performance

Fixed 5s Timeouts —+—
= 2 % Smart Timeouts —*— -
'3‘ l 5 \

2 .

8

<

—~ 1

=

<

Q

= 0.5
0

2 4 8 16 32 64 128256

Median Session Time (min)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recovering From Failures

» Can't route around failures forever
— Will eventually run out of neighbors
* Must also find new nodes asthey join
— Especially important if they’ re our immediate
predecessors or SUCCEsSOrs:
responsibility
-0 +0 0 0 00 0 @ 2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recovering From Failures

» Can't route around failures forever
— Will eventually run out of neighbors
* Must also find new nodes asthey join
— Especially important if they' re our immediate
predecessors or SUCCESSOrs:
old responsbility new node
100 -0 060 & 00 & & i
new responsbility

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recovering From Failures

* Obvious algorithm: reactive recovery

— When anode stops sending acknowledgements,
notify other neighbors of potential replacements
— Similar techniquesfor arrival of new nodes

N

OO+ 0D+ FrC O 00 0 @ {2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recovering From Failures

* Obvious algorithm: reactive recovery

— When anode stops sending acknowledgements,
notify other neighbors of potential replacements
— Similar techniquesfor arrival of new nodes

OO D FO D 00 0 @ 2%

B failed, use D B failed, useA

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The Problem with Reactive Recovery

» What if B isalive, but network is congested?
— C till perceives afailure due to dropped ACKs
— C startsrecovery, further congesting network
— More ACKslikely to be dropped
— Creates a positive feedback cycle

OO+ 0D+ FC O 00 0 @ {2

B failed, use D B failed, useA

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The Problem with Reactive Recovery

» What if B isalive, but network is congested?
» Thiswas the problem with Pastry

— Combined with poor congestion control, causes
network to partition under heavy churn

OO+ 0D FO— 0 00 0 @ {2

B failed, use D B failed, useA

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery

» Every period, each node sends its neighbor
list to each of its neighbors

o N

- O®—1D %@—@—.’—.—0—%2@
NN ST

my neighborsareA, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery

» Every period, each node sends its neighbor
list to each of its neighbors

N T

099D %@—@—“—O—Q—%Zm
NN ST

my neighborsareA, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery

» Every period, each node sends its neighbor
list to each of its neighbors
— Breaks feedback loop

N

- O®—1D %@—@—.’—.—0—%2@
NN ST

my neighborsareA, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery

» Every period, each node sends its neighbor
list to each of its neighbors
— Breaks feedback loop
— Converges in logarithmic number of periods

N T

099D %@—@—“—O—Q—%Zm
NN ST

my neighborsareA, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery Performance

 Reactive recovery expensive under churn
» Excess bandwidth use leads to long latencies

6

= g Reactive —— I Z Reactive

- Periodic | & 5 Periodic

£ s { &

Z 5 |47min 23min | 5 ¢

o " -

= M | » 47 min 23 min

250 J\\ T l 2=

z A ‘ 3 2 ‘

5 M‘W [Mlm |

IS = L A 0 g, bombess SR
0 10 20 30 40 50 0 10 2 30 40 50

Time (minutes) Time (minutes)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Proximity Neighbor Selection (PNS)

* For each neighbor, may be many candidates
— Choosing closest with right prefix called PNS

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Proximity Neighbor Selection (PNS)

111¢.

110...

10...

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Proximity Neighbor Selection (PNS)

* For each neighbor, may be many candidates
— Choosing closest with right prefix called PNS

» Tapestry has sophisticated algorithms for PNS
— Provable nearest neighbor under some assumptions
— Nearest neighbors give constant stretch routing
— But reasonably complicated implementation

» Can we do better?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

How Important is PNS?

* Only need leaf set for correctness

— Must know predecessor and successor to determine
what keys anode is responsible for

* Any filled routing table gives efficient lookups

— Need one neighbor that shares no prefix, one that
shares one bit, etc., but that' s all

* Insight: treat PNS as an optimization only
— Find initial neighbor set using lookup

PNS by Random Sampling

* Already looking for new neighbors periodically
— Because doing periodic recovery

» Can useresults for random sampling
— Every period, find potential replacement with lookup
— Compare latency with existing neighbor
— If better, swap

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

50
300 NoPN§ —»—

Z 450 Pastry tuning —#

E o Random Sampling —+—

7 400 L Pastry join

5 Tapestry join —=—

= 350

&=

g 300

600 800 1000 1200 1400
Bandwidth (bytes/s/node)
« Random sampling almost as good as everything else
— 24% latency improvement free
— 42% improvement for 40% more b.w.
— Compare to 68%-84% improvement by using good timeouts

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Tak Outline

» Bamboo: a churn-resilient DHT
— Churn resilience at the lookup layer
— Churn resilience at the storage layer
* OpenDHT: the DHT asaservice
— Finding the right interface
— Protecting against overuse
* Future work

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

A Reliable Storage Layer

» Don't just want to do lookup, also want to do
— DHASH' s put/get: store (key, value) pairs
— Tapestry’ s publish/route: store (key, pointer) pairs
* Problem statement:

Keep data/pointers available despite churn

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

DHTs Meet Epidemics
» Candidate Algorithm

— For each (k,v) stored locally, compute SHA(K.v)

— Every period, pick arandom leaf set neighbor

— Ask neighbor for all its hashes

— For each unrecognized hash, ask for key and value
» Thisisan epidemic algorithm

— All m memberswill have all (k,v) in log m periods

—But asis, the cost is O(C), where C = disk size
(although the constant is pretty small)

Sean C. Rhea

OpenDHT: A Public DHT Service April 14, 2005

Merkle Trees

» Merkletrees are an efficient summary technique

— If the top node is signed and distributed, this signature

can later be used to verify any individual block, using
only O(log n) nodes, where n = # of leaves

—E.g., toverify block C, need only R, M, N, I, J,C, & D

OpenDHT: A Public DHT Service

April 14, 2005

Why Storage Is Tricky

» The claim: DHT replicates within leaf set

— A pair (k,v) is stored by the node closest to k and
replicated on its successor and predecessor

* Why isthishard?

m
—
PR

k

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Merkle Trees

» Merkletrees are an efficient summary technique
— Interior nodes are the secure hashes of their children
—E.g., | =SHA(A.B), N = SHA(K.L), €tc.

OpenDHT: A Public DHT Service

April 14, 2005

Using Merkle Trees as Summaries
* Improvement: use Merkle tree to summarize
keys

— B getstreeroot from A, if same as local root, done
— Otherwise, recurse down treeto find difference

A’svalues B’svalues:
[O’ 2160 O’ 2160
)

[0, 215) [2159, 2160) [o, 2159)[P) 52159’ 2160)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Using Merkle Trees as Summaries

* Improvement: use Merkle tree to summarize
keys
— B getstreeroot from A, if same as local root, done
— Otherwise, recurse down treeto find difference

* New costisO(d log C)
—-d= nxmbg of differences, C = size 81‘ di§<

0, 2160) [0, 2160)
[o, 2159; ‘e [2159, 2160) [o, 2159) P 52159 2160)
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Using Merkle Trees as Summaries

* Still too costly:

—If A isdown for an hour, then comes back, changes
will be randomly scattered throughout tree

A’svalues B’svalues.
[0, 2160) [0, 2160)

m N ﬁ[oémé);; ;552 2';0)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Using Merkle Trees as Summaries

* Still too costly:

—If A isdown for an hour, then comes back, changes
will be randomly scattered throughout tree

* Solution: order values by time instead of hash
— Localizes valuesto one side of tree

A’svalues B’svalues:
[0, 28%) [0, 28%)
[0, 283) ;0; [283, 264) [0, 283) ;O; 263 264)
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

PlanetLab Deployment

» Been running Bamboo / OpenDHT on
PlanetLab since April 2004

» Constantly run a put/get test
— Every second, put avalue (withaTTL)
— DHT stores 8 replicas of each value
— Every second, get some previously put value

(that hasn’t expired)

* Tests both routing correctness and replication

algorithms (latter not discussed here)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Excellent Availability

1000 | Median Latency
95th Percentile Latency

Failures

100
10 w PlanetLab
MWL W‘ %w V3 Rollout
| i l |

09/28 10/12 10/26 11/09 1123 12/07 12121 01/04 OU18 02/01

* Only 28 of 7 million valueslost in 3 months
— Where “lost” means unavailable for afull hour

* On Feb. 7, 2005, lost 60/190 nodesin 15
minutes to PL kernel bug, only lost one value

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Tak Outline

» Bamboo: a churn-resilient DHT
— Churn resilience at the lookup layer
— Churn resilience at the storage layer
* OpenDHT: the DHT asaservice
— Finding the right interface
— Protecting against overuse
 Futurework

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

A Small Sample of
DHT Applications

Distributed Storage Systems

— CFS, HiveCache, PAST, Pagtiche, OceanStore, Pond
Content Distribution Networks / Web Caches

— Bdash, Coral, Squirrel

 Indexing / Naming Systems

— Chord-DNS, CoDoNS, DOA, SFR

Internet Query Processors

— Catalogs, PIER

¢ Communication Systems

— Bayeux, i3, MCAN, SplitStream

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Questions:

* How many DHTs will there be?
» Can all applications share one DHT?

Benefits of Sharinga DHT

Amortizes costs across applications
— Maintenance bandwidth, connection state, etc.
Facilitates “ bootstrapping” of new applications
— Working infrastructure already in place
Allows for statistical multiplexing of resources
— Takes advantage of spare storage and bandwidth
Facilitates upgrading existing applications
—“Share” DHT between application versions

Challengesin Sharing a DHT
* Robustness

— Must be available 24/7
* Shared Interface Design

— Should be general, yet easy to use
» Resource Allocation

— Must protect against malicious/over-eager users
» Economics

— What incentives are there to provide resources?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service
By

g o
- % g

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

iy
o OpenDHT

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service

AN e

OpenDHT Climt\
X

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service

i -

OpenDHT

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

It's not lookup()

lookup(k)

How are DHTs Used?

1. Storage
— CFS, UsenetDHT, PKI, €tc.
2. Rendezvous
— Simple: Chat, Instant Messenger
— Load balanced: i3
— Multicast: RSS Aggregation, White Board
— Anycast: Tapestry, Coral

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Challenges:

1. Distribution

2. Security
What doesthis node

dowithit? N
k
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005
What about put/get?

» Workseasily for storage applications
» Easytoshare

— No upcalls, so no code distribution or security
complications

» But doesit work for rendezvous?
— Chat? Sure: put(my-name, my-I1P)
— What about the others?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

10

Recursive Distributed Rendezvous

* |ldea: prove an equivalence between lookup
and put/get
— We know we can implement put/get on lookup
— Can we implement lookup on put/get?

e |t turns out we can

— Algorithm is called Recursive Distributed
Rendezvous (ReDiR)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDIR

* Goal: Implement two functions using put/get:
— join(namespace, node)
—node = lookup(namespace, identifier)

HEA) HEB) y
I E‘
_——
A T
L2 ¢ 4 L L
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDIR

* Goal: Implement two functions using put/get:
— join(namespace, node)
—node = lookup(namespace, identifier)

H(A)H®B) H(C)

Lo | o
Lr L o L o

>
w

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDIR

* Goal: Implement two functions using put/get:
— join(namespace, node)
—node = lookup(namespace, identifier)

ReDIR

* Goal: Implement two functions using put/get:
— join(namespace, node)
—node = lookup(namespace, identifier)

HA HE) H(O) HD) HE), |
Lo | ‘—|
A C D
L1 L o -
2 @
senC. Rren OpSTDHT: A Public OHT Savice gl 14, 205

H(A)H(B) H(C) H(D) A
Lo | ‘—|
A C D
L1 b - -
A, B C D
L2 | O ¢ ¢ ¢
ReDiR

* Goal: Implement two functions using put/get:
— join(namespace, node)
—node = lookup(namespace, identifier)

H(A)H®B) H(C) H(D) H(E)

A,D
Lo | ‘—|
A,C
L1 - > E’—|
A B c D E
L2 | 2z L 4 ¢ ¢
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

11

ReDIR

* Join cost:
— Worst case: O(log n) puts and gets
— Average case: O(1) puts and gets

ReDIR

* Goal: Implement two functions using put/get:
— join(namespace, node)
—node = lookup(namespace, identifier)

H(A) H(B) H(C) HD) HE), o
Lo ‘—|
A,C
L1 L o D'EQ—|
A,B c D E
L2 | 2z ¢ ¢ ¢
ReDiR

* Goal: Implement two functions using put/get:
— join(namespace, node)
—node = lookup(namespace, identifier)

H(k2)

Lo >

L1 A'C: o
*—o—0

H(k) A D
LO >
AC D,E
L1 b= - -
[2
H(A)H®B) H(C) H(D) H(E)
ReDIR

* Goal: Implement two functions using put/get:
— join(namespace, node)
—node = lookup(namespace, identifier)

Lo |

1 Ag | o successor >DE’—-I

H(A) HB) H(C) H(D) H(E)
ReDIiR
» Lookup cost:

— Worgt case: O(log n) gets
— Average case: O(1) gets

A,D
o >
A, C D, E
L1 b L o Y
A, B C D E
L2 I
H(A)H(B) H(C) H(D) H(E)
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

r T V
A B c no succesor » E
L2 I
H(A)H®B) H(C) H(D) H(E)
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005
ReDiR Performance
(On PlanetLab)
1
5
g 0.8
<06
2
£ 04
=1 /
E 02 OpenDHT gets
S 5 . ReDiR lookups
0.01 0.1 1 10 100
Latency (seconds)
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

12

OpenDHT Service Model

» Storage Applications:
— Just use put/get
» Rendezvous Applications:
— You provide the nodes
— We provide cheap, scalable rendezvous

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Tak Outline

» Bamboo: a churn-resilient DHT
— Churn resilience at the lookup layer
— Churn resilience at the storage layer

* OpenDHT: the DHT asaservice
— Finding the right interface
— Protecting against overuse

* Future work

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Protecting Against Overuse

» Must protect system resources against overuse
— Resources include network, CPU, and disk
— Network and CPU straightforward
— Disk harder: usage persists long after requests
 Hard to distinguish malice from eager usage
— Don’t want to hurt eager users if utilization low
» Number of active users changes over time
— Quotas are inappropriate

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Fair Storage Allocation

* Our solution: give each client afair share
— Will define“fairness” in afew slides
* Limits strength of malicious clients
— Only as powerful as they are numerous
* Protect storage on each DHT node separately
— Must protect each subrange of the key space
— Rewards clients that balance their key choices

OpenDHT: A Public DHT Service April 14, 2005

The Problem of Starvation

 Fair shares change over time
— Decrease as system load increases

Client Larrives Client 2 arrives Client 3arrives
fills 50% of disk fills40% of disk ~ max share=10%

time

Sean C. Rhea

OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation
» Simplefix: add time-to-live (TTL) to puts
— put (key, value) — put (key, value, ttl)
— (A different approach is used by Palimpsest.)
* Preventslong-term starvation
— Eventually all putswill expire

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

13

Preventing Starvation
o Simplefix: add time-to-live (TTL) to puts
— put (key, value) — put (key, value, ttl)
— (A different approach is used by Palimpsest.)
* Preventslong-term starvation
— Eventually all putswill expire
» Can ill get short term starvation

Client A arrives Client Barrives Client A’svalues

fillsentire of disk asksfor space start expiring
time

B Starves
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation
 Stronger condition:
Be able to accept r,;,, bytes/sec new dataat all times
» Thisisnon-trivial to arrange!

max 4—— Sum must be < max capacity
§ Reserved for future
g — puts. Slope=r,,
?Sgw time max
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation
 Stronger condition:
Be able to accept r,;,, bytes/sec new dataat all times

» Thisisnon-trivial to arrange! Niolation

max max

g
B

= i

?Sow time max ?Sow time max

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation

» Formalize graphical intuition:

(1) = B(toon) - D(trow thowt © F Fmin X T
» Toaccept put of sizexand TTL I:

f(t) +x<C fordl0<t<I

» Cantrack the value of f efficiently with atree
— Leaves represent inflection points of f
— Add put, shift time are O(log n), n = # of puts

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Fair Storage Allocation

Queue full:
reject put
[| Per-client Wait until can
Put queves accept without
> DDD violating rp;,
] i Storeand
Select most [i send accept
under- | message
* toclient

eng Sgg!:ut =DD @/)

‘ The Big Decision: Definition of “most under-represented”

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Defining “Most Under-Represented”

Not just sharing disk, but disk over time

— 1 byte put for 100s same as 100 byte put for 1s

— So units are bytes x seconds, call them commitments
Equalize total commitments granted?

— No: leads to starvation

— A fillsdisk, B starts putting, A starvesup tomax TTL

Client A arrives Client B arrives B catchesup
fillsentire of disk asksfor space with A

Now A Starves! time

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

14

Defining “Most Under-Represented”

* Instead, equalize rate of commitments granted

— Service granted to one client depends only on others
putting “a sametime”

Client A arrives Client B arrives B catchesup

fillsentire of disk asksfor space with A
time
A & B share
availablerate
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Defining “Most Under-Represented”

* Instead, equalize rate of commitments granted
— Service granted to one client depends only on others
putting “ a same time”
» Mechanism inspired by Start-time Fair Queuing
— Have virtual time, v(t)
— Each put getsa start time S(p,/) and finish time F(p,)
F(p.) = S(pJ) + size(p,) = tl(pS)
S(pd) = max(V(A(py)) - & F(p)
v(t) = maximum start time of all accepted puts

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Total Bytes*Seconds (MB*hours,

Storage Acquired (1,000s of bytes)

FST Performance

50 : 9 e
s qent == 5 Clen |
i Client _— & jent
Q1 Cliens _— g 7 / Client 3
- Client4 —— S / \ Client4
30 P 5 g / N\
P % s / \
25 - 2oy
20 / ER
15 — 5 31/
10 "1 £ 21/
5 T Ty)
0 — P y
01 23 456 78 910 01 23 456 7 8 910
Time (hours) Time (hours)
720 Z 720
600 £ w0
480 E
360 % 360
546 Clients 1-10 2 om)
7 g]
120 / L Clients 11-15 2‘ 120 [/ Clients 11-15
|] /
0 = 0
0 1 2 3 4 5 o 123 4
Time (hours) “Time (hours)
Seen C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Tak Outline

* Bamboo: a churn-resilient DHT
— Churn resilience at the lookup layer
— Churn resilience at the storage layer

e OpenDHT: the DHT asaservice
— Finding the right interface
— Protecting against overuse

* Future work

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Future Work: Throughput

» High DHT throughput remains a challenge
— Each put/get can be to a different destination node

» Only one existing solution (STP)
— Assumes client’ s access link is bottleneck

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Future Work: Throughput

» High DHT throughput remains a challenge
— Each put/get can be to a different destination node
» Only one existing solution (STP)
— Assumes client’ s access link is bottleneck
» Have complete control of DHT routers
— Can do fancy congestion control: maybe ECN?
» Have many available paths
— Take advantage for higher throughput: mTCP?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

15

Future Work: Upcalls

» OpenDHT makes a great common substrate for:

— Soft-state storage
— Naming and rendezvous

» Many P2P applications also need to:
—Traverse NATs
— Redirect packets within the infrastructure (asini3)
— Refresh puts while intermittently connected

* All of these can be implemented with upcalls
— Who provides the machines that run the upcalls?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Future Work: Upcalls

We don’t want to add upcalls to the core DHT
— Keep the main service simple, fast, and robust
Can we build a separate upcall service?
— Some other set of machines organized with ReDiR
— Security: can only accept incoming connections,
can’t write to local storage, etc.
This should be enough to implement
— NAT traversal, reput service
— Some (most?) packet redirection
What about more expressive security policies?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

For more information, see
http://bamboo-dht.org/
http://opendht.org/

16

