
1

Beyond Theory: DHTs in Practice
CS 194 - Distributed Systems

Sean C. Rhea

April 18, 2005

In collaboration with: Dennis Geels, Brighten Godfrey,
Brad Karp, John Kubiatowicz, Sylvia Ratnasamy,

Timothy Roscoe, Scott Shenker, Ion Stoica, and Harlan Yu
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Talk Outline

• Bamboo: a churn-resilient DHT
– Churn resilience at the lookup layer [USENIX’04]

– Churn resilience at the storage layer

[Cates’03], [Unpublished]

• OpenDHT: the DHT as a service
– Finding the right interface [IPTPS’04]

– Protecting against overuse [Under Submission]

• Future work

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Making DHTs Robust:
The Problem of Membership Churn
• In a system with 1,000s of machines, some

machines failing / recovering at all times

• This process is called churn

• Without repair, quality of overlay network
degrades over time

• A significant problem deployed peer-to-
peer systems

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

How Bad is Churn in Real Systems?

50% < 2.4 minutesKazaaGDS03

50% < 60 minutesOvernetBSV03

50% < 1 minuteFastTrackSW02

31% < 10 minutesGnutella, NapsterCLL02

50% < 60 minutesGnutella, NapsterSGG02

Session TimeSystems ObservedAuthors

time
arrive depart arrive depart

Session
Time

Lifetime

An hour is an incredibly short MTTF!

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Refresher: DHT Lookup/Routing

���

���

���

���

���

���

���

���

���

���
k1,v1

put(k1,v1)

Put and get
must find the
same machine

k1

v1

get(k1)
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Can DHTs Handle Churn?
A Simple Test

• Start 1,000 DHT processes on a 80-CPU cluster
– Real DHT code, emulated wide-area network

– Models cross traffic and packet loss

• Churn nodes at some rate

• Every 10 seconds, each machine asks:

“Which machine is responsible for key k?”
– Use several machines per key to check consistency

– Log results, process them after test

2

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Test Results

• In Tapestry (the OceanStore DHT), overlay partitions
– Leads to very high level of inconsistencies

– Worked great in simulations, but not on more realistic network

• And the problem isn’ t limited to Tapestry:

FreePastry MIT Chord

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The Bamboo DHT
• Forget about comparing Chord-Pastry-Tapestry

– Too many differing factors

– Hard to isolate effects of any one feature

• Instead, implement a new DHT called Bamboo
– Same overlay structure as Pastry

– Implements many of the features of other DHTs

– Allows testing of individual features independently

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

How Bamboo Handles Churn
(Overview)

1. Routes around suspected failures quickly
– Abnormal latencies indicate failure or congestion
– Route around them before we can tell difference

2. Recovers failed neighbors periodically
– Keeps network load independent of churn rate
– Prevents overlay-induced positive feedback cycles

3. Chooses neighbors for network proximity
– Minimizes routing latency in non-failure case
– Allows for shorter timeouts

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Bamboo Basics:
Partition Key Space

• Each node in DHT will store some k,v pairs

• Given a key space K, e.g. [0, 2160):
– Choose an identifier for each node, idi ∈ K,

uniformly at random

– A pair k,v is stored at the node whose identifier
is closest to k

0 2160

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Bamboo Basics:
Build Overlay Network

• Each node has two sets of neighbors

• Immediate neighbors in the key space
– Important for correctness

• Long-hop neighbor s
– Allow puts/gets in O(log n) hops

0 2160

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Bamboo Basics:
Route Puts/Gets Thru Overlay

• Route greedily, always making progress

0 2160

k

get(k)

3

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Routing Around Failures

• Under churn, neighbors may have failed

• To detect failures, acknowledge each hop

0 2160

k

ACK
ACK

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Routing Around Failures

• If we don’ t receive an ACK, resend through
different neighbor

0 2160

k

Timeout!

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Computing Good Timeouts

• Must compute timeouts carefully
– If too long, increase put/get latency

– If too short, get message explosion

0 2160

k

Timeout!

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Computing Good Timeouts

• Chord errs on the side of caution
– Very stable, but gives long lookup latencies

0 2160

k

Timeout!

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Computing Good Timeouts

• Keep past history of latencies
– Exponentially weighted mean, variance

• Use to compute timeouts for new requests
– timeout = mean + 4 × variance

• When a timeout occurs
– Mark node “possibly down”: don’ t use for now

– Re-route through alternate neighbor

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Timeout Estimation Performance

4

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recovering From Failures

• Can’ t route around failures forever
– Will eventually run out of neighbors

• Must also find new nodes as they join
– Especially important if they’ re our immediate

predecessors or successors:

0 2160

responsibility

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recovering From Failures

• Can’ t route around failures forever
– Will eventually run out of neighbors

• Must also find new nodes as they join
– Especially important if they’ re our immediate

predecessors or successors:

0 2160

old responsibility

new responsibility

new node

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recovering From Failures

• Obvious algorithm: reactive recovery
– When a node stops sending acknowledgements,

notify other neighbors of potential replacements

– Similar techniques for arrival of new nodes

B0 2160C DAA

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recovering From Failures

• Obvious algorithm: reactive recovery
– When a node stops sending acknowledgements,

notify other neighbors of potential replacements

– Similar techniques for arrival of new nodes

B0 2160C DAA

B failed, use D B failed, use A

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The Problem with Reactive Recovery
• What if B is alive, but network is congested?

– C still perceives a failure due to dropped ACKs

– C starts recovery, further congesting network

– More ACKs likely to be dropped

– Creates a positive feedback cycle

B0 2160C DAA

B failed, use D B failed, use A

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The Problem with Reactive Recovery
• What if B is alive, but network is congested?

• This was the problem with Pastry
– Combined with poor congestion control, causes

network to partition under heavy churn

B0 2160C DAA

B failed, use D B failed, use A

5

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery

• Every period, each node sends its neighbor
list to each of its neighbors

B0 2160C DAA

my neighbors are A, B, D, and E
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery

• Every period, each node sends its neighbor
list to each of its neighbors

B0 2160C DAA

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery

• Every period, each node sends its neighbor
list to each of its neighbors
– Breaks feedback loop

B0 2160C DAA

my neighbors are A, B, D, and E
Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery

• Every period, each node sends its neighbor
list to each of its neighbors
– Breaks feedback loop

– Converges in logarithmic number of periods

B0 2160C DAA

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Periodic Recovery Performance

• Reactive recovery expensive under churn

• Excess bandwidth use leads to long latencies

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Proximity Neighbor Selection (PNS)

• For each neighbor, may be many candidates
– Choosing closest with right prefix called PNS

6

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Proximity Neighbor Selection (PNS)

0…

10…

110…

111…

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Proximity Neighbor Selection (PNS)

• For each neighbor, may be many candidates
– Choosing closest with right prefix called PNS

• Tapestry has sophisticated algorithms for PNS
– Provable nearest neighbor under some assumptions
– Nearest neighbors give constant stretch routing
– But reasonably complicated implementation

• Can we do better?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

How Important is PNS?

• Only need leaf set for correctness
– Must know predecessor and successor to determine

what keys a node is responsible for

• Any filled routing table gives efficient lookups
– Need one neighbor that shares no prefix, one that

shares one bit, etc., but that’ s all

• Insight: treat PNS as an optimization only
– Find initial neighbor set using lookup

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

PNS by Random Sampling

• Already looking for new neighbors periodically
– Because doing periodic recovery

• Can use results for random sampling
– Every period, find potential replacement with lookup

– Compare latency with existing neighbor

– If better, swap

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

• Random sampling almost as good as everything else
– 24% latency improvement free
– 42% improvement for 40% more b.w.
– Compare to 68%-84% improvement by using good timeouts

PNS Results

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Talk Outline
• Bamboo: a churn-resilient DHT

– Churn resilience at the lookup layer

– Churn resilience at the storage layer

• OpenDHT: the DHT as a service
– Finding the right interface

– Protecting against overuse

• Future work

7

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

A Reliable Storage Layer
• Don’ t just want to do lookup, also want to do

– DHASH’sput/get: store (key, value) pairs
– Tapestry’ s publish/route: store (key, pointer) pairs

• Problem statement:
Keep data/pointers available despite churn

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Why Storage Is Tricky

• The claim: DHT replicates within leaf set
– A pair (k,v) is stored by the node closest to k and

replicated on its successor and predecessor

• Why is this hard?

k

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

DHTs Meet Epidemics
• Candidate Algorithm

– For each (k,v) stored locally, compute SHA(k.v)

– Every period, pick a random leaf set neighbor

– Ask neighbor for all its hashes

– For each unrecognized hash, ask for key and value

• This is an epidemic algorithm
– All m members will have all (k,v) in log m periods

– But as is, the cost is O(C), where C = disk size
(although the constant is pretty small)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Merkle Trees
• Merkle trees are an efficient summary technique

– Interior nodes are the secure hashes of their children
– E.g., I = SHA(A.B), N = SHA(K.L), etc.

A B C D E F G H

I=SHA(A.B) J K L

N=SHA(K.L)M

R

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Merkle Trees
• Merkle trees are an efficient summary technique

– If the top node is signed and distributed, this signature
can later be used to verify any individual block, using
only O(log n) nodes, where n = # of leaves

– E.g., to verify block C, need only R, M, N, I, J, C, & D

A B C D E F G H

I J K L

NM

R

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Using Merkle Trees as Summaries
• Improvement: useMerkle tree to summarize

keys
– B gets tree root from A, if same as local root, done
– Otherwise, recurse down tree to find difference

B’s values:A’ s values:
[0, 2160)

[0, 2159) [2159, 2160)
[0, 2160)

[0, 2159) [2159, 2160)

8

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Using Merkle Trees as Summaries
• Improvement: useMerkle tree to summarize

keys
– B gets tree root from A, if same as local root, done
– Otherwise, recurse down tree to find difference

• New cost is O(d log C)
– d = number of differences, C = size of disk

B’s values:A’ s values:
[0, 2160)

[0, 2159) [2159, 2160)
[0, 2160)

[0, 2159) [2159, 2160)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Using Merkle Trees as Summaries
• Still too costly:

– If A is down for an hour, then comes back, changes
will be randomly scattered throughout tree

B’s values:A’ s values:
[0, 2160)

[0, 2159) [2159, 2160)
[0, 2160)

[0, 2159) [2159, 2160)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Using Merkle Trees as Summaries
• Still too costly:

– If A is down for an hour, then comes back, changes
will be randomly scattered throughout tree

• Solution: order values by time instead of hash
– Localizes values to one side of tree

B’s values:A’ s values:
[0, 264)

[0, 263) [263, 264)
[0, 264)

[0, 263) [263, 264)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

PlanetLab Deployment

• Been running Bamboo / OpenDHT on
PlanetLab since April 2004

• Constantly run a put/get test
– Every second, put a value (with a TTL)
– DHT stores 8 replicas of each value
– Every second, get some previously put value

(that hasn’ t expired)

• Tests both routing correctness and replication
algorithms (latter not discussed here)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Excellent Availability

• Only 28 of 7 million values lost in 3 months
– Where “ lost” means unavailable for a full hour

• On Feb. 7, 2005, lost 60/190 nodes in 15
minutes to PL kernel bug, only lost one value

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Talk Outline
• Bamboo: a churn-resilient DHT

– Churn resilience at the lookup layer

– Churn resilience at the storage layer

• OpenDHT: the DHT as a service
– Finding the right interface

– Protecting against overuse

• Future work

9

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

A Small Sample of

DHT Applications
• Distributed Storage Systems

– CFS, HiveCache, PAST, Pastiche, OceanStore, Pond

• Content Distribution Networks / Web Caches
– Bslash, Coral, Squirrel

• Indexing / Naming Systems
– Chord-DNS, CoDoNS, DOA, SFR

• Internet Query Processors
– Catalogs, PIER

• Communication Systems
– Bayeux, i3, MCAN, SplitStream

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Questions:

• How many DHTs will there be?

• Can all applications share one DHT?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Benefits of Sharing a DHT

• Amortizes costs across applications
– Maintenance bandwidth, connection state, etc.

• Facilitates “bootstrapping” of new applications
– Working infrastructure already in place

• Allows for statistical multiplexing of resources
– Takes advantage of spare storage and bandwidth

• Facilitates upgrading existing applications
– “Share” DHT between application versions

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Challenges in Sharing a DHT

• Robustness
– Must be available 24/7

• Shared Interface Design
– Should be general, yet easy to use

• Resource Allocation
– Must protect against malicious/over-eager users

• Economics
– What incentives are there to provide resources?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service

���

���

���

���

���

���

���

���

���

���

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service

���

���

���

���

���

���

���

���

���

��� OpenDHT

10

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service

OpenDHT Clients

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service

OpenDHT

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The DHT as a Service

OpenDHT

What is this interface?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

It’ s not lookup()

lookup(k)

k

What does this node
do with it?

Challenges:
1. Distribution
2. Security

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

How are DHTs Used?

1. Storage
– CFS, UsenetDHT, PKI, etc.

2. Rendezvous
– Simple: Chat, Instant Messenger

– Load balanced: i3

– Multicast: RSS Aggregation, White Board

– Anycast: Tapestry, Coral

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

What about put/get?

• Works easily for storage applications

• Easy to share
– No upcalls, so no code distribution or security

complications

• But does it work for rendezvous?
– Chat? Sure: put(my-name, my-IP)

– What about the others?

11

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Recursive Distributed Rendezvous

• Idea: prove an equivalence between lookup
and put/get
– We know we can implement put/get on lookup

– Can we implement lookup on put/get?

• It turns out we can
– Algorithm is called Recursive Distributed

Rendezvous (ReDiR)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Goal: Implement two functions using put/get:

– join(namespace, node)
– node = lookup(namespace, identifier)

H(namespace)

L0

L1

L2

H(A)

A

A

A
H(B)

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Goal: Implement two functions using put/get:

– join(namespace, node)
– node = lookup(namespace, identifier)

L0

L1

L2

H(A)

A, B

A

A
H(B) H(C)

C

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Goal: Implement two functions using put/get:

– join(namespace, node)
– node = lookup(namespace, identifier)

L0

L1

L2

H(A)

A, B

A, C

A
H(B) H(C)

C

H(D)

D

D

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Goal: Implement two functions using put/get:

– join(namespace, node)
– node = lookup(namespace, identifier)

L0

L1

L2

H(A)

A, B

A, C

A, D
H(B) H(C)

C

H(D)

D

D

H(E)

E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Goal: Implement two functions using put/get:

– join(namespace, node)
– node = lookup(namespace, identifier)

L0

L1

L2

H(A)

A, B

A, C

A, D
H(B) H(C)

C

H(D)

D

D, E

H(E)

E

12

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Join cost:

– Worst case: O(log n) puts and gets
– Average case: O(1) puts and gets

L0

L1

L2

H(A)

A, B

A, C

A, D
H(B) H(C)

C

H(D)

D

D, E

H(E)

E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Goal: Implement two functions using put/get:

– join(namespace, node)
– node = lookup(namespace, identifier)

L0

L1

L2
H(A)

A, B

A, C

A, D

H(B) H(C)

C

H(D)

D

D, E

H(E)

E

H(k1)

successor

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Goal: Implement two functions using put/get:

– join(namespace, node)
– node = lookup(namespace, identifier)

L0

L1

L2
H(A)

A, B

A, C

A, D

H(B) H(C)

C

H(D)

D

D, E

H(E)

E

H(k2)

no successor

successor

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Goal: Implement two functions using put/get:

– join(namespace, node)
– node = lookup(namespace, identifier)

L0

L1

L2
H(A)

A, B

A, C

A, D

H(B) H(C)

C

H(D)

D

D, E

H(E)

E

H(k3)

no successor

successor

no successor

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR
• Lookup cost:

– Worst case: O(log n) gets
– Average case: O(1) gets

L0

L1

L2
H(A)

A, B

A, C

A, D

H(B) H(C)

C

H(D)

D

D, E

H(E)

E

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

ReDiR Performance
(On PlanetLab)

13

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

OpenDHT Service Model

• Storage Applications:
– Just use put/get

• Rendezvous Applications:
– You provide the nodes

– We provide cheap, scalable rendezvous

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Talk Outline
• Bamboo: a churn-resilient DHT

– Churn resilience at the lookup layer

– Churn resilience at the storage layer

• OpenDHT: the DHT as a service
– Finding the right interface

– Protecting against overuse

• Future work

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Protecting Against Overuse

• Must protect system resources against overuse
– Resources include network, CPU, and disk
– Network and CPU straightforward
– Disk harder: usage persists long after requests

• Hard to distinguish malice from eager usage
– Don’ t want to hurt eager users if utilization low

• Number of active users changes over time
– Quotas are inappropriate

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Fair Storage Allocation

• Our solution: give each client a fair share
– Will define “ fairness” in a few slides

• Limits strength of malicious clients
– Only as powerful as they are numerous

• Protect storage on each DHT node separately
– Must protect each subrange of the key space

– Rewards clients that balance their key choices

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

The Problem of Starvation

• Fair shares change over time
– Decrease as system load increases

time

Client 1 arr ives
fills 50% of disk

Client 2 arr ives
fills 40% of disk

Client 3 arr ives
max share = 10%

Starvation!

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation
• Simple fix: add time-to-live (TTL) to puts

– put (key, value) → put (key, value, ttl)

– (A different approach is used by Palimpsest.)

• Prevents long-term starvation
– Eventually all puts will expire

14

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation
• Simple fix: add time-to-live (TTL) to puts

– put (key, value) → put (key, value, ttl)

– (A different approach is used by Palimpsest.)

• Prevents long-term starvation
– Eventually all puts will expire

• Can still get short term starvation

time

Client A arr ives
fills entire of disk

Client B arr ives
asks for space

Client A’s values
star t expir ing

B Starves

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation
• Stronger condition:

Be able to accept rmin bytes/sec new data at all times

• This is non-trivial to arrange!

Reserved for future
puts. Slope = rmin

Candidate put

TTL

size

Sum must be < max capacity

time

sp
ac

e

max

max0now

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation
• Stronger condition:

Be able to accept rmin bytes/sec new data at all times

• This is non-trivial to arrange!

TTL

size

time

sp
ac

e

max

max0now

TTL
size

time

sp
ac

e

max

max0now

Violation!

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Preventing Starvation

• Formalize graphical intuition:

f(τ) = B(tnow) - D(tnow, tnow+ τ) + rmin × τ
• To accept put of size x and TTL l:

f(τ) + x < C for all 0
� τ < l

• Can track the value of f efficiently with a tree
– Leaves represent inflection points of f

– Add put, shift time are O(log n), n = # of puts

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Fair Storage Allocation

Per-client
put queues

Queue full:
reject put

Not full:
enqueue put

Select most
under-

represented

Wait until can
accept without
violating rmin

Store and
send accept
message
to client

The Big Decision: Definition of “most under-represented”

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Defining “Most Under-Represented”
• Not just sharing disk, but disk over time

– 1 byte put for 100s same as 100 byte put for 1s
– So units are bytes × seconds, call them commitments

• Equalize total commitments granted?
– No: leads to starvation
– A fills disk, B starts putting, A starves up to max TTL

time

Client A arr ives
fills entire of disk

Client B arr ives
asks for space

B catches up
with A

Now A Starves!

15

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Defining “Most Under-Represented”
• Instead, equalize rate of commitments granted

– Service granted to one client depends only on others
putting “at same time”

time

Client A arr ives
fills entire of disk

Client B arr ives
asks for space

B catches up
with A

A & B share
available rate

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Defining “Most Under-Represented”
• Instead, equalize rate of commitments granted

– Service granted to one client depends only on others
putting “at same time”

• Mechanism inspired by Start-time Fair Queuing
– Have virtual time, v(t)

– Each put gets a start time S(pc
i) and finish time F(pc

i)

F(pc
i) = S(pc

i) + size(pc
i) × ttl(pc

i)

S(pc
i) = max(v(A(pc

i)) - ε, F(pc
i-1))

v(t) = maximum start time of all accepted puts

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

FST Performance

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Talk Outline
• Bamboo: a churn-resilient DHT

– Churn resilience at the lookup layer

– Churn resilience at the storage layer

• OpenDHT: the DHT as a service
– Finding the right interface

– Protecting against overuse

• Future work

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Future Work: Throughput

• High DHT throughput remains a challenge
– Each put/get can be to a different destination node

• Only one existing solution (STP)
– Assumes client’ s access link is bottleneck

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Future Work: Throughput

• High DHT throughput remains a challenge
– Each put/get can be to a different destination node

• Only one existing solution (STP)
– Assumes client’ s access link is bottleneck

• Have complete control of DHT routers
– Can do fancy congestion control: maybe ECN?

• Have many available paths
– Take advantage for higher throughput: mTCP?

16

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Future Work: Upcalls

• OpenDHT makes a great common substrate for:
– Soft-state storage

– Naming and rendezvous

• Many P2P applications also need to:
– Traverse NATs

– Redirect packets within the infrastructure (as in i3)

– Refresh puts while intermittently connected

• All of these can be implemented with upcalls
– Who provides the machines that run the upcalls?

Sean C. Rhea OpenDHT: A Public DHT Service April 14, 2005

Future Work: Upcalls

• We don’ t want to add upcalls to the core DHT
– Keep the main service simple, fast, and robust

• Can we build a separate upcall service?
– Some other set of machines organized with ReDiR
– Security: can only accept incoming connections,

can’ t write to local storage, etc.

• This should be enough to implement
– NAT traversal, reput service
– Some (most?) packet redirection

• What about more expressive security policies?

For more information, see
http://bamboo-dht.org/

http://opendht.org/

