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Announcements

� My office hours this week: not today, but Th 10-11

� HW #4 will be out shortly....
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Why OpenDHT?

Consider FreeDB (the CD metadata database)
� Two options to implement large-scale FreeDB

1. Implement your own DHT:
• Find 500 nodes you can use

• Run DHT 24/7

• Debug DHT problems when they occur

2. Use OpenDHT:
• 58 lines of Perl

4

Challenges

� Interface

� Security (securing interface)

� Resource allocation

� Beyond rendezvous
- ReDiR

- Range queries
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Three Classes of DHT Interfaces

� Routing: app-specific code at each hop

� Lookup: app-specific code at endpoint

� Storage: put/get

For a shared infrastructure that can’t incorporate app-specific 
code, the only choice is put/get

� Limited flexibility
� Does convenience outweigh constraints?
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Basic Interface

� put(k,v,t): write (k,v) for TTL t

� Why TTL?  No garbage collection...
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Security Worries

� Modifying: changing data stored by someone else

� Squatting: getting key first and not allowing others to use it

� Drowning: storing many values at certain key, so that client 
can’t get data they want without sifting through huge pile
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Put/Get Interface w/Authentication

� put-unauth(k,v,t): append-only (no remove), no auth
- no modifying, no squatting, but drowning
- for easy use

� put-immutable(k,v,t): k=H(v)
- no modifying, squatting or drowning, but no flexibility in key choice

� put-auth(k,v,t;n,K,s): removable, authenticated
- n is sequence number
- Public key K
- s=H(k,v,n) signed with private key

- get-auth(k,H(K)) retrieves only entries with that public key

- no modifying, squatting, or drowning, and flexibility of key choice
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Resource Allocation

� Consider a put of size B and TTL T

� The resource consumed by that put is BT

� Resource allocation strategy: 
- At any one time, allocate resources to keep instantaneous rate of

resource allocation even

- Leave enough room for future puts
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Storage Constraint Equation

� Baseline rate: rmin

� Disk capacity C

� Let S(t) be total number of current bytes that will still be on 
disk at time t

� A put of size b can be accepted iff

S(t)+b + t·rmin
�

C for 0 
�

t 
�

T

different notation than Sean’s
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Reserved for future
puts.  Slope = rmin

Candidate put
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Violation!

Does it Fit?
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Performance

Key point: slopes of all lines the same at all times!
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Beyond Rendezvous

� More complicated queries

� Application-specific processing

without changing interface!
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Range Queries

� Useful for many applications like databases and publish-
subscribe  systems 

- but not directly supported by a DHT

� Existing approaches require changes to DHT 
implementation

- Skip Graphs [Shah et al, SODA 2003]

- Load Balancing [Karger et al, SPAA 2004]

� How can range queries be supported on top of a generic 
put/get interface?
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Trie data structure

110*

110000
110010
110101
110111

Data  i tems are stored at 
leaf nodes with matching 
prefixes

HASH(110*) � key

Logical structure mapped
to DHT nodes by hashing
prefix labels
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Insertion / Deletion

Leaf nodes have a capacity
constraint B

Insertion could result in the
splitting of a leaf node
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For example, Insert(110011)
(B = 4)

Conversely,  deletion could 
result in the merging of two
sibl ing leaf nodes
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Range Queries
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Parallel traversal of smallest
sub-trie completely covering
range query

Root of this sub-trie can be
directly accessed instead of
top-down traversal

For example, Query(9,11)

HASH(0010*)
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PHT Properties

� Efficient: Operations are doubly logarithmic in domain size 
due to direct access

� Load Balanced: Top-down traversal is not required, 
reducing load in upper levels of the trie

� Fault-tolerant: Node failure does not affect the ability to 
access data available at other nodes
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Application-Specific Functionality

� How can you apply application-specific functionality to 
OpenDHT applications?

� Approach: use OpenDHT for routing, use external nodes 
nodes for application-specific processing

- Application owner doesn’t need to understand DHTs

- Can write application assuming a lookup(key) operation just works

� Accomplished through a client library called ReDiR
- takes application lookup(key) calls and returns with proper IP 

address (of external node) using put/get interface on OpenDHT
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ReDiR

� Each set of app-specific nodes is assigned a namespace

� Each node has a key in that namespace

� ReDiR supports:
- join(namespace, key, ip)

- lookup(namespace, key)
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ReDiR

� Consider multiple “levels” of the key space

� The l’th level has 2l partitions

� The namespace is assigned a key in each partition
- mirror elements
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ReDiR “ Homes”

H(namespace)

L0

L1

L2
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ReDiR Join Rule

� Store your (key, IP) at the namespace key in the lowest 
partition and continue to higher levels, stopping only after 
you’ve stored at a level where you aren’t the lowest key

- There’s a more sophisticated method using both highest or lower

� When you are the highest or lowest, “kick out” the previous 
lowest

- not necessary with soft state, but for the sake of the presentation
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ReDiR Lookup Rule

� Keep going up levels until you find a successor

� You are guaranteed that that’s your successor (aside from 
the lowest level)

- Why?
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ReDiR Join

� Join cost:
- Worst case: O(log n) puts and gets

- Average case: O(1) puts and gets
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ReDiR Lookup
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ReDiR Lookup
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ReDiR Lookup
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ReDiR Lookup

� Lookup cost:
- Worst case: O(log n) gets

- Average case: O(1) gets
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Please do not distribute without permission
Copyright USC Embedded Networks Lab 2003-2005
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• Wireless: no lines (network or power)

• Sensors: tied to real world

• Networks: not just a single hop
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Remote Sensing In-situ Sensing

Networked Sensing
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• Small (coin, matchbox 
sized) nodes with

• Processor 

• 8-bit processors to x86 
class processors

• Memory

• Kbytes – Mbytes range

• Radio

• 20-100 Kbps initially

• Battery powered

• Built-in sensors!
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Seismic Structure 
response

Contaminant 
Transport

Marine 
Microorganisms

Ecosystems, 
Biocomplexity

Structural
Condition Assessment
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• Interaction between 
ground motions and 
structure/foundation 
response not well 
understood.

• Current seismic networks 
not spatially dense 
enough

• to monitor structure 
deformation in response 
to ground motion.

• to sample wavefield
without spatial aliasing.
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• Use motes for seismic 
data collection

• Small scale (10 or so)

• Opportunity: validate 
with existing wired 
infrastructure

• Two on-going 
experiments

• Factor building

• Four Seasons building
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• Longer-term

• Challenges:
• Detection of damage 

(cracks) in structures

• Analysis of stress 
histories for damage 
prediction

• Applicable not just to 
buildings

• Bridges, aircraft
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• Industrial  effluent dispersal can be 
enormously damaging to the 
environment

• marine contaminants

• groundwater contaminants

• Study of contaminant transport involves
• Understanding the physical (soil 

structure), chemical (interaction with 
and impact on nutrients), and biological 
(effect on plants and marine life) 
aspects of contaminants

• Modeling their transports

• Mature field!

• Fine-grain sensing can help

Responsible Party 
contributions 
for cleanup of  
“ Superfund” sites
(source:  U.S. EPA, 
1996)

1980 1985 1990 19950
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• Use surrogates (e.g. 
heat transfer) to study 
contaminant transport

• Testbed
• Tank with heat source 

and embedded 
thermistors

• Measure and model 
heat flow

� � 	 
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• Nitrates in groundwater
• Application

• Wastewater used for 
irrigating alfalfa

• Wastewater has nitrates, 
nutrients for alfalfa

• Over-irrigation can lead to 
nitrates in ground-water

• Need monitoring system, 
wells can be expensive

• Pilot study of sensor 
network to monitoring 
nitrate levels
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• Algal Blooms (red, brown, 
green tides) impact

• Human life

• Industries (fisheries and 
tourism)

• Causes poorly understood, 
mostly because

• Measurement of these 
phenomena can be complex 
and time consuming

• Sensor networks can help
• Measure, predict, mitigate

.
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• Build a tank testbed in 
which to study the factors 
that affect micro-organism 
growth

• Actuation is a central part 
of this

• Can’ t expect to deploy at 
density we need

• Mobile sensors can help 
sample at high frequency

• Initial study:
• thermocline detection

1m

Tethered-
robot 
sample 
collectors

4����0B�� B @C'-;����->0% @�� :0% >�	

• Remote sensing can enable global 
assessment of ecosystem

• But, ecosystem evolution is often decided by 
local variations
• Development of canopy, nesting patterns often 

decided by small local variations in temperature

• In-situ networked sensing can help us 
understand some of these processes
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• Clustered architecture

• Weather-resistant housing design

• Sensors: Light, temperature, pressure, 
humidity

� :/'�� @ ��!"�"#%$ B-)&��> +

• Study nesting behavior 
of Leach’s storm petrels

• Clustered architecture:
• 802.11 backbone

• multihop sensor cluster

Base-Remote Link

Data Service

Internet

Client Data Browsing
and Processing

Transit Network

Basestation

Gateway

Sensor Patch

Patch 
Network

Sensor Node ')( �8) )�'?>�	0' B
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• Nodes are untethered, must rely on batteries

• Network lifetime now becomes a 
performance metric
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• The Communication/Computation Tradeoff
• Received power drops off as the fourth power of distance

• 10 m: 5000 ops/transmitted bit

• 100 m: 50,000,000 ops/transmitted bit

• Implications
• Avoid communication over long distances

• Cannot assume global knowledge, or centralized solutions

•• Can leverage data processing/aggregation inside the Can leverage data processing/aggregation inside the 
networknetwork
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• Can’ t hide in the machine room!

• Conditions variable and sometimes 
challenging
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• System must be self-organizing
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• Internet: single infrastructure capable of 
supporting many apps

• Sensornets: each deployment will have 
limited number of users and limited number 
of apps

• But basic technology should be general
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Processor Platforms Radios Sensors

Operating Systems

Localization Time Synchronization Medium Access Calibration

Collaborative Signal Processing

Data-centric Routing Data-centric Storage

Querying, Triggering

Aggregation and Compression

Collaborative Event Processing
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• Sensornet is useless if one can’ t access the 
required data

• Can’ t send it all to external storage:
• limited bandwidth

• limited energy

• How can you get only the data you need?

' � ;=' @ ( ' � � @����

• Don’ t know which nodes have data

• Don’ t think in terms of point-to-point 
protocols (as in Internet)

• Think in terms of data

� B # (��2: � � @����

• Send out requests for data by name

• If nodes have the relevant data, they 
respond
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• Data-centric routing

• Tree-based aggregation/collection

• Data-centric storage
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Processor Platforms Radios Sensors

Operating Systems

Localization Time Synchronization Medium Access Calibration

Collaborative Signal Processing

Data-centric Routing Data-centric Storage

Querying, Triggering
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• Messages are sets of attribute-value pairs

• Message types
• Interest (from sinks)

• Data (from sources)

• Control (reinforcement)
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• Flood interest

• Flood data in response

• Sink reinforces

• Forward data along the 
reinforced paths

Sink

Source
Interest

Sink

Source
Data

Source

Sink

Gradients
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Processor Platforms Radios Sensors

Operating Systems

Localization Time Synchronization Medium Access Calibration

Collaborative Signal Processing

Data-centric Routing Data-centric Storage

Querying, Triggering

Aggregation and Compression

Collaborative Event Processing
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• Set up spanning tree from source
• not as easy as it sounds!

• Flood query down tree

• Data sent back along reverse path

• Apply various aggregation operators
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Processor Platforms Radios Sensors

Operating Systems

Localization Time Synchronization Medium Access Calibration

Collaborative Signal Processing

Data-centric Routing Data-centric Storage

Querying, Triggering

Aggregation and Compression

Collaborative Event Processing
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• Data access methods are flood-response

• Good for long-lived queries

• What about one-shot queries?
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Sensor
Networks

Peer-to-peer
Systems

Database
Systems
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• Simple primitives
• Efficient information retrieval

in sensor networks
• Challenges

• Geographic routing
• Robustness to failure2 , ( -!3 4'5'3 6 *879 3 : 7!�'(;)7 5'3 < *' 
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Efficient
sensornet
querying
and
triggering
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• Geographic Hash Tables (GHTs)

• Hash the name of the data to a geographic location

• Store data at the node closest to that locations

• Use a geographic routing protocol (e.g., GPSR) 

• Can retrieve data the same way

��$ � � $&>A@ '-:0>��8)�B

• Nodes are named by their 
geographic locations

• Greedy routing as far as possible

• Perimeter routing when greedy fails
• Fundamentals: Right-hand rule

• Planarization removes crossing 
links

• Recover to greedy whenever 
possible

• Drop a packet when it is going to 
enter a perimeter along the same 
route again!

� � �WV � $"� �YX � � �

• Answer queries for exact matched data, just 
like any other hash tables.
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• Spatio-temporal aggregates

• Multi-dimensional range queries

• Approach
• Use hashing and spatial decomposition

• Data-centric storage not yet deployed

' ! : :/'&> @�\ ' � $ :��^] ' �9@

• Defining a sensornet architecture (SNA)
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Routing
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TTDD

Pico
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• Many components developed in isolation
• Differing assumptions about overall structure…

• Some vertically integrated systems
• Not much interoperability between them
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• The biggest impediment to progress is not
any single technical challenge

• It is the lack of an overall architecture that 
would increase composability and 
interoperability
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IPnetwork

link

physical

transport

application
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• Goal 1: universal connectivity
• Problem: diversity of network technologies

• Solution: universal and opaque IP protocol

• Goal 2: application flexibility
• Problem: application-aware networks limit 

flexibility (because network is static)

• Solution: end-to-end principle

• Put app. functionality in hosts, not network

• Hosts under our control, and can be changed

� ( '�$?>A@C'�:0>/'�@ � :�� ( % @ ' �9@ ! :/'

• Shields applications from hardware diversity

• Shields network from application diversity

• Speeds development and deployment of both
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• Apps: data-centric, not host-centric
• Endpoints not explicitly addressed by apps

� Can’t organize around end-to-end abstractions

• Goal: code portability and reuse
• Not universal connectivity

• Not application flexibility for static network

� End-to-end principle not (automatically) applicable

In-network processing is often much more efficient
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• Constraints: scarce resources (energy)

• Internet: opaque layers as easy abstraction
• Willing to tolerate significant efficiency loss

• Sensornets: need translucent layers
• Hide details of hardware underneath

• But expose abstractions for control

• Goal: trade (small) efficiency loss for (much) 
less reprogramming
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• Internet: best-effort end-to-end packet delivery (IP)

• Sensornets: best-effort single-hop broadcast (SP)?

• Expressive abstraction of a universal link layer
• Single abstraction for all lower layer technologies

• Abstraction should allow higher-layers to optimize 
without knowing the underlying technology
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Rich Common Link Interface (SP)

Multiple
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Multiple
Network
Layer
Protocols

Sensing
Application

Tracking
Application

Applications
Compose what they need

Aggregation
N --- 1
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